RFID标签天线的设计与测试_孙曼璐

RFID标签天线的设计与测试_孙曼璐

RFID 标签天线的设计与测试

孙曼璐 辽阳职业技术学院 111004

RFID(Radio Frequency Identification)无线射频识别技术被视为20世纪最重要的十大技术之一。RFID 标签天线是 IC 卡中芯片进行信息传递、时钟和能源获取的唯一通道,被当作是标签与读写器之间的重要耦合部件,RFID 标签天线的质量和性能影响整个卡片的通信距离、成本、使用年限以及可靠性等。RFID 标签的设计必须同时具备低成本和高可靠性这两点要求,同时, 由于某些限制,RFID 标签需要根据不同形状和类型的物体做具体的设计,或贴在表面,或嵌入物体内部。目前国内外对 RFID 天线的研究重点主要集中在外部环境对天线性能的影响和天线的细部结构上。1 RFID 系统中天线的作用和功能

射频识别系统中,电子标签又称为射频标签、应答器、数据载体;阅读器又称为读出装置,扫描器、通讯器、读写器(取决于电子标签是否可以无线改写数据)。天线是射频识别系统中基本的元件,由读写器产生特定频率的无线电信号,通过天线到达应答器芯片内部的电路,当系统开启后,电子标签和阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现能量的传递、数据的交换。无源标签天线主要有两个功能:第一是充当一个传递者,通过将带有标签信息的能量反向散射回读写器天线,让读写器系统处理数据。第二是充当一个载体,将能量有效地传递到标签芯片里,维持标签芯片正常的工作功率。对应第一个功能产生了反向散射的问题,利用芯片内的开关电路改变芯片阻抗造成不同的反射波反射至标签天线,让标签天线散射大小不同的能量,以达到逻辑“1”和“0”的能量信息。这关系到标签天线与芯片之间的阻抗匹配。当改变阻抗让散射波强度改变,形成的是ASK 调制,或者是不改变散射波强度而是改变散射波的相位,形成的是PSK 调制。本文在设计反向散射电路时,通过改变散射波的相位的方法,采用PSK 调制,原因是采用ASK 调制会带来能量的损失。对应第二个功能的要求就产生了两个问题:天线的功率拦截面积和标签天线与芯片之间的阻抗匹配。天线的功率拦截面积在规定的范围内是越大越好,当两者的阻抗达到或接近最大功率转移时,标签天线所接收到的能量就能有效地传送到芯片,所以天线的功率拦截面积越大,就能让芯片有足够的能量达到最大功率。2 设计RFID 标签天线时应考虑的主要性能参数

2.1天线的输入电阻天线的输入阻抗的概念是指输入的信号电压与电流的比率。阻抗的公式为:Zin= jXin+Rin, 天线的阻抗包括电抗分量Xin 和电阻分量Rin。输入阻抗与天线的尺寸,工作波长和结构有关。电抗分量的存在会减少天线从馈线对信号功率的提取,所以,必须使电抗分量尽肯能的为零,也就是尽可能的是天线的输入阻抗为纯电阻。但是实际上不可能存在零阻抗,输入电阻或多或少都有一个小的电抗分量值。2.2 天线的谐振频率天线的谐振频率简称中心频率。谐振应该是阻抗的虚部为零的点,对谐振天线来讲。相应的可以跟S11、Smith 原图对应。更多的看S11,其实是跟能量相关,在S11越小的地方,放射回来的能量越低。在制作发射天线的馈电系统中, 电长度参数尤为重要,合理的参数能使整个天线系统做到很好的配接。一般情况下,越偏离中心频率,它输送的功率越小,越接近中心频率,天线输送的功率将会随之增大。2.3 天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的。天线的频带宽度有两种不同的定义:一种是指:天线增益下降 3 分贝范围内的频带宽度;另一种是在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度。在移动通信系统中,通常是按后一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过 1.5 时,天线的工作频率范围。一般说来,在工作频带宽度内的各个频率点上,天线性能是有差异的,但这种差异造成的性能下降是可以接受的。天线的工作频带宽度是实际应用中选择天线的重要指标之一。天线的带宽可以通过改变结构或金属宽度进行调整,如何增加天线的带宽是天线研究的一大重点内容,为了保证能正常地接收到所需的频率范围,往往要求天线设计的带宽宽于规定的频段。3 RFID 标签天线的设计方法

