氧化物热电材料研究进展

氧化物热电材料研究进展
氧化物热电材料研究进展

热电材料

碲化铋及其合金:这是目前被广为使用于热电致冷器的材料,其最佳运作温度<450℃。 碲化铅及其合金:这是目前被广为使用于热电产生器的材料,其最佳运作温度大约为1000℃。 硅锗合金:此类材料亦常应用于热电产生器,其最佳运作温度大约为1300℃。 本图显示的是直接将热能转化成电能的实验设备。这种设备在实际应用中可以将任何高温损耗热量转化为有用的电能。图片左侧的是一个热电极,它像任何发热金属一样,该热电极表面覆盖着电镀层,如果它接触到冰冻的物体表面,便会产生电能。然而在一般情况下,在高温热电极下却很少产生电流。热电转换材料是一种可以将热能和电能相互转换的材料。目前常用的热电转换材料多以重金属铋、锑和铅等为原料,这些原料不仅在自然界含量少、熔点低,而且还有剧毒,这在很大程度上影响了真正的实用化。 与热电发电相反,热电制冷利用Peltier效应可以制造热电制冷机。它具有机械压缩制冷机所没有的一些优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因而不存在污染环境问题,可实现精确控温,响应速度快,器件使用寿命长。因此热电制

冷已用于很多领域。除冰箱、空调、饮水机等家用电器外,热电制冷更重要的应用是信息技术领域,如红外探测器、激光器、计算机芯片等。例如,俄罗斯米格战斗机配备的AA-8和AA-11系列导弹就采用热电制冷对红外探测系统进行温控。热电制冷也已用于医学,如半导体制冷运血箱、冷敷仪、冷冻切片机、呼吸机、N D:YAG激光手术器,PCR仪等。另外,热电制冷材料的一个可能具有实际应用意义的场合是为超导材料的使用提供低温环境。 方钴矿型热电材料 方钴矿( Skutterudite)是一类通式为AB3的化合物,其中A是金属元素,如Ir、C o、Rh、Fe等,B是V族元素,如P、As、Sb等。方钴矿(Skutterudite)化合物是立方晶系晶体结构,具有比较复杂的结构,如图1所示。一个单位晶胞包含了8个A岛分子,共32个原子,每个晶胞内还有两个较大的笼状孔隙。 半导体金属合金型 热电材料半导体金属合金型热电材料以Ⅲ、Ⅳ、V族及稀土元素为主,目前研究比较成熟。已用作热电设备的材料主要是金属化合物及固溶体合金。如:Bi 2Te3/Sb2Te3、PbTe、SiGe、CrSi等。

电热材料和热电材料的研究现状与发展

专业:金属材料工程学号:1040602209姓名:郝小虎电热材料和热电材料的研究现状与发展 一热电材料的研究现状与发展 1传统热电材料的研究现状 从实用的角度来看,只有那些无量纲优值接近1的材料才被视为热电材料。目前已被广泛应用的主要有3种:适用于普冷温区制冷的BizTea类材料,适用于中温区温差发电的PbTe类材料,适用于高温区温差发电的SiGe合金。 1.1Bi-Te系列 BiZTea化学稳定性较好,是目前ZT值最高的半导体热电体材料。一般而言,Pb,Cd,Sn等杂质的掺杂可形成P型材料,而过剩的Te或掺人I,Br,Al,Se,Li等元素以及卤化物掩I,CuI,CuBr,BiI3,SbI3则使材料成为n型。在室温下,P型BizTea晶体的Seebeck系数。最大值约为260pV/K,n型BitTea晶体的a值随电导率的增加而降低,并达到极小值-270t,V/K161,Bi2Te。材料具有多能谷结构,通常情况下,其能带形状随温度变化很小,但当载流子浓度很高时,等能面的形状将随载流子的浓度而发生变化。室温下它的禁带宽度为0.13eV,并随温度的升高而减少。 1.2P1rTe系列 PbTe的化学键属于金属键类型,具有NaCl型晶体结构,属面心立方点阵,其熔点较高(1095K),禁带宽度较大(约0.3eV),是化学稳定性较好的大分子量化合物。通常被用作300-900K范围内的温差发电材料,其Seebeck系数的最大值处于600-800K范围内。PbTe材料的热电优值的极大值随掺杂浓度的增高向高温区偏移。PbTe的固溶体合金,如PbTe和PbSe形成的固溶体合金使热电性能有很大提高,这可能是由于合金中的晶格存在短程无序,增加了短波声子的散射,使晶格热导率明显下降,故使其低温区的优值增加。但在高温区,其ZT值没有得到很好的提高,这是由于形成PbTe-PbSe合金后,材料的禁带明显变窄,导致少数载流子的影响增加,结果没能引起高温区ZT值的提高[71。 1.3Si-Ge系列 SiGe合金的a值在Sio.isGeo.as达到极大值,其原因是在该组分处合金系统中的状态密度和有效质量达到极大值。但实际常用Si含量高的合金来得到较高的优值,Si含量高有以下好处:降低了晶格热导率;增加了掺杂原子的固溶度;使SiGe合金有较大的禁带宽度和较高的熔点,适合于高温下工作;比重小,抗氧化性好,适应于空间应用;同时降低了造价。SiGe合金是目前较为成熟的一种高温热电材料,适用于制造由放射线同位素供

