电磁场与电磁波习题答案2

电磁场与电磁波习题答案2
电磁场与电磁波习题答案2

第二章

2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=2

1

。那么,

122

2

022

1

01244r r r q q r q q =?'=

'πεπε,同时考虑到d r r =+21,求得

d

r d r 3

2 ,3

121=

=

可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d

31。

2-2 已知真空中有三个点电荷,其电量及位置分别为:

)

0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则2

1=

r ,32=r ,23=r 。

利用点电荷的场强公式r e E 2

04r

q πε=

,其中r

e 为点电

荷q 指向场点P 的单位矢量。那么,

习题图2-2

z

x

1q

2

q 3

q P

E 3

E 2

E 1

1q 在P 点的场强大小为0

2

1

011814πε

πε=

=

r q E ,方向为

()z y

r e e

e +-

=2

11。

2q 在P 点的场强大小为0

2

2

0221214πε

πε=

=

r q E ,方向为

()z y x

r e e e

e ++-

=3

12。

3q 在P 点的场强大小为0

2

3

033414πε

πε=

=r q E ,方向为

y

r e e -=3

则P 点的合成电场强度为

??

????????

??++???? ??+++-=++=z e e e E E E E y x 3

121

28141312128131211 03

21πε

2-3 直接利用式(2-2-14)计算电偶极子的电场强度。 解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。

根据叠加原理,电偶极子在场点P 产生的电场为

????

?

?-=

3113

4r r q r r E πε

考虑到r >> l ,1

r e = e r ,θcos 1l r r -=,那么上式变为

r r r r r r r r q

r r r r q e e E ???

?

??+-=???

?

?

?-=

212110

2

122

210

))((44πεπε

式中

()

2

12

2

2

122

1

1

cos 211cos 2-

-

-???

? ?

?-+=-+=θθ

r l r l r rl l r r

以r l

为变量,并将2

122

c o s 21-???

?

?

?-+θr l

r l 在零点作泰勒展

开。由于r l <<,略去高阶项后,得

θθcos 1

cos 1121

1

r

l r r l r r +=??? ??+=

-

利用球坐标系中的散度计算公式,求出电场强度为

θr e e E 3

03020

4sin 2cos 1cos 14r ql r ql r r l r

q πεθπεθθπε

+=???

?????? ???-??? ??+?-

=

2-4 已知真空中两个点电荷的电量均为6102-?C ,相距为2cm , 如习题图2-4所示。试求:①P 点的电位;②将电量为6102-?C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。

解 根据叠加原理,P 点的合成电位为

()V 10

5.2426

0?=?

=r

q πε?

因此,将电量为C 1026-?的点电荷由无限远处缓慢地移到

P

点,外力必须做的功为()J 5==q W ?

2-5 通过电位计算有限长线电荷

1cm P

1c m

q q 1cm

r

习题图2-4

的电场强度。

解 建立圆柱坐标系。 令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。为了简单起见,令场点位于yz 平面。 设线电荷的长度为L ,密度为

l ρ,线电荷的中点位于坐标原

点,场点P 的坐标为??

?

?

?

z r ,2,

π

。 利用电位叠加原理,求得场点

P

的电位为

?

-=

2

2

d 4L

L l r l πε

ρ?

式中()2

2

0r

l z r +-=

。故

()2

2

2

2

22

2

2

22

22ln 4 ln 4r

L z L z r

L z L z r l z l z l L

L l +??? ?

?-+

-

+??? ?

?++

+=

??

?

??

?+-+--

=-πε

ρπε

ρ?

因?-?=E ,可知电场强度的z 分量为

2222

22

22ln 4r

L z L z r

L z L z z

z

E l z +??? ?

?-+

-

+??? ?

?++

+??-

=??-

=πε

ρ?

y

习题图2-5

r 0

P

z

z

r

o

d l

l θ1

θ2

???????

?

?

?+??? ?

?--

+??? ?

?+-

=2

2

22

21214r

L z r

L z l

πε

ρ ???????

?

?

??

?

? ??-+-

??? ??++-=2

20211211

4r L z r L z r l περ ()

()

???

?

?

