双种群遗传算法的公交路线查询

双种群遗传算法的公交路线查询
双种群遗传算法的公交路线查询

基于双种群遗传算法的公交路线查询问题

一、摘要

本文探讨的是公交路线选择而开发的查询系统.以两站点之间所花时间的最小值作为主要目标函数,利用双种群遗传算法的原理建立公交路线选择数学模型,再通过MATLAB 程序来实现整个流程和迭代,最终求出全局近似最优解,即最优权重线路,以起点和终点查询到近似的最优公交路线,并进行了误差分析,模型的评价与推广.

问题一:仅考虑公汽线路,对数据进行初步分析和处理后,考虑到数据的复杂性和数据搜索范围的广度,我们应用比较成熟的双种群遗传算法建立数学模型. 通过MATLAB强大的矩阵运算功能得到站点之间的邻接矩阵,用时间加权. 其流程思想为基于双种群初始群体A、B,对染色体进行整数编码,用竞争选择法选择出较优个体作为繁殖下一代的母体,依据选择性集成思想,等概率使用两点交叉法和区域交叉法对染色体进行交叉操作与使用邻居交换变异和两点交换变异进行染色体变异操作,并结合MATLAB反复迭代,最终给出了六对起始站与终点站的六条近似最优路线. 该法扩大遗传算法的搜索范围,避免过早收敛.

问题二:在数据处理上用时间加权把地铁站点和汽车站点统一化,可得所有站点之间的邻接矩阵. 其求解原理与问题一相似,但由转车方式的不同生成了8种不同的适应度函数,再根据适应度函数来进行问题的求解.

问题三:我们将任意两个站点之间的步行时间作为矩阵中相应位置的权,这时构建的邻接矩阵中的权就由两站点之间公汽到公汽的时间,公汽到地铁的时间,地铁到公汽的时间,地铁到地铁的时间和两点之间的步行时间构成. 但其求解原理与问题一相似,但由转车方式的不同就会生成不同的适应度函数,再根据适应度函数来进行问题的求解.

双种群遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性.

关键词

双种群遗传算法;竞争选择法;离散赌轮选择算子;选择性集成思想.

目录

一、摘要 (1)

二、问题的重述 (1)

三、模型的假设 (1)

四、模型的建立与求解 (2)

五、模型的误差分析 (11)

六、模型的评价 (11)

七、模型的改进及推广 (11)

八、参考文献 (12)

二、问题的重述

第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公汽,包括公汽、地铁等)出行. 北京市的公汽线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题. 针对市场需求,某公司准备研制开发一个解决公汽线路选择问题的自主查询计算机系统.

为了设计这样一个系统(核心是线路选择的模型与算法),从实际情况出发,满足查询者的各种不同需求. 需要研究的问题如下: 1-1

问题三:假设知道所有站点之间的步行时间,给出任意两站点之间线路选择问题的数学模型.

其中基本参数设定:

相邻公汽站平均行驶时间(包括停站时间):3分钟

相邻地铁站平均行驶时间(包括停站时间):2.5分钟

公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)

地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)

地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)

公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)

公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计

价的票价为:0~20站:1元;21~40站:2元;40站以上:3元

地铁票价:3元(无论地铁线路间是否换乘)

注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合.

公汽线路及相关信息见数据文件B2007data.rar.

三、模型的假设

1. 转车的次数控制在2次以内;

2. 相邻公汽站平均行驶时间(包括停站时间):3分钟;

3. 相邻地铁站平均行驶时间(包括停站时间):2.5分钟;

4. 公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟);

5. 地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟);

6. 地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟);

7. 公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟);

8. 公汽票价:分为单一票价与分段计价两种,标记于线路后,其中分段计

价的票价为:0~20站:1元,21~40站:2元,40站以上:3元;

9. 地铁票价:3元(无论地铁线路间是否换乘);

10. 知道所有站点之间的步行时间.

符号说明

C:只考虑公汽线路的情况下,每个个体对应路线总长;

D:考虑公汽和地铁线路的情况下,每个个体对应路线部长;

T:相邻公汽站平均行驶时间(包括停站时间);

1

T:相邻地铁站平均行驶时间(包括停站时间);

2

()

f X:第k个个体所对应的适应度值;

k

A:每个个体所对应的适应度比例;

P:每个个体所对应的选择概率(适应度比例);

T:所有站点之间的步行时间;

a b

u:表示转车换乘所耗时间之和.