热电材料研究的进展

热电材料研究进展 热电材料研究进展 颜艳明1,应鹏展1,2,张晓军1,崔鑫3 (1中国矿业大学材料科学与工程学院,江苏徐州,221116 2中国矿业大学应用技术学院,江苏徐州,221008 3河南永煤集团城郊煤矿,河南永城,476600,) 摘要:本文介绍了热电材料的种类及各种热电材料的ZT值,提高热电材料热电性能的方法及热电材料在温差发电和制冷方面的应用,并对其发展前景进行了展望。 关键词:热电材料;热导率;载流子 Progress of thermoelectric materials Yanyanming1,Yingpengzhan1,2,zhangxiaojun1,cuixin3 (1:Shool of Materials, CUMT,Xuzhou , Jiangsu, 221116 2: School of applied Technology,CUMT,xuzhou,Jiangsu,221116 3: Yong suburban coal mine in Henan Coal Group,yongcheng,Henan,476600)

Abstract: This paper is described the types of thermoelectric materials and every thermoelectric materials’ZT value,the way to improve the thermoelectric materials’performance of thermal power and the application of thermoelectric materials’on thermal power generation and refrigeration, also give its future development prospects. Key words: Thermoelectric materials; Thermal conductivity; Carrier 1、引言 在以石油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式, 以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的。于是,从上个世纪九十年代以来, 能源转换材料(热电材料)的研究成为材料科学的一个研究热点。尤其是近几年, 国际上关于热电材料的研究更是非常火热。目前,热电材料的研究主要集中在三个领域:室温以下的低温领域、从室温到700K的中温领域和700K以上的高温领域。 热电材料(又称温差电材料)是利用固体内部载流子和声子的输运及其相互作用来实现将热能和电能之间相互转换的半导体功能材料,其具有无机械可动部分、运行安静、小型轻便及对环境无污染等优点,在温差发电和制冷领域具有重要的应用价值和广泛的应用前景。

热电材料的研究进展

综合评述 热电材料的研究进展Ξ 沈 强 涂 溶 张联盟 (武汉工业大学材料复合新技术国家实验室430070) 摘 要:本文简要介绍了热电效应的应用状况和热电材料的基本特性,重点评述了热电烧结材料、高ZT值热电材料以及具有梯度结构的热电材料的研究进展。 关键词:热电效应,热电材料,品质因子,烧结材料,梯度结构 11引 言 热电效应(又称:温差电效应)从宏观上看是电能与热能之间的转换,因此从它被发现以来,人们就不断探求和开发其可能的工业用途。热电偶是其中最为成功的例子,它用于测量温度和辐射能已有一个多世纪的历史。由于金属的热电效应相当微弱,热电偶只是在开路条件下直接探测电压,而不是作为能量转换装置。直到50年代末期,半导体材料获得飞速发展以后,人们发现半导体材料具有很好的热电性能,颇具实用价值,此后对热电转换的研究取得了系列进展。目前,热电发电和热电制冷以它们独特的技术优势,已在许多领域得到了实际应用。 21热电效应的应用状况 热电效应是由电流引起的可逆热效应和温差引起的电效应的总称,它包括相互关联的三个效应:Seebeck效应、Peltier效应和T hom son 效应[1]。 1821年,T.J.Seebeck发现,由两种不同导体a,b构成的闭合回路的两端接点的温度不同时,回路中就产生电流,这种现象称为Seebeck 效应。开路条件下的电动势称为温差电动势,亦称为Seebeck电动势: dV=Αab dT Αab为Seebeck系数,在冷端接点处,若电流由a流向b,则Αab为正,反之为负。其大小取决于接点温度及组成材料。 Peltier效应是C.A.Peltier在1834年发现,并以他的名字命名的。当两种不同导体组成回路的接点有微小电流流过时,一个接点会放热,另一个接点则吸热。而改变电流的方向,放热和吸热的接点也随之改变。在时间dt内,产生的热量与流经的电流成正比: dQ p=Πab I ab dt Πab为Peltier系数,当电流由a流向b,I ab取正,dQ p>0,吸热,反之放热。Πab的大小与接点温度和组成材料有关。 T hom son效应是指当一段存在温度梯度的导体通过电流I时,原有的温度分布将被破坏,为了维持原有的温度分布,导体将吸收或放出热量。T hom son热与电流密度和温度梯度成正比: dQ t=ΣIdt(dT dx) Σ为T hom son系数,符号规则与Peltier效应相同,当电流流向热端,dT dx>0,Σ>0,吸热。 以上的Seebeck系数Αab、Peltier系数Πab和T hom son系数Σ,都是表征热电材料性能的重要参量,其相互关系可由Kelvin关系式表述如下:Πab=Αab T Σa-Σb=T(dΑab dT) — 3 2 — Ξ国家自然科学基金资助批准号:59581002