?-+-

++-

=2

2

2

2

0224L z r

r L z r

r r l

περ ()120sin sin 4θθπερ-=

r

l

电场强度的r 分量为

2222

2222ln 4r

L z L z r

L z L z r

r

E l r +??? ?

?-+

-

+??? ?

?++

+??-

=??-

=πε

ρ?

()() ?

?

-?

?

? ?

?++

+

+++

-

=2

2

2

2

2224r L z L z r L z r

l πε

ρ

()()?

????

???? ?

?+-+

-+-22

22

222r L z L z r L z r

-

?

??

??

?

???

?? ??++++??

? ??++-

=2

20212

2114r L z r L z r L z r l περ

?

???????

?????

?

?

??? ??-++-?

?? ??-+22212211

r L z r L z r L z

?

?-???

? ?

?+

++-

=12

1120tan 11tan 1tan 1

114θθ

θπερr l

???????

?

???? ?

?+

++2

2

222

tan 11tan 1

tan 1

11

θθθ ()()()210cos 1cos 14θθπερ----

=r

l

()210cos cos 4θθπερ-=

r

l

式中2

t a n

a r c ,2

t a n

a r c 21L z r L z r -

=+

=θθ,那么,合成电强为

()()[]r z l

r

e e E 12120cos cos sin sin 4θθθθπερ---=

当L →∞时,πθθ→→ ,021,则合成电场强度为

r

l

r

e E 02περ=

可见,这些结果与教材2-2节例4完全相同。

2-6 已知分布在半径为a 的半圆周上的电荷线密度

πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。

解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即

φπερsin 4d d d 2

0a

l E E l y =

=

考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为

y y a

a

e e E 000

2

008d sin 4ερφφπερπ

=

=?

2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。

习题图2-6

a

y

x

o l

d φ

E 习题图2-7

x

y

z P

r o

a

d l y

解 建立直角坐标,令圆环位于坐标原点,如习题图2-7所示。那么,点电荷l l d ρ在z 轴上P 点产生的电位为

r

l l 04d περ?=

根据叠加原理,圆环线电荷在P 点产生的合成电位为

()2

2

20

20

2d 4d 41z

a a

l r

l r

z l a

l

a

l

+=

=

=

??

ερπε

ρρπε

?ππ

因电场强度?-?=E ,则圆环线电荷在P 点产生的电场强度为

()(

)

2

322

02z

a az

z

z l z

z

+=??-=ερ?e e E

2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。

解 建立直角坐标,且令带状电荷位于xz 平面内,如习题图2-8所示。带状电荷可划分为很多条宽度为x 'd 的无限长线电荷,其线密度为x s 'd ρ。那么,该无限长线电荷

习题图2-8

x

y z

2

w

2

w -

x 'd

o r

y

x

2

w -

2

w

d x '

x ' (a)

(b )

P (x ,y )

产生的电场强度与坐标变量z 无关,即

r e E r

x s 02d d περ'=

式中

()2

2

y x x r +'-=

()[]y x x r

r y r

x x y

x

y

x

r e e e e e +'-=+'-=1

()

[]

()[]y x x y

x x x s y

x

e e E +'-+'-'

=

2

2

2d d πε

ρ

那么

()

[]

()[]y x x y

x x x s w

w y

x

e e E +'-+'-'

=

?

-2

2

22

2d πε

ρ

?????

?

??

+---++??? ?

?++??? ?

?--=y

w x y w x y

w x y

w x s

s 2arctan 2arctan 222ln

402

2

2

2

περπε

ρy

x

e e

2-9 已知均匀分布的带电圆盘半径为a ,面电荷密度 为S ρ,位于z = 0平面,且盘心与原点重合,试求圆盘 轴线上任一点电场强度E 。

解 如图 2-9所示,在圆盘上取一半径为r ,宽度为r d 的圆环,该圆环具有的电荷量为s r r q ρπd 2d =。由于对称性,该圆环电荷在z 轴上任一点P 产生的电场强度仅的r 有z 分量。根据习题2-7结果,获知该圆环电荷在P 产生的

习题图2-9

o x

y

z

r

d r

P (0,0,z )

电场强度的z 分量为

(

)

2

322

02d d z

r r zr E s z +=

ερ

那么,整个圆盘电荷在P 产生的电场强度为

()

???