3.1 介质基片的选取确定标签天线形式之后就应选定介质基片,通常.天线电厚度较可取的最大值约为h/λ=0.2 为了得到较宽的频带和较高的增益宜采用较低的ξ和较厚的基材料。事实并不存在各方面都理想的基片材料.而主要是根据应用的具体要求来权衡选定。3.2 贴片宽度w 的选取在确定介质基板材料及其厚度h 后.应先确定单元宽度w 的尺寸。w 的尺寸影响着微带天线的方向性函数,辐射电阻及输入阻抗,从而也就影响着频带宽度和辐射效率。3.3 贴片单元长度L 的确定矩形微带天线的长度L 在理论上取λ/2,但实际上由于边缘场的影响在设计L 的尺寸是应从λ/2中减去2ΔL。L=0.5λ—2ΔL 3.4 选取天线尺寸根据标签天线的设计理论,选取天线尺寸为:标签宽度W=36mm,长L=10Omm .选取介电常数ξ=

4.6的介质作为天线基板,厚度h=6mm。采用L 型金属探针馈电的方式。4 RFID 标签天线的测试网络分析仪是一种功能强大的仪器,正确使用时,可以达到极高的精度。它在射频及微波元件的测量方面是应用最广的仪器,尤其在测量无线射频(RF)元件和设备的线性特性方面非常有用。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输。在测量时,它可以提供反射系数,并推算出阻抗的大小,且可以测量穿透系数,以及推导出重要的S 参数及其他重要的参数。测试方法:测试所用到的仪器为 Agilent 8720ES 矢量网络分析仪,只对电压驻波比VSWR,输入阻抗 Zin,天线的反射系数 S11等三个参数进行测试。具体的测试步骤如下,首先进行网络分析仪的单端口校准,完成以后,在进行网络分析仪的双端口校准。然后开始进行天线的测试,将两个 SMA 同轴线端口分别接在待测天线的两个输入端,将测试装置固定好,用仪器分别进行阻抗的测量,反射系数(S11)的测量,驻波比(VSWR)的测量,并记录测量结果。5 结束语中国无源超高频市场还处于发展的初期,核心技术急需突破,商业模式有待创新和完善,产业链需要进一步发展和壮大,RFID 的应用领域越来越多,RFID 技术正处于迅速成熟的时期,只有核心问题得到有效解决,才能够真正迎来RFID 无源超高频市场发展。

射灯天线覆盖效果测试报告(室外向下对打)--钟陈生

茂南财富新城射灯覆盖(室外向下对打)效果测试报告 测试人:钟陈生、申卫报告撰写:钟陈生测试日期:2013年7月17 1.概述 1.1站点描述 基础信息 1.2射灯覆盖图及环境描述:

项目总负责人 单项负责人设 计 人校 审 人 审 核 人单 位比 例日 期 mm 2013.4图号 中国移动通信集团设计院有限公司 2011YBGS0130-WX-MNCHXCF-02-5 注:本系统图中器件红色为新增,黑色为原有, 蓝色为更换,黄色为利旧。 茂南财富新城F-安装点位图 二功分器 ″馈线7/8″馈线1/2″超柔馈线 全向天线 三功分器 双频合路器 电桥 22栋 28栋29栋 30栋31栋 23栋 27栋 25栋 38栋 26栋 17栋 ANT1-20F 下倾角51.84° ANT1-18F 下倾角37.15°ANT2-18F 下倾角47.39° ANT3-18F 下倾角47.39° ANT4-18F 下倾角47.39° ANT7-18F 下倾角47.39° ANT10-18F 下倾角47.39° ANT11-18F 下倾角42.27°ANT9-18F 下倾角43.88° ANT8-18F 下倾角40° ANT13-18F 下倾角45° ANT14-18F 下倾角45° ANT15-18F 下倾角47.39° ANT12-18F 下倾角43.88° ANT5-18F 下倾角47.39° ANT6-18F 下倾角37.13° ANT16-18F 下倾角47.39°ANT17-18F 下倾角37.13° 16栋 10栋 PS1-18F PS2-18F PS3-18F PS4-18F PS5-18F PS6-18F PS7-18F 38栋,共 19层 26栋,共18层 约高57米 约高54米 射灯天线

XX天线性能测试报告

基站天线性能综合评估报告 (XX分公司网络优化中心) XX分公司为了改善弱覆盖、提高用户满意度,解决网络中的隐形问题,同时借鉴发达省份的成功经验,历时两个多月的时间,选择了使用不同年限、品牌的天线进行综合性能测试。通过对三阶互调、使用年限、前后比和第一上旁瓣抑制性等指标综合分析,借助更换对比,DT测试、话务KPI综合分析,为网络优化中天线故障排查、是否需要更换和更换标准、以及更换后达到的效果提供了参考依据。 1.本次测试选取的场景、天线、基站数量如下: 场景天线数量/根基站数量 1.农村弱覆盖投诉183 2.高速公路带状覆盖488 3.市区干扰点掉话279 4.库房新天线抽查10/ 2.天线性能测试 本次采用德国Rosenberger 三阶互调测试仪和扫频仪对天线性能进行测试,同时结合话务统计指标、DT测试数据进行综合分析,最后得出结论。 2.1 天线性能测试结果 本次主要对天线自身的主要参数指标:三阶互调(IM)、驻波比(VSWR)、前后比、第一上旁瓣抑制进行测试。