四、模型的建立与求解

(一)问题一

1.1

问题分析

该问题是一个组合优化问题. 对于此类问题,只有当其规模较小时,才能求其精确解. 在本文中公汽路线总数与站点数是成指数型增长的,所以一般很难精确地求出其最优解,因而寻找出有效的近似求解算法就具有重要意义.

由于L406公汽线路的路线是环形的,而数据中没有标示出来,所以我们用相邻站点整体路线也相邻,判断出该公汽线路是环行的,所以应当作环行处理. 对于该问题,

′,我们先求出其站点与站点之间的邻接矩阵(权用时间表示),其矩阵大小为39573957

数据量太多,不能输出,只能把放在内存中.

许多智能算法被用于求解两点间线路问题. 如禁忌搜索、模拟退火、蚁群算法等. 其中遗传算法是被研究最多的一种算法. 但标准遗传算法容易陷入局部极值解,出现“早熟收敛”现象. 为此人们提出了多种改进方法,如将遗传算子中的交叉算子进行改进,应用单亲遗传算法,将遗传算子与启发式算法结合等.

遗传算法的核心思想为自然选择,适者生存. 遗传算法作为一种模拟生物进化的一种算法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性. 其也是一种迭代算法,从选定的初始解出发,通过不断地迭代,逐步改进当前解,直到最后搜索到最优解或满意解,其迭代过程是从一组初始解(群体)出发,采用类似于自然选择和有性繁殖的方法,在继承原有优良基因的基础上生成具有更好性能的下一代解的群体. 遗传算法的流程图见下图:图 1-1

遗传算法流程图

标准遗传算法是针对一个宏观的种群进行选择、交叉、变异三种操作.

双种群遗传算法是一种并行遗传算法,它使用多种群同时进化,并交换种群之间优秀个体所携带的遗传信息,以打破种群内的平衡态达到更高的平衡态,跳出局部最优. 在双种群遗传算法中,每一种群都是按照标准算法进行操作. 在操作时,首先建立两个遗传算法群体,即种群A和种群B,分别独立地进行选择、交叉、变异操作,且交叉概率、变异概率不同. 当每一代运行结束以后,产生一个随机数n,分别从A,B中选出最优染色体和n个染色体进行杂交,以打破平衡态. 因为在双种群遗传算法中,每一种群都是按照标准算法进行操作的.

由上分析,对于本问题,我们釆用双种群遗传

[5]

算法

(double populations

genetic algorithm)在选择公汽路线问题中的应用.

遗传算法的创始人美国著名学者、密西根大学教授John H.Holland认为,可以用一组编码来模拟一组计算机程序,并且定义了一个衡量每个“程序”的度量:“适应值”. Holland模拟自然选择机制对这组“程序”进行“进化”,直到最终得到一个正确的“程序”为止. 编码方式有:二进制编码、十进制编码和符号编码等方法. 整数编码与符号编码一般用于与顺序有关的组合优化方面的问题. 根据公汽路线的特点,本文的工作采

用整数

[6]

编码

. 染色体长度与公汽路线结点个数相同,染色体的每个基因的编

码即为公汽路线结点的编号. 因此,每条染色体由1到n(3957)的一个全排列组成. 在对染色体进行[6]

选择时,考虑到适应度比例法(轮盘赌选择法)与最佳个体保留法各自

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 多种群遗传算法的函数优化算法2010年12月15日星期三21:30【注】原帖网址:、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 2、案例目录: 第7章多种群遗传算法的函数优化算法 7.1理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现

7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5参考文献 3、主程序: %%多种群遗传算法 clear; clc close all NIND=40;%个体数目 NVAR=2;%变量的维数 PRECI=20;%变量的二进制位数 GGAP=0.9;%代沟 MP=10;%种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])];%译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND,NVAR*PRECI);%创建初始种群

遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 1、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 图 7-1 MPGA的算法结构示意图 复杂二元函数求最值:

图 7-2 二元函数图像 2、案例目录: 第7章多种群遗传算法的函数优化算法7.1 理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现 7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5 参考文献 3、主程序: %% 多种群遗传算法 clear; clc close all NIND=40; %个体数目