?

??+-=+=?

2

2

00

2

32

2

2d 2a

z z z

z

r

z

r

zr s z

a

s

z

ερερe e E

2-10 已知电荷密度为S ρ及S ρ-的两块无限大面电荷分别位于x = 0及x = 1平面,试求10 ,1<<>x x 及0

解 无限大平面电荷产生的场强分布一定是均匀的,其电场方向垂直于无限大平面,且分别指向两侧。因此,位于x = 0平面内的无限大面电荷S ρ,在x < 0区域中产生的电场强度11E x e E -=-,在x > 0区域中产生的电场强度

11E x e E =+

。位于

x = 1平面内的无限大面电荷S ρ-,在x <

1区域中产生的电场强度22E x e E =+,在x > 1区域中产生的电场强度22E x e E -=-。

由电场强度法向边界条件获知,

1010=-

+

=-x s

E E ρεε 0

2020=+

--=-x s

E E ρεε 即

1010==+x s

E E ρεε

1

2020=-=--x s

E E ρεε

由此求得

212ερs E E =

=

根据叠加定理,各区域中的电场强度应为

0 ,02121<=+-=+=+

-

x E E x x e e E E E

10 ,0

2121<<=

+=+=+

+

x E E s x x ερe e E E E

1 ,02121>=-=+=-

+x E E x x e e E E E

2-11 若在球坐标系中,电荷分布函数为

????

???><<<<=-b

r b r a a r 0, ,100 ,06ρ

试求b r a a r <<<< ,0及b r >区域中的电通密度D 。 解 作一个半径为r 的球面为高斯面,由对称性可知

r

e D s D 2

4d r

q q s

π=

?=??

式中q 为闭合面S 包围的电荷。那么

在a r <<0区域中,由于q = 0,因此D = 0。 在b r a <<区域中,闭合面S 包围的电荷量为

()3

3

6

3

410

d a

r v q v

-?

==

-?

πρ

因此,

()r

e

D 2

3

3

6

3

10

r

a r

-=

-

在b r >区域中,闭合面S 包围的电荷量为

()3

3

6

3

410

d a

b v q v

-?

==

-?

πρ

因此,

()r

e

D 2

3

3

6

3

10

r

a b

-=

-

2-12 若带电球的内外区域中的电场强度为

???

???

?<>=a r a qr a r r q

, ,2

r e E 试求球内外各点的电位。 解 在a r <区域中,电位为

()()a

q r

a

a

q r a

a

r

r

+

-=

?+

?=

?=

?

?

?

2

2

2d d d r E r E r E ?

在a r >区域中,()r

q r r

=

?=?

r E d ?

2-13 已知圆球坐标系中空间电场分布函数为

???

??≥≤=a r r

a a r r , ,25

3r e E 试求空间的电荷密度。

解 利用高斯定理的微分形式0

ερ=??E ,得知在球坐标

系中

()()r

E r

r

r

r 2

2

0d d 1εερ=??=E

那么,在a r ≤区域中电荷密度为

()()2

5

2

5d d 1r

r r

r

r ε

ερ==

在a r ≥区域中电荷密度为

()()0d d 15

2

==a r

r

r ερ

2-14 已知真空中的电荷分布函数为

????

?>≤≤=a

r a

r r r ,00 ,)(2ρ

式中r 为球坐标系中的半径,试求空间各点的电场强度。 解 由于电荷分布具有球对称性,取球面为高斯面,那么根据高斯定理

2

4d επεq

r

E q

s

=

?=

??

s E

在a r ≤≤0区域中

()5

2

25

4d 4d r r r r v r q r

v

ππρ=

=

=

?

?

r r

r

r

r

e e E 0

3

5

2

51

5

441εεππ=

=

在a r >区域中

()5

2

25

4d 4d a r r r v r q a

v

ππρ=

=

=

?