2

2.1.1 三阶互调合格率 参数说明:三阶互调是反映天线综合性能的重要指标,该指标从一定程度上反映了天线的优劣。目前国标要求≤-107dbm。本次判定合格的标准如下: 三级互调测试标准(dbm) 等级大于‐90大于‐107且小于等于‐90小于等于‐107 评测不合格可用优良 三阶互调测试结果 不合格合格优良 11% 28% 61% 说明:通过本次对天线综合性能的测试,发现较多天线三阶互调不合格(本次测试把IM≤-90dbm的均视为合格,远低于国标要求),这和目前集成度越来越高的基站系统难以匹配。 3.网络KPI指标综合分析 本次网络KPI指标的分析是建立在:老天线→集采新天线→KATHREIN高性能天线,分别提取相同时段的话务统计数据,进行多次分析基础之上的。

基站美化天线技术规范

美化天线技术规范

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规范、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规范、采购模式等内容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规范要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°内的方位角,15°内俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

控制测量规范与要求

第一部分茅荆坝(蒙冀界)至承德公路(第15标)控制网复测技术设计书 一、编制依据及技术标准 (1)、《大广高速公路蒙冀界至承德高速公路GPS控制网成果表》(设计院交给的)(2)、《全球定位系统(GPS)铁路测量规程》(TB10054) (3)、《工程测量规范》(GB50026-2007) (4)、《国家三四等水准测量规范》(GB/T12898-2009) (5)、《公路勘测规范》(JTGC10-2007) 二、平面GPS、四等水准加密方法与精度要求 根据《全球定位系统(GPS)铁路测量规程》平面控制测量等级规定和本项目实际情况,隧道段控制网采用GPS观测方法时,精度按四等网技术要求施测。为确保线路衔接的平顺性,加密点必须联测其相邻的GPS平面控制点。 平面加密控制网的施测精度控制按:加密GPS网最弱边相对中误差小于1/70000,基线边方向中误差不大于1.7″的要求进行。 2.1具体精度控制标准 2.2 四等水准施测技术要求 四等水准测量的主要技术标准见表6.3-3. 注:表中L为往返测段、符合或环线的水准路线长度,单位Km。 三、平面控制网复测实施计划 3.1 GPS复测组网实施

为保证线路上所有控制点成果具有较高的可靠性和尽量保证点位精度的均匀性,平面控制网复测采用4太GPS接收机同时作业的观测模式,以此提高GPS观测网形的图形强度。GPS 网各时段全部以边连接方式构网,形成由大地四边形组成的带状网。 3.2 采用GPS测量方法的平面复测 遵循与设计单位建网时相同的构网原则,本次GPS方法的控制网复测组网以大地四边形为基本构网图形组成带状网,采用边联式构网。实际外业测量必须遵循基线组网设计所确定的作业模式,并在接收机或控制器上配置GPS外业观测参数,参与作业的接收机所配制的参数应相同。 每天出工之前,必须检查电池容量是否满足作业要求,数据存储设备应有足够的存储空间,仪器及其附件必须齐全。 天线安置应符合下列要求: —在开始GPS外业观测前,必须确认天线安置基座的对中器合格,天线安置基座的对中精度要求为1mm。天线应利用脚架和天线安置基座直接实现队中—在开始GPS外业观测前,必须确认天线安置基座的管水准器合格,天线安置基座必须严格整平。脚架必须稳定、牢固安置。 —如天线有指北定向标志,则应借助指北针或罗盘,在开始观测和观测过程中都使接收机天线指北标志指向正北方向。 —雷雨季节架设天线时,要注意防雷击。雷雨过境时,应立即停止观测,并卸下天线。GPS测量需要遵循的操作要点有: —观测组必须严格遵守调度命令,按规定时间开始同步观测。当没按计划到达点位时,应及时通知其他组,并经观测计划编制者同意后对观测时段作必要调整,观测者不得擅自更改观测计划。 —经检查,接收机的电源电缆、天线电缆等各项连接正确,接收机设置状态和工作状态正常后,方能启动接收机开始测量。 —每时段观测前后分别量取天线高,天线高丈量必须按接收机使用规定,从天线相位中心标志处丈量至地面点位标志,丈量的天线高是垂直高还是斜高必须在记录手薄上清楚的表明,且无论是垂直高还是斜高,直接丈量距离的误差在前后2次丈量中必须小于等于1mm,方取两次直接距离丈量的平均值作最终距离丈量的结果。 —不同时段的观测间隔期间必须重新进行天线安置基座的整平、对中操作,并重新丈量仪高。 —接收机开始记录数据后,应及时将观测站名、测站号、时段号、天线高等信息完整地记录在观测手薄上。同时严密注意仪器的警告信息,及时汇报和处理各种特殊情况。