NVAR=2; %变量的维数 PRECI=20; %变量的二进制位数 GGAP=0.9; %代沟 MP=10; %种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])]; %译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND, NVAR*PRECI); %创建初始种群 end pc=0.7+(0.9-0.7)*rand(MP,1); %在【0.7,0.9】范围i内随机产生交叉概率 pm=0.001+(0.05-0.001)*rand(MP,1); %在【0.001,0.05】范围内随机产生变异概率 gen=0; %初始遗传代数 gen0=0; %初始保持代数 MAXGEN=10; %最优个体最少保持代数 maxY=0; %最优值 for i=1:MP ObjV{i}=ObjectFunction(bs2rv(Chrom{i}, FieldD));%计算各初始种群个体的目标函数值 end MaxObjV=zeros(MP,1); %记录精华种群 MaxChrom=zeros(MP,PRECI*NVAR); %记录精华种群的编码 while gen0<=MAXGEN gen=gen+1; %遗传代数加1 for i=1:MP FitnV{i}=ranking(-ObjV{i}); % 各种群的适应度 SelCh{i}=select('sus', Chrom{i}, FitnV{i},GGAP); % 选择操作 SelCh{i}=recombin('xovsp',SelCh{i}, pc(i)); % 交叉操作 SelCh{i}=mut(SelCh{i},pm(i)); % 变异操作 ObjVSel=ObjectFunction(bs2rv(SelCh{i}, FieldD)); % 计算子代目标函数值 [Chrom{i},ObjV{i}]=reins(Chrom{i},SelCh{i},1,1,ObjV{i},ObjVSel); %重插入操作 end [Chrom,ObjV]=immigrant(Chrom,ObjV); % 移民操作 [MaxObjV,MaxChrom]=EliteInduvidual(Chrom,ObjV,MaxObjV,MaxChrom); % 人工选择精华种群YY(gen)=max(MaxObjV); %找出精华种群中最优的个体 if YY(gen)>maxY %判断当前优化值是否与前一次优化值相同 maxY=YY(gen); %更新最优值 gen0=0; else gen0=gen0+1; %最优值保持次数加1 end end %% 进化过程图 plot(1:gen,YY) xlabel('进化代数') ylabel('最优解变化') title('进化过程')

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

遗传算法代码

%求下列函数的最大值% %f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]% %将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% %将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。 %2.1初始化(编码) %initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), %长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name:initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵, %roud对矩阵的每个单元进行圆整。这样产生的初始种群。 %2.2计算目标函数值 %2.2.1将二进制数转化为十进制数(1) %遗传算法子程序 %Name:decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop);%求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2);%求pop1的每行之和 %2.2.2将二进制编码转化为十进制数(2) %decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 %(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), %参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name:decodechrom.m

遗传算法综述

随着经济社会的迅猛发展, 人类科学研究与生产活动的广度与深度都大大拓展了,其中涌现出的大量具有各种非线性、不确定、不能精确解析以及建模机理复杂的新课题对信息与控制科学提出了前所未有的挑战。正是在这种背景下, 各种智能信息处理算法如雨后春笋般涌现出来。作为智能信息处理算法中的重要一员, 遗传算法近年来以其独特而卓越的性能引起了人们的广泛关注。 对于以往难以解决的函数优化问题,复杂的多目标规划问题,工农业生产中的配管、配线问题,以及机器学习,图象识别,人工神经网络的权系数调整,模糊规则的优化和网络构造等诸多问题,GA遗传算法以其出色的表现,已成为人们最常用也最有效的方法之一。虽然GA在许多优化问题中都有成功的应用,但其本身也存在一些不足,主要有:局部搜索能力弱、存在早熟成熟现象、收敛于局部最优解、随机漫游或振荡等现象,从而影响算法的收敛性能,降低了遗传算法的可信度。如何改善遗传算法的搜索能力和提高算法的收敛速度,使其更好地解决实际问题,是各国学者一直努力探索的一个主要课题。纵观成百上千的对遗传算法进行改进研究文献,其主要改进措施多集中在以下几个方面: 1.对遗传算法本身缺点的改进 1.1对遗传算法本身单一缺点的改进 种群人们主要关心的是种群中个体分布的多样性,这决定着运行遗传算法的效率,与种群相关的因素有种群个数,种群大小及初始种群三方面。