?

r r

r a

a

r

e e E 0

2

5

5

2

51

5

441εεππ=

=

2-15 已知空间电场强度z y x e e e E 543-+=,试求(0,0,0)与(1,1,2)两点间的电位差。

解 设P 1点的坐标为(0,0,0,), P 2点的坐标为(1,1,2,),那么,两点间的电位差为

?

?=

2

1

d P P V l

E

式中 z

y x d d d d ,543z y x z y x e e e l e e e E ++=-+=,因此电位

差为

()(

)

()

()V 3d 5d 4d 32,1,10,0,0-=-+=

?z y x V

2-16 已知同轴圆柱电容器的内导体半径为a ,外导体的内半径为b 。若填充介质的相对介电常数2=r ε。试求在外导体尺寸不变的情况下,为了获得最高耐压,内外导体半径之比。

解 已知若同轴线单位长度内的电荷量为q 1,则同轴线内电场强度r e E r

q πε21=

。为了使同轴线获得最高耐压,应在

保持内外导体之间的电位差V 不变的情况下,使同轴线内最大的电场强度达到最小值,即应使内导体表面a r =处的电场强度达到最小值。因为同轴线单位长度内的电容为

V

a b q a b V q C ??

? ??=

???

?

??=

=

ln 2ln 2111πεπε

则同轴线内导体表面a r =处电场强度为

??

? ??=

?

?

? ??=a b a b

b V

a b a V a E ln ln )(

令b 不变,以比值a

b 为变量,对上式求极值,获知当比

e a

b =时,()a E 取得最小值,即同轴线获得最高耐压。

2-17 若在一个电荷密度为ρ,半径为a 的均匀带电球中,存在一个半径为b 的球形空腔,空腔中心与带电球中心的间距为d ,试求空腔中的电场强度。

解 此题可利用高斯定理和叠加原理求解。首先设半径为

a 的整个球内充满电荷密度为ρ的电荷,则球内P 点的电

场强度为

r

e E r P 0

3

2

013 3

441ερ

ρππε=

=

r r

式中r 是由球心o 点指向P 点的位置矢量,

再设半径为b 的球腔内充满电荷密度为ρ-的电荷,则其在球内P 点的电场强度为

r e E r

P '-='''-

=0

3

2

0233

4

41

ερ

ρππεr r

式中r '是由腔心o '点指向P 点的位置矢量。

那么,合成电场强度P P E E 21+即是原先空腔内任一点的电场强度,即

()d

r r E E E P P P 0

2133ερ

ερ

=

'-=

+=

式中d 是由球心o 点指向腔心o '点的位置矢量。可见,空

习题图2-17

o b

a

P r d r ' o '

腔内的电场是均匀的。

2-18 已知介质圆柱体的半径为a ,长度为l ,当沿轴线方向发生均匀极化时,极化强度为P ,试求介质中束缚电荷在圆柱内外轴线上产生的电场强度。

解 建立圆柱坐标,且令圆柱的下端面位于xy 平面。由于是均匀极化,故只考虑面束缚电荷。而且

该束缚电荷仅存在圆柱上下端面。已知面束缚电荷密度与极化强度的关系为

n s e P ?=ρ

式中e n 为表面的外法线方向上单位矢量。由此求得圆柱体上端面的束缚电荷面密度为P s =1ρ,圆柱体下端面的束缚面电荷密度为P s -=2ρ。

由习题2-9获知,位于xy 平面,面电荷为s ρ的圆盘在其轴线上的电场强度为

z s a

z z z z

e E ???

?

?

?+-

=2

2

02ερ

因此,圆柱下端面束缚电荷在z 轴上产生的电场强度为

z a

z z z

z P e E ???

?

??+--

=2

2

022ε 而圆柱上端面束缚电荷在z 轴上产生的电场强度为

z a

l z l z l

z l z P e E ???

? ?

?+-----=

2

2

01)(2ε 那么,上下端面束缚电荷在z 轴上任一点产生的合成电场强度为

x

y z

a

P 习题图2-18

P l

y

()

???????

?++

-

+-----=222

2

02a z z

z

z a

l z l

z l

z l z P z εe E

2-19 已知内半径为a ,外半径为b 的均匀介质球壳的介电常数为ε,若在球心放置一个电量为q 的点电荷,试求:①介质壳内外表面上的束缚电荷;②各区域中的电场强度。

解 先求各区域中的电场强度。根据介质中高斯定理

r

e D s D 2

2

44d r

q q D r q s

ππ=

?=?=??