哈工大天线原理实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 院系:电信学院 班级: 姓名: 学号: 指导教师: 实验时间: 实验成绩: 哈尔滨工业大学 一、实验目的 1.掌握喇叭天线的原理。

2.掌握天线方向图等电参数的意义。 3.掌握天线测试方法。 二、实验原理 1.天线电参数 (1).发射天线电参数: a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数: 除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2.喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇 叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外, 波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导 尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇形喇叭。

OTA天线测试的能力及测试标准

OTA测试能力 OTA测试能力: 1:有源部分 辐射功率 (TRP) 灵敏度性能 (TIS) 2:无源部分 天线增益测试(Gain) 天线接口阻抗测试(Input Impedance) 天线驻波比/回波损耗测试(VSWR/RL) 天线方向图测试(Radiation Pattern) 方向性(Directivity) 波束宽带/前后比(3Db BW/FB Ratio) 交叉极化比/隔离度(Cross Polar/Isolation) 支持的无线制式:GSM,CDMA,WCDMA,TDSCDMA产品的有源或者无源测试;蓝牙,WIFI,DVB等天线的无源测试; 目前支持的测试规范: 1:CTIA的OTA测试规范(Test Plan for Mobile Station Over the Air Performance V2.2.2)2:GCF 的OTA测试规范(GCF CC V3.33最新规定) 3:3GPP/ETSI OTA antenna performance conformance testing (TS 34.114,TS25.144) 4:中国工信部在2008年强制执行的OTA进网规定(YDT 1484-2006) 5:无源天线测试标准(Passive antenna test:IEEE149-1979)

TRP全称Total Radiated Power,即总辐射功率。其含义是手机在空间三维球面上的射频辐射功率的积分值,反应了手机在所有方向上的发射特性。打个比方,就如同一盏灯泡在所有方向上的辐射的光的总和。那么越亮就代表其发射的能量越多,越暗就代表其发射的能量越少。但是辐射功率是有上限的,手机本身对最大的辐射功率进行了限制,任何手机的射频模块输出功率不会超过2W(33dBm)。越是接近这个值,说明信号发射能力越好,也说明辐射更大。该指标通常与SAR指标(反映人体吸收的辐射的指标)相互制约,一部合格的手机既要有好的发射能力,又要有较低的SAR 值。 我国的标准YD1484-2006<<移动台空间射频辐射功率和接收机性能测量方法>>是对手机进行TRP测量的规范性文件,其中约定了TRP的最低值,对于GSM手机而言,900频段不能低于26dBm,1800频段不能低于25dBm;对于CDMA手机而言TRP 不能低于20dBm,与北美的CTIA要求是一致的,而与欧洲的3GPP标准比较则有一些测量方式上的差异。 目前无线产品对人体辐射大小的衡量方法被广泛接受的标准是SAR (Specific Absorption Rate)值. SAR的实际意义就是对人体的辐射能量的大小, 它是指辐射被人体头部或身体各部位组织吸收的比率,单位是W/kg。国际非电离性辐射保护委员会(ICNIRP)和欧洲规定的SAR值上限标准为2W/kg,美国联邦通讯委员会( FCC)规定的最大SAR值为1.6W/kg,我国目前SAR的主要标准为YD/T 1644.1 《手持和身体佩戴使用的无线通信设备对人体的电磁照射》。在这里特别要注意的是SAR的测试数值是指峰值水平, 也就是要求被测手机处于最大功率发射模式下进行测量和评估!