种群个数采用多个子种群并行搜索思想,有效避免了欺骗问题,提高了算法成功的概率。典型应用就是小生境技术,种群由M个子种群组成,每个子种群独立进化,种群间通过种群迁移∕移民等机制完成个体信息的交换。借鉴子种群并行的思想,发展出了思维进化计算,文献【】和量子衍生遗传算法或量子衍生进化计算,文献【】【】。 种群大小大致有固定种群和动态种群两种。 初始种群对于初始种群的生成主要是改变了以往单靠随机生成的缺点,引进了解空间格点化法或数论中均匀设计法,使产生的点集能均匀地分布于解空间。当然采用随机与均匀混合生成的初始种群,可以包含更丰富的解空间模式。文献【】,给出了用点的低序列差均匀生成初始种群的方法。(当然这些方法 编码经典的标准遗传算法( SGA )中,Holland运用模式定理分析编码机制时,建议采用二进制编码,其优点是简易稳定,但二进制编码具有不能直接反映问题的固有结构,解码复杂,精度不高,个体长度太长,占用计算机内存多和空间效率不高的缺点。它早已不能适应人们处理问题多样化的事实。 针对上述缺陷, 人们采用Gray编码和动态编码等方法成功地减少了编码的尺寸和复杂度,提高了局部搜索性能和速度。文献【】,给出了采用了性别编码,检测仿真表明其性能优于二进制和格雷码;采用染色体隐式解码算法,使得解码速度提高了6~50倍[9];采用实数或浮点数的矩阵形式或复数形式的编码方法,实现了无需解码可直

基本遗传算法

基本遗传算法 Holland创建的遗传算法是一种概率搜索算法,它利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些串组成的个体进化过程。该算法通过有组织的、然而是随机的信息交换,重新组合那些适应性好的串。在每一代中,利用上一代串结构中适应性好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。 遗传算法是一类随机优化算法,它可以有效地利用已有的信息处理来搜索那些有希望改善解质量的串。类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来改变染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会。 第一章遗传算法的运行过程 遗传算法模拟了自然选择和遗传中发生的复制、交叉和变异等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),求得问题的最优解。 一.完整的遗传算法运算流程 完整的遗传算法运算流程可以用图1来描述。 由图1可以看出,使用上述三种遗传算子(选择算子、交叉算子和变异算子)的遗传算法的主要运算过程如下: (1)编码:解空间中的解数据x,作为遗传算法的表现形式。从表现型到基因型的映射称为编码。遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合就构成了不同的点。 (2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。遗传算法以这N个串结构作为初始点开始迭代。设置进化代数计数器t←0;设置最大进化代数T;随机生成M个个体作为初始群体P(0)。 (3)适应度值评价检测:适应度函数表明个体或解的优劣性。对于不同的问题,适应度函数的定义方式不同。根据具体问题,计算群体P(t)中各个个体的适应度。 (4)选择:将选择算子作用于群体。 (5)交叉:将交叉算子作用于群体。 (6)变异:将变异算子作用于群体。 群体P(t)经过选择、交叉、变异运算后得到下一代群体P(t+1)。 (7)终止条件判断:若t≤T,则t←t+1,转到步骤(2);若t>T,则以进化过程中所得到的具有最大适应度的个体作为最优解输出,终止运算。 从遗传算法运算流程可以看出,进化操作过程简单,容易理解,它给其他各种遗传算法提供了一个基本框架。