在a r ≤<0区域中,电场强度为

r e D E 2

00

4r

q πεε=

=

在b r a ≤<区域中,电场强度为

r

e D

E 2

4r

q πεε

=

=

在b r >区域中,电场强度为

r e D E 2

00

4r

q πεε=

=

再求介质壳内外表面上的束缚电荷。

由于()E P 0εε-=,则介质壳内表面上束缚电荷面密度为

()

202

0414a q a

q s πεεπεεερ?

?? ?

?

--=--=?-=?=P e P n r

外表面上束缚电荷面密度为

()

202

0414b q b

q s πεεπεεερ?

?? ?

?

-=-=?=?=P e P n r

2-20 将一块无限大的厚度为d 的介质板放在均匀电场E 中,周围媒质为真空。已知介质板的介电常数为ε,均匀

电场E 的方向与介质板法线的夹角为1θ,如习题图2-20所示。当介质板中的电场线方向4

θ=时,试求角度1θ及

介质表面的束缚电荷面密度。

解 根据两种介质的边界条件获知,边界上电场强度切向分量和电通密度的法向分量连续。因此可得

221sin sin θθE E =;

221cos cos θθD D =

已知220 ,E D E D εε==,那么由上式求得

??

?

??=?=

=

?=

εεθεεθε

εθε

εθθ010

20102

1arctan tan tan tan tan 已知介质表面的束缚电荷)(0E D e P e ερ-?=?='n n s , 那么,介质左表面上束缚电荷面密度为

10021020211cos 111θεεεεεεερE n s ??? ?

?

--=???? ??-=???

??

-

?=?='D e D e P e n n1介质右表面上束缚电荷面密度为

100220202222cos 111θεεεεεεερE n s

??

? ??-=???? ??-=???

??

-?=?='D e D e P e n n 2-21 已知两个导体球的半径分别为6cm 及12cm ,电量均为6103-?C ,相距很远。若以导线相连后,试求:①电荷移动的方向及电量;②两球最终的电位及电量。 解 设两球相距为d ,考虑到d >> a , d >> b ,两个带电球

E

ε d θ1 θ 1

θ2

θ2 ε0

ε0

E

习题图2-20

E 2

e n 2

e n 1

的电位为

???

??+=

d q a

q 21

141πε

?;???

??+=d q b

q 12

241πε?

两球以导线相连后,两球电位相等,电荷重新分布,但总电荷量应该守恒,即21??=及()C 106621-?==+q q q , 求得两球最终的电量分别为

()()C 1023126

1-?=≈-+-=q q ab

bd ad b d a q ()()C 10

43

226

2-?=≈

-+-=

q q ab

bd ad a d b q

可见,电荷由半径小的导体球转移到半径大的导体球,移动的电荷量为()C 1016-?。

两球最终电位分别为

()V 10

3415

10

1?=≈

a q πε? ()V 10

3415

202?=≈

b

q πε

?

2-22 已知两个导体球的重量分别为m 1=5g ,m 2=10g ,电量均为6105-?C ,以无重量的绝缘线相连。若绝缘线的长度l = 1m ,且远大于两球的半径,试求;①绝缘线切断的瞬时,每球的加速度;②绝缘线切断很久以后,两球的速度。

解 ① 绝缘线切断的瞬时,每球受到的力为

()N 225.0410

510

540

6

6

2

021=???=

=

--πε

πεr

q q F

因此,两球获得的加速度分别为

(

)2

11s

m 45005.0225.0===

m F a

()2

2

2s

m 5.2201

.0225.0===

m F a

② 当两球相距为l 时,两球的电位分别为

???

? ??+=

l q r q 2110

141πε

?; ???

?