RFID天线安装与调试实训报告

实训报告 姓名学号 系部 专业物联网应用技术 班级 _ 指导教师 实训名称天线安装与调试 完成时间: 2013年月日 目录

1 物联网常用天线简介 (3) 2 物联网天线常见参数 (3) 3 物联网常用器件安装测量记录及分析 (4) 4 标签天线制作及测量分析 (13) 参考文献 (15) 1 物联网常用天线简介

物联网(The Internet of things)的定义: 通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网就是“物物相连的互联网”。 天线的基本功能: 将由发射机(或传输线)送来的高频电流(或导波)能量转变为无线电波并传送到空间;在接收端,则将空间传来的无线电波能量转变为向接收机传送的高频电流能量,因此,天线可认为是导波和辐射波的变换装置,是一个能量转换器。 天线种类: 首先按天线用途分:可分为基地台天线和移动台天线 (1) 按天线的辐射方向可划分:可为全向天线和定向天线 (2) 按工作性质划分:可分为接收天线和发射天线 (3) 按天线的极化方向分还分为水平极化天线及垂直极化天线 (4) 按频率分类:长波天线,中波天线,短波天线,超短波天线,微波天线 2 物联网天线常见参数 (1)天线的增益:天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 (2)带宽:这也是一个重要但容易被忽略的问题。天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。这个范围就是带宽。 (3)输入阻抗:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。 (4)反射系数(Г): 反射电压/入射电压,为标量。

天线测试报告112305

东莞市晖速天线技术有限公司DongGuan HuiSu Antenna Technologies Co.,Ltd ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅测试报告 Test Report 共 13页 试验名称 112305 Description 低频排气管型一体化美化天线 试验类别天线辐射性能测试 Sort 承试单位东莞市晖速天线技术有限公司品质保证部 Customer 拟制万林涛 Organizer 批准 Approver 报告日期 2010年 12月20日 Issued date

1.测试时间 2010年12月18日 2.测试环境 测试地点:东莞市晖速天线技术有限公司远场测试场 测试设备:天线转台和标准增益天线等 测试人员:万林涛黄财茂 3.测试内容 3.1 测试项目 3.1.1方向图测试 测试天线的水平和垂直方向图。频点选取820、824、896MHz等频点进行测试。从方向图中得出以下指标: 水平波束宽度、交叉极化比、前后比,以及垂直波束宽度、上旁瓣抑制等辐射性能参数。 3.2 被测天线 天线型号:112305 频段:820-960MHz 4.测试结果 4.1 测试结果统计表(3页) 4.2产品说明书(4页) 4.3 方向图图片(5-12页) 4.4测试方法(13页)

4.2.2 测试结果统计表 E面波瓣宽度、抑制不合格,H面波瓣宽度、前后比,增益以及交叉极化60°不合格,3dB瓣宽偏宽。

排气管型一体化美化天线 电气性能Electrical Specifications 频率范围Frequency Range 820~960MHz 增益Gain14.5±0.5 dB i 驻波比VSWR <1.5 极化形式Polarization ±45° 端口隔离度Isolation Between Two Ports ≥28dB 交叉极化鉴别率Cross-Polar Discrimination >10dB(@ 60°) 上旁瓣抑制Upper Sidelobe Suppresslon≤-15dB 前后比Front to back ratio≥25dB 水平波瓣宽度Horizontal beamwidth 65°±5° 垂直波瓣宽度Vertical beamwidth 15°±3° 主瓣下倾Electrical downtilt 0°~ 18° 三阶互调IM.3rd order(2×43dbm)≤-107dBm 输入阻抗Input Impedance 50Ω 功率容量Max Input Power 200W 接口形式Connector 2*7/16 DIN Female 雷电保护Lighting Protection Direct ground 机械性能Mechanical Specification s 尺寸(净天线) Dimensions Φ180mm,长度:1650mm 重量(净天线) Weight≤8Kg 辐射体材料Radiator Material Copper 天线罩材料Radome Material Fiberglass 天线罩颜色Radome Color White

SR801整机天线射频测试报告V300

SR801整机天线射频测试报告V300 版本:V3.0.0 项目:SR801

版本历史:

目录 1.测试总结 (4) 2.测试内容 (5) 3.测试外表与连接框图 (5) 3.1耦合测试 (5) 3.2测试数据及结果 (6)

1.测试总结 表1 测试总结

2.测试内容 耦合测试 3.测试外表与连接框图 测试需要的仪器和设备如表2所示: 仪器设备名称 规格/型号/配置 稳压电源 Agilent 66309B/66309D 综测仪 Agilent 8960 射频电缆 屏蔽箱 测试SIM 卡 图1手动测试连线示意图 图2屏蔽箱测试连线图 耦合测试 测试仪器:Agilent 8960、屏蔽房 GSM 890.2MHz -20dB 935.2MHz -21dB 902.4MHz -19dB 947.4MHz -20dB 914.6MHz -19.5dB 959.6MHz -21dB DCS 1710.2MHz -22dB 1805.2MHz -27dB 1747.4MHz -24dB 1842.4MHz -25dB 1784.8MHz -29dB 1879.8MHz -24dB 测试信道: GSM900 (1、62、123)、DCS1800(512、698、885) 测试地点:实验室 。 综测仪8960 射频电缆 平板天线 屏蔽房