matlab遗传算法学习和全局化算法

1 遗传算法步骤 1 根据具体问题选择编码方式,随机产生初始种群,个体数目一定,每个个体表现为染色体的基因编码 2 选择合适的适应度函数,计算并评价群体中各个体的适应。 3 选择(selection)。根据各个个体的适应度,按照一定的规则或方法,从当前群体中选择出一些优良的个体遗传到下一代群体 4 交叉(crossover)。将选择过后的群体内的各个个体随机搭配成对,对每一对个体,以一定概率(交叉概率)交换它们中的部分基因。 5 变异(mutation)。对交叉过后的群体中的每一个个体,以某个概率(称为变异概率)改n 变某一个或某一些基因位上的基因值为其他的等位基因 6 终止条件判断。若满足终止条件,则以进化过程中得到的具有最大适应度的个体作为最优解输出,终止运算。否则,迭代执行Step2 至Step5。 适应度是评价群体中染色体个体好坏的标准,是算法进化的驱动力,是自然选择的唯一依据,改变种群结构的操作皆通过适应度函数来控制。在遗传算法中,以个体适应度的大小来确定该个体被遗传到下一代群体中的概率。个体的适应度越大,被遗传到下一代的概率就越大,相反,被遗传到下一代的概率就越小。 1 [a,b,c]=gaopt(bound,fun)其中,bound=[xm,xM]为求解区间上届和下届构成的矩阵。Fun 为用户编写的函数。a为搜索的结果向量,由搜索的出的最优x向量与目标函数构成,b为最终搜索种群,c为中间搜索过程变参数,其第一列为代数,后边列分别为该代最好的的个体与目标函数的值,可以认为寻优的中间结果。 2 ga函数。[X,F, FLAG,OUTPUT] = GA(fun, n,opts).n为自变量个数,opts为遗传算法控制选项,用gaoptimset()函数设置各种选项,InitialPopulation可以设置初始种群,用PopulationSize 可以设置种群规模,SelectionFcn可以定义选择函数, 3 gatool 函数用于打开,GATOOL is now included in OPTIMTOOL。 2.2 通过GUI 使用遗传算法 在Matlab 工作窗口键入下列命令>>gatool,或通过Start 打开其下子菜单Genetic Algorithm Tool,如图1。只要在相应的窗格选择相应的选项便可进行遗传算法的计算。其中fitnessfun 窗格为适应度函数,填写形式为@fitnessfun,Number of variable 窗格为变量个数。其它窗格参数根据情况填入。填好各窗格内容,单击Start 按钮,便可运行遗传算法 例子1 应用实例 已知某一生物的总量y(单位:万个)与时间t(月)之间的关系为y=k0(1-exp(-k1*t)), 统计十个月得到数据见表1,试求关系式中的k0,k1。先编写目标函数,并以文件名myfung.m

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

遗传算法代码

% 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其中b 是[0,1023] 中的一个二值数。 % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 % (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), % 参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name: decodechrom.m

遗传算法

遗传算法 开放分类:编程、程序、数学、计算机、算法 目录 ? 遗传算法定义 ? 遗传算法特点 ? 遗传算法的应用 ? 遗传算法的现状 ? 遗传算法的一般算法 ? 遗传算法实例 遗传算法定义 [编辑本段] 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 遗传算法特点 [编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。 2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 3、遗传算法使用多个点的搜索信息,具有隐含并行性。 4、遗传算法使用概率搜索技术,而非确定性规则。 遗传算法的应用 [编辑本段] 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响

遗传算法概述

适应度函数(fitness function) 个体(individuals) 种群(population) 代(generations) 多样性或差异(diversity) 适应度值(fitness values) 父辈和子辈(parents and children) 最佳适应度值(best fitness values) 遗传算法不依赖于梯度信息,而是通过模拟自然进化过程来搜索最优解,它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。遗传算法通过有组织的、随机的信息交换来重新组合那些适应性好的串,生成新的群体。 遗传算法的三个基本操作:选择、交叉和变异。 遗传算法是模拟自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传叙说。其本质是以汇总高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近似最优的方案,在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。这个过程导致种群中个体的进化,得到的新个体比原个体更能适应环境,就像自然界中的改造一样。 个体或当前近似解被编码为由字母组成的串,即染色体,使基因能在(表现)域决策变量上被惟一地描述。 交叉算子并不是必须在种群的所有串中执行的。当一对个体被选中培育下一代,代替的是应用一个概率P。进一步的遗传算法称为变异,再次使用一个概率P应用到新染色体上。变异能根据一些概率准则引起个体基因表现型变化,子啊二进制表现型中,变异引起单个位的状态变换,即0变1,或者1变0。 在重组和变异后,如果需要,这些个体串随后被解码,进行目标函数评估,计算每个个体的适应度值,个体根据适应度被选择参加交配,并且这个过程继续指导产生子代。在这种方法中,种群中个体的平均性能向得到提高,好的个体被保存并且相互产生下一代,而低适应度的个体则消失。当一些判定条件满足后,遗传算法则终止,例如,一定的遗传代数,种群的均差或遇到搜索空间的特殊点。

相关文档
最新文档