??+=l q r q 1220

241πε? 此时,系统的电场能量为

22112

12

1q q W ??+

=

绝缘线切断很久以后,两球相距很远(l >>a , l >>b ),那么,两球的电位分别为

1

0114r q πε?=

;

2

0224r q πε?=

由此可见,绝缘线切断很久的前后,系统电场能量的变化为

)J (225.04421

421

Δ02

201

102

==

+

=

l

q

q l q q l q W πεπεπε

这部分电场能量的变化转变为两球的动能,根据能量守恒原理及动量守恒定理可得下列方程:

2

2

22

112

121v m v m W +

=

02211=+v m v m

由此即可求出绝缘线切断很久以后两球的速度v 1和v 2:

()s m 74.71=v ;

()s m 87.32=v

2-23 如习题图2-23所示,半径为a 的导体球中有两个较小的球形空腔。若在空腔中心分别放置两个点电荷q 1及q 2,在距离a r >>处放置另一个点电荷q 3,试求三个点电荷受到的电场力。

q 1

q 2

r

q 3

a

习题图2-23

解 根据原书2-7节所述,封闭导体空腔具有静电屏蔽特性。因此,q 1与q 2之间没有作用力,q 3对于q 1及q 2也没有作用力。但是q 1及q 2在导体外表面产生的感应电荷-q 1及-q 2,对于q 3有作用力。考虑到r >>a ,根据库仑定律获知该作用力为

()2

03

214r

q q q f πε+=

2-24 证明位于无源区中任一球面上电位的平均值等于其球心的电位,而与球外的电荷分布特性无关。 解 已知电位与电场强度的关系为?-?=E ,又知

ε

ρ=

??E ,由此获知电位满足下列泊松方程

2

ερ?-

=?

利用格林函数求得泊松方程的解为

()()

()()()()()[]??

'?'?''-'?''+

'''=

S

V

G G v G s r r,r r r r,r r r,r d d 0

00??ερ?

式中()r r r r,'

-='π41

0G 。考虑到()3

041r r r r r r,'

-'

-=

'?'πG ,代入

上式得

()()()()

()?

?

'????

?????'-'-'-'-'?'+

''

-'=

S

V

v s r r r r r r r r r r r r d 41d 413

??π

ρπε

? 若闭合面S 内为无源区,即0=ρ,那么

()()()

()?

'????

?????'-'-'-'-'?'=

S

s r r r r r r r r r d 413

??π

? 若闭合面S 为一个球面,其半径为a ,球心为场点,则

a ='-r r ,那么上式变为

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课程习题集(1)8.2 习题集(1)

《电磁场与电磁波》测验试卷﹙一﹚ 一、 填空题(每题8分,共40分) 1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单 位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。 2、静电场→E 和电位Ψ的关系是→E =_____________。→ E 的方向是从电位_______处指向电位______处。 3、位移电流与传导电流不同,它与电荷___________无关。只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。位移电流存在于____________和一切___________中。 4、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =________;而磁场→ B 的法向分量B 1n -B 2n =_________;电流密度→ J 的法向分量J 1n -J 2n =___________。 5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→ E , ____________________=→ H 。 二、计算题(题,共60分) 1、(15分)在真空中,有一均 匀带电的长度为L 的细杆, 其电荷线密度为τ。 求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。 2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c , 在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。 3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。 4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。 求中心点O 处的磁感应强度→ B 。 5、电场强度为)2106(7.378 Z t COS E Y a ππ+?=→ → 伏/米的电磁波在自由空间传播。问:该波是不 是均匀平面波?并请说明其传播方向。 求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5)→ H 的大小和方向; (6)坡印廷矢量。 《电磁场与电磁波》测验试卷﹙二﹚ (一)、问答题(共50分) 1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。 2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→ →→→H B D ,,,E 的边界条件的矢量表达式。 3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波? 4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关? 5、什么是滞后位?请简述其意义。 (二)、计算题(共60分) 1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2 cos 41r P θ πε= Φ(式中,P 为电偶极矩,l q P =), 而 → →→?Φ?+?Φ?+?Φ?=Φ000sin 11φφ θθθr r r r 。 试求M 点的电场强度→ E 。 2、(15分)半径为R 的无限长圆柱体均匀带电,电荷 体密度为ρ。请以其轴线为参考电位点, 求该圆柱体内外电位的分布。 3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁 边放置一个矩形导线框,a =5米,b =8米,h =5米。 最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。 求:①两种情况下,载流导线与矩形线框的互感系数M 。 ②设线框中有I ′=4安培的电流,求两者间的互感磁能。 4、(10分)P 为介质(2)中离介质边界极近的一点。 已知电介质外的真空中电场强度为→ 1E ,其方向与 电介质分界面的夹角为θ。在电介质界面无自由电 荷存在。求:①P 点电场强度→ 2E 的大小和方向;