3.2测试数据及结果 .3.3 天线位置评估 1.Speaker金属电镀装饰件正下方不能有天线,以幸免静电通过天线损 坏射频PA。 2 .天线弯折以后的部份不能露在前壳和后壳相连结处的缝隙之间,以 幸免静电通过天线损坏射频PA 结论:Speaker金属电镀装饰件正下方没有天线,天线弯折以后的部份没有露在前壳和后壳相连结处的缝隙之间 2.. 3.4 附图

天线实验报告(DOC)

实验一 半波振子天线的制作与测试 一、实验目的 1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。 2、掌握半波振子天线的制作方法。 3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。 4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。 二、实验原理 (1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0 11θj Z Z Z Z S A A Γ=+-= (1-1) 根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: | |1| |1Γ-Γ+= ρ (1-2) |)lg(|20Γ-=RL [dB] (1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。 表1-1 工程上对天线的不同要求(供参考) 天线带宽 驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下) ρ≤1.2或1.5 |Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33 ≥14dB 或10dB 超宽带 ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43 ≥10dB (2)同轴电缆的特性阻抗 本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。其特性阻抗计算公式如下: 060ln r b Z a ε?? = ??? (1-4) 式中 a ——内芯直径; b ——外皮内直径。

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

天线方向图测试系统操作说明

大连理工大学实验预习报告 姓名:牛玉博班级:电通1202 学号:201201203 实验六天线方向图测试 本系统主要用于线天线E面方向图测试,可动态、实时绘制极坐标和直角坐标系方向图曲线,保存测试数据用于后续分析处理。 系统使用步骤示意如图0.1所示。 图0.1 系统使用步骤示意图 1系统连接 测试系统由发射装置、接收装置和控制器三大部分组成,三部分的连接示意如图1.1所示。连接时注意信号线要根据待测工作频率接至对应端子,并将接收装置方向调整到正确姿态。

图1.1 系统连接示意图 发射装置包含400MHz 和900MHz 两个频点的发射电路和天线,如图1.2所示。接收装置包含400MHz 和900MHz 两个频点的接收电路和天线,并具有天线旋转机构,如图1.3所示。控制器利用触摸屏完成所有测试操作和方向图曲线的实时绘制,如图1.4所示。 图1.2 发射装置 图1.3 接收装置 此处少一图(图1.4 测试控制器)、待发。 2 控制器操作 2.1 打开控制器电源,等待系统启动,进入提示界面,如图2.1所示。 发射装置 接收装置 控制器 电机线 信号线

图2.1 方向图测试系统提示界面 2.2点击界面任意位置,进入“实测方向图”界面,如图2.2所示。 图2.2 实测方向图界面 2.3点击图2.2中的“频率选择”按钮,选择与硬件链接对应的工作频率。 2.4点击“天线长度”数字框,输入实际天线长度(单位为毫米),并按“确 定”确认,如图2.3所示。

图2.3 天线长度输入界面 2.5点击“机械回零”按钮,接收天线旋转,当到达机械零点基准点时,自 动停止旋转,如图2.4所示。注意:机械回零完成之前不要做其它操作! 图2.4 机械归零界面 2.6点击“归一化”按钮,接收天线旋转,搜索信号最大值,并提示“归一 化进行中”。当到天线旋转一周时,搜索结束,如图2.5所示。注意:归

双极化天线测试报告

TD-LTE室内双极化天线 测试报告

目录 1概述 (3) 1.1背景描述 (3) 1.2测试内容 (3) 2实施方案 (4) 2.1测试地点 (4) 2.2测试环境搭建 (7) 2.3测试预置条件 (8) 2.4测试说明 (9) 3测试准备 (10) 3.1测试设备 (10) 3.2测试人员联系方式..................................................................... 错误!未定义书签。 4项目测试 (11) 4.1室内单极化天线2×2MIMO效果测试 (11) 4.2TD-LTE单通道覆盖效果测试 (11) 4.3室内双极化天线2×2MIMO效果测试 (12) 5数据记录 (14) 6测试结果分析与结论: (21) 6.1测试结果分析............................................................................. 错误!未定义书签。 6.2测试结论 (25)

1 概述 1.1 背景描述 TD-LTE的魅力在于高速数据与多媒体业务,而视频电话、视频流、游戏等高速数据业务一般都发生在室内环境中,这些业务功能都需要较大的系统容量和良好的网络质量。由于室内分布系统是解决室内覆盖的主要方式,TD-LTE室内分布系统将是TD-LTE整个网络建设的重点之一。 LTE系统中引入了MIMO技术,多天线技术不仅能有效地改善系统容量及其性能,而且还可以显著地提高网络的覆盖范围和可靠性。TD-LTE室内覆盖要实现MIMO功能,需增加一路天馈线,不管是新建一套分布系统或者共用原有分布系统,实施难度较大。室内双极化天线的引入是实现TD-LTE实现MIMO 的一个新的建设方法,本次测试的目的即为了验证室内双极化天线实现MIMO 功能的效果和质量。 1.2 测试内容 TD-LTE室内双极化天线测试主要是通过和单极化天线的效果对比来验证其性能,测试将从以下几个方面进行: 1.室内单极化天线实现2×2MIMO方式的效果测试; 2.TD-LTE单通道覆盖效果测试; 3.室内双极化天线实现2×2MIMO方式的效果测试; 测试和记录以上4种实现方式的无线信号质量指标和上传下载速率等业务指标,通过进行分析和比较,最后得出室内双极化天线实现TD-LTE的MIMO方式的效果评价。

EMC测试标准及方案总结资料

EMC EMS(电磁抗扰度测试) 抗扰度测试项目 1.静电放电引用IEC61000-4-2(GB/T17626.2); EMC对策 v 箝位二极管保护电路 v 稳压管保护电路 v TVS(瞬态电压抑制器)二极管 v 分流电容滤波器 v 在易感CMOS、MOS器件中加入保护二极管; v 在易感传输线上串几十欧姆的电阻或铁氧体磁珠; v 使用静电保护表面涂敷技术; v 尽量使用屏蔽电缆; v 在易感接口处安装滤波器;无法安装滤波器的敏感接口加以隔离; v 选择低脉冲频率的逻辑电路; v 外壳屏蔽加良好的接地。 2.辐射射频电磁场引用IEC61000-4-3(GB/T17626.3); YY0505的规定 v 80MHz ~ 2.5GHz v 10V/m(生命支持EUT) v 3V/m (非生命支持EUT) v 场地校准时的频率步长:≤1% v 调制频率:2Hz,1kHz v 最小驻留时间:足够长,能被激励并响应 ●≥3秒,用2Hz调制时 ●≥1秒,其它 ●平均周期的1.2 倍,对数据取时间平均值的EUT ●对有多参数和子系统的EUT,驻留时间选最大者。 v 在屏蔽室内使用的设备 ●试验电平:Llimit-⊿L v 为工作目的而接收RF能量的设备 ●在其独占频带内应保持安全,可免予基本性能要求 ●接收部分调谐至优选的接收频率,或可选接收频段的中心

v 患者耦合电缆的规定 ●应采用制造商允许的最大长度 ●患者耦合点对地应无有意的导体或电容连接 v 对永久性安装的大型设备和系统 ●在安装现场或开阔场测试 ●用手机/无绳电话、对讲机和其它合法的发射机等的信号对EUT进行测试 ●另外,在80MHz~2.5GHz,在ITU为ISM指定的频率上进行测试,但调制信 号可与手机/无绳电话、对讲机等的调制信号相同 v EUT的供电可以是任一标称输入电压和频率 3.电快速瞬变脉冲群(EFT) 引用IEC61000-4-4(GB/T17626.4); v ±2kV, 电源线;±1kV, I/O线、信号电缆、互连电缆 v 长度短于3米的信号和互连电缆不测 v 所有患者用电缆免测,但必须连上 v 在患者耦合点处,将规定的模拟手接到参考地 v 手持式设备和部件应使用模拟手进行试验 v 对有多额定电压的EUT,在最小、最大额定输入电压下分别测试 v 可在任何额定电源频率下测试 v 对于有内部备用电池的EUT,应在试验后验证EUT脱离网电源继续工作的能力 EMC对策 v 压敏电阻保护电路 v 稳压管保护电路 v 滤波(电源线和信号线的滤波) v 共模滤波电容 v 差模电容(X电容)和电感滤波器 v 用铁氧体磁芯来吸收 v 电缆屏蔽 v 共模扼流圈 4.浪涌(冲击) 引用IEC61000-4-5(GB/T17626.5); YY0505的规定 v 交流电源端口: ●±0.5kV, ±1kV,差模注入(AC L-N) ●±0.5kV, ±1kV, ±2kV,共模注入(AC L-PE、N-PE) ●交流电压波形相角0o或180o、90o和270o ●如果EUT在初级电源电路中无浪涌保护装置,可免掉低等级的试验。 v 其它端口的电缆免测,但需要接上。 v 没有任何接地互连的Ⅱ类设备和系统,免予线对地试验 v 对没有交直流适配器,仅靠内部供电的设备,可免测本试验 v 对有多额定电压或自动量程的EUT,在最小、最大额定输入电压下分别测试