电磁场与电磁波习题及答案

1 麦克斯韦方程组的微分形式 是:.D H J t ???=+? ,B E t ???=-? ,0B ?= ,D ρ?= 2静电场的基本方程积分形式为: 0C E dl =? S D d s ρ=? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?= D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.0 0n S n n n S e e e e J ρ??=??=???=???=?D B E H 4.D E ε= ,B H μ= ,J E σ= 5. J t ρ ??=- ? 6.2ρ?ε?=- 12??= 12 12n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =?? 的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性) 分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-? 其振幅值为:304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510 .dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。 试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()()2220x C x D x x a ?=+< <

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

最新电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任 意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度在直角坐标系的表达式 z A y A x A z y x A A ??????++ = ??=ρ ρdiv ; 散度在圆柱坐标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右 手螺旋法则。当S 点P 时,存在极限环量密度。二者的关系 n dS dC e A ρρ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该 点最 大环量密度的方向。 4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点 标量函数 ?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的 方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与 梯度的关系是梯度的大小为该点标量函数 ?的最大变化率,即该点最 大方向导数; 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数 的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达 式 ;

7、直角坐标系下方向导数 u ?的数学表达式是 ,梯度的表达式 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。 9、麦克斯韦方程组的积分形式分别为 ()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+????????r r r r r r r r g r r r r r g ???? 其物理描述分别为 10、麦克斯韦方程组的微分形式分别为 2 0E /E /t B 0 B //t B c J E ρεε??=??=-????=??=+??r r r r r r r 其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的 场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。 12、坡印廷矢量的数学表达式 2 0S c E B E H ε=?=?r r r r r ,其物理意义表示了单 位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式 ()s E H dS ??r r r g ?的物理意义穿过包围体积v 的封闭面S 的功率。 13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波第一章复习题练习答案

电子信息学院电磁场与电磁波第一章复习题练习 姓名 学号 班级 分数 1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。 8: 解:不总等于,讨论合理即可 9. 已知直角坐标系中的点P 1(-3,1,4)和P 2(2,-2,3): (1) 在直角坐标系中写出点P 1、P 2的位置矢量r 1和r 2; (2) 求点P 1到P 2的距离矢量的大小和方向; (3) 求矢量r 1在r 2的投影; 解:(1)r1=-3a x +a y +4a z ; r2=2a x -2a y +3a z (2)R=5a x -3a y -a z (3) [(r1?r2)/ │r2│] =(17)? 10.用球坐标表示的场E =a r 25/r 2,求: (1) 在直角坐标系中的点(-3,4,-5)处的|E |和E z ; (2) E 与矢量B =2a x -2a y +a z 之间的夹角。 解:(1)0.5;2?/4; (2)153.6 11.试计算∮s r ·d S 的值,式中的闭合曲面S 是以原点为顶点的单位立方体,r 为 空间任一点的位置矢量。 解:学习指导书第13页 12.从P (0,0,0)到Q (1,1,0)计算∫c A ·d l ,其中矢量场A 的表达式为 A =a x 4x-a y 14y 2.曲线C 沿下列路径: (1) x=t ,y=t 2; (2) 从(0,0,0)沿x 轴到(1,0,0),再沿x=1到(1,1,0); (3) 此矢量场为保守场吗? 解:学习指导书第14页 13.求矢量场A =a x yz+a y xz+a z xy 的旋度。 A ??=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。 u ?=x a u x ??+y a u y ??+z a u z ??=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式 是:.D H J t ???=+?,B E t ???=-?,0B ?=,D ρ?= 2静电场的基本方程积分形式为: C E dl =? S D d s ρ =? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.00n S n n n S e e e e J ρ??=? ?=?? ?=?? ?=?D B E H 4.D E ε=,B H μ=,J E σ= 5. J t ρ??=-? 6.2ρ?ε?=- 12??= 1212n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =??的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ”的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一 定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?= =-? 其振幅值为: 304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞ ∞ ∞ ==== ??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()( )222 0x C x D x x a ?=+< < ()()()()()()()(122112102000,0;, x x x x a x x x x ???????????===-???? 和满足得边界条件为