射灯天线覆盖效果测试报告(室外向下对打)

茂南财富新城射灯覆盖(室外向下对打)效果测试报告 测试人:钟陈生、申卫 报告撰写:钟陈生 测试日期:2013年7月17 1. 概述 1.1 站点描述 1.2 射灯覆盖图及环境描述: 项目总负责人 单项负责人设 计 人校 审 人 审 核 人单 位比 例日 期 mm 2013.4图号 中国移动通信集团设计院有限公司 2011YBGS0130-WX-MNCHXCF-02-5 注:本系统图中器件红色为新增,黑色为原有, 蓝色为更换,黄色为利旧。 茂南财富新城F-安装点位图 二功分器 ″馈线7/8″馈线1/2″超柔馈线 全向天线 三功分器 双频合路器 电桥 22栋 28栋29栋 30栋31栋 23栋 27栋 25栋 38栋 26栋 17栋 ANT1-20F 下倾角51.84° ANT1-18F 下倾角37.15°ANT2-18F 下倾角47.39° ANT3-18F 下倾角47.39° ANT4-18F 下倾角47.39° ANT7-18F 下倾角47.39° ANT10-18F 下倾角47.39° ANT11-18F 下倾角42.27°ANT9-18F 下倾角43.88° ANT8-18F 下倾角40° ANT13-18F 下倾角45° ANT14-18F 下倾角45° ANT15-18F 下倾角47.39° ANT12-18F 下倾角43.88° ANT5-18F 下倾角47.39° ANT6-18F 下倾角37.13° ANT16-18F 下倾角47.39°ANT17-18F 下倾角37.13° 16栋 10栋 PS1-18F PS2-18F PS3-18F PS4-18F PS5-18F PS6-18F PS7-18F

产品测试报告

保千里产品测试报告保千里电子有限公司 2017年05月

版本修订记录

目录 1引言 1.1测试目的............................................................. 1.2项目背景............................................................. 1.3测试内容............................................................. 2测试概要......................................................................... 2.1产品配置规格简介..................................................... 2.2测试环境............................................................. 2.3测试计划描述......................................................... 3测试数据......................................................................... 3.1测试执行情况......................................................... 3.2功能测试报告......................................................... 3.2.1各项测试报告单.................................................. 3.2.2_________测试报告单............................................. 3.2.3_________测试报告单............................................. 3.2.4_________测试报告单............................................. 3.2.5__________测试报告单............................................ 3.3产品性能测试报告..................................................... 3.4不间断运行测试报告................................................... 3.5易用性测试报告....................................................... 3.6安全性测试报告....................................................... 3.7可靠性测试报告....................................................... 3.8可维护性测试报告..................................................... 4测试结论与建议................................................................... 4.1测试人员对需求的理解................................................. 4.2测试准备和测试执行过程............................................... 4.3测试结果分析......................................................... 4.4建议.................................................................

某天线测试报告

1. Test 1) JIG Test Descriptions 1. Center Frequency GSM: 1100MHz DCS: 2060MHz 2. Frequency Variation Generally, in case of built-in test case (BAR Type). GSM Center Frequency decrease about 50MHz compare to zig test. DCS Center Frequency decreases about 150MHz~200MHz compare to zig test. So, Mobinus antenna’s design frequency is GSM: around 1000~1100MHz DCS: around 1950~2100MHz

2) Built-in Test A. No Matching Case Description: Frequency Variation (C.F) GSM: -150MHz -50MHz DCS:

3) Issues A. Lack of component: Camera module z It is impassible to estimate Impedance and frequency variations. z Impedance Variations are related to radiation pattern, gain z Frequency Variations are related to Center Frequency. B. LCM: It is connected to ground. So, it make antenna worse. 4) Solutions Frequency tuning : New Design z GSM : around 1150MHz z DCS: around 1950MHz 5) Supplementation data A. Passive Test Data z Efficiency z Radiation Pattern, Gain (2D) B. Active Test Data z Efficiency : Tx/Rx z Radiation Pattern, Gain(3D) z TRP z TIS 2. Proposal 1) Spec’s Item GSM DCS VSWR 3:1 2.5:1 Passive GAIN (Peak) -1dBi 0dBi TRP 40% 40% Active Efficiency TIS 40% 40% 2) Sample After we receive the set (Batt. includes). We submit about 20 samples in 15 days later. If you want Active test, TRP/TIS test, you must provide us with active phone and extra Battery.

相关文档
最新文档