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场与电磁波练习题.doc

. 电磁场与电磁波练习题 1、直角坐标系中,两个矢量A 与B ,其中x y z A e e e =-+, x y z B e e e =++,则:A e = ; A B ?= ; A B ?= 。 2、在有限的区域V 内,任一矢量场由它的 、 和 唯一地确定。 3、标量场u 的梯度、矢量场F 的散度、旋度可用哈密顿算符?表示为 、 、 。 4、已知磁感应强度为 (3)(32)()x y z x y z y mz =+--+B e e e ,则m 的值为____。 : 5、 写出电流连续性方程的微分形式 。 6、从宏观效应看,物质对电磁场的响应可分为 、 和 三种现象。 7、一个点电荷q 放在两相交0 60的导体平面内,则存在 个镜像电荷。 8、写出电磁能量守恒关系的坡印廷定理的表达式 。 9、均匀平面波在良导体中传播时,磁场的相位滞后电场 度。 10、反射系数的定义式为 。 11对于矢量A ,若 =++x x y y z z A e A e A e A ,则:z x e e ?= ;x x e e ?= ;z y e e ?= 。 12、直角、圆柱、球坐标系下体积元分别为 、 、 。 ( 13、矢量(cos sin )y x y A e x x -=-e e ,则A ?= 。 14、对于线性和各向同性的媒质,这些方程是 、 、 ,称为媒质的本构关系。 15、理想介质的电导率σ= ,而理想导体的电导率σ= 。 16、电场强度E 电位函数?的关系为 。 17、在电磁场工程中,通常规定矢量位A 的散度为 ,此式称为洛伦兹条

件。 18、电磁波的波长不仅与 有关,还与媒质的参数 、 有关。 19、电场强度矢量 ()()m x xm z z jE cos k z E =e ,写出其瞬时值矢量(,)z t E = 。 20、对于导电媒质的垂直入射,反射系数Γ与透射系数τ之间的关系为 。 《 21、旋涡源与通量源不同在于前者不发出矢量线也不汇聚矢量线。(正确、错误) 22、位移电流密度是磁场的旋涡源,表明时变磁场产生时变电场。(正确、错误) 23、理想导体内部不存在电场,其所带电荷只分布于导体表面。(正确、错误) 24、当感应电动势 0in ξ<时,表明感应电动势的实际方向与规定方向相同。(正确、错 误) 25、电容的大小与电荷量、电位差无关。(正确、错误) 26、当12()jkz jkz x E z Ae A e -=+时,第一项代表波沿+z 方向传播,第二项代表沿-z 方向传播。(正确、错误) 27、矢量函数E 满足真空中的无源波动方程一定满足麦克斯韦方程。(正确、错误) 28、电磁波的趋肤深度随着波频率、媒质的磁导率和电导率的增加而增加。(正确、错误) | 29、反射系数与投射系数之间的关系为1τ+Γ=。(正确、错误) 30、驻波的电场强度与磁场强度不仅在空间位置上错开 1/4λ,在时间上也有/2π的相移。 (正确、错误) 31、方向导数的定义是与坐标无关,但其具体计算公式与坐标系有关。(正确、错误) 32、亥姆赫兹定理指出,任一矢量场由它的散度、旋度和边界条件惟一地确定。(正确、错误) 33、在静电场中的电感与导体系统的几何参数和周围媒质无关,与电流、磁通量有关。(正确、错误) 34、不管是静态还是时变情况下,电场和磁场都可以相互激发。(正确、错误) 35、接地导体球上的感应电荷的分布是不均匀的,靠近点电荷的一侧密度小。(正确、错误) 36、任一线极化波,都可将其分解为两个振幅相等、旋向相反的圆极化波。

相关文档
最新文档