新型热电材料的研究进展

新型热电材料的研究进展 随着能源的日益紧缺以及环境污染的日趋严重,热电材料作为一种环保、清洁的新能源材料近年来备受关注,下面是搜集的一篇探究热电材料研究进展的,供大家阅读参考。 本文介绍了热电材料的研究进展,重点介绍了Half-Heusler金属间化合物、方钴矿、纳米技术和超晶格材料等新型热电材料的研究状况。 热电材料又称温差电材料,是一种利用固体内部载流子的运动实现热能和电能的直接相互转化的功能材料。随着新材料合成技术的发展以及用X射线衍射技术和计算机来研究化合物能带结构参数等新技术的出现,使得热电材料的研究日新月异。 1.1 传统热电材料的研究进展 50年代,苏联的Ioffe院士提出了半导体热电理论,Ioffe及其同事从理论和实践上通过利用两种以上的半导体形成固溶体可使ZT 值提高,从而发现了热电性能较高的致冷和发电材料,如Bi2Te3、PbTe、SiGe等固溶体合金。

常规半导体的ZT值主要依赖于载流子的有效质量、迁移率和晶格热导率,优良热电材料一般要求大的载流子迁移率和有效质量,低的晶格热导率[1]。根据这些理论原则,发现了上述的一些较好的常规半导体热电材料,如适合室温使用的Bi2Te3合金、适合中温区(700K)使用的PbTe、高温区(1000K)使用的SiGe合金,更高温度(>100K)下使用的SiC等。 1.2 新型热电材料的研究进展 1.2.1 Half-Heusler金属间化合物 Half-Heusle金属间化合物的通式为ABX,A为元素周期表左边的过渡元素(钛或钒族),B为元素周期表右边的过渡元素(铁、钴或镍族),X为主族元素(稼、锡、锑等)。Half-Heusler金属间化合物是立方MgAgAs型结构。这种材料的特点是在室温下有较高的电导率和Seebeck系数,可以达到300μV/K,在700~800K时,材料的ZT值可达到0.5~0.6,但缺点是热导率也很高(室温下为5~ 9W/(M?K))[2]。 1.2.2填充Skutterudite化合物

新型热电材料及研究进展

新型热电材料及研究进展摘要:热电效应在发电和致冷方面有着巨大的应用潜力。从如何提高热电材料热电优值的理论研究出发,列出了寻找高优值热电材料的几种主要途径。在此基拙上,重点介绍了最近几年来新型热电材料的研究发展情况,包括笼式化合物、超晶格热电材料、Half一Hueselr合金等。并提出了亚待解决的问题和今后的研究方向。 关键字:热电;电优值;新型热电材料 1引言 能源是人类活动的物质基础,随着人类活动以及工业化革命的不断进行,传统的一些不可再生能源开始日益枯竭’所以新能源的开发迫在眉睫,而新能源的开发利用需要借助能源材料来实现’能源转换材料(热电材料)成为材料科学热点’热电材料的应用主要有温差发电和热电制冷,温差发电是利用效应,直接将热能转化为电能的研究’温差发电在工业余热&废热和低品味热温差发电方面有很大的潜在应用’与温差发电相反,热电制冷利用效应可以制造热电制冷机’热电制冷具有机械压缩制冷机所没有的一些优点,尺寸小质量轻无任何机械转动部分工作无噪声无液态或气态介质,因而不存在污染环境问题;可以实现精确控温,响应速度快,器件使用寿命长,因此热电制冷已用于很多领域’另外,热电制冷材料的一个可能具有实际应用意义的场合是为超导材料的使用提供低温环境’1823年,Seebeck首次发现了热电效应(又称温差电效应),从而开始了人类对热电材料的研究和应用。近年来,随着人们对环境和能源问题的日益重视,热电材料开始受到更为普遍的关注。 2材料的热电效应 热电材料具有3 个基本效应,即效应效应和效应,这3 个效应奠定了热电理论的基础,同时也确定了热电材料的应用方向。 Seebeck效应又称为温差电效应,是指在两种不同金属构成的回路中,如果两个接头处的温度不同,发现了回路中有一电动势存在Seebeck 效应的大小可通过Seebeck系数(温差电动势率)来表征 3新型热电材料种类 随着科技进步和新材料合成技术的发展&各种测试手段的不断提高以及计算机在材料 研究中的广泛应用,使得目前热电材料的研究日新月异,大量的新型热电材料层出不穷。 3.1半导体金属合金型热电材料 金属材料的热电效应非常小,除在测温方面的应用外,其他没有实际的应用价值。直到20世纪50年代,人们发现小带隙(small band gap)掺杂半导体比金属大很多热电效应,研制温差电源和热电制冷器已具有现实意义[1]。这类材料以Ⅲ,Ⅳ,Ⅴ族及稀土元素为主。目前,研究较为成熟并且已经应用于热电设备中的材料主要是金属化合物及其固溶体合金如 Bi2Te3/Sb2Te3、PbTe、SiGe、CrSi等,这些材料都可以通过掺杂分别制成P型和n型材料。有报道称在实验室得到的最高ZT值达到2.2 (AgPb m SbTe2+m, 800K)[2]到2.4(Bi2Te3/Sb2Te3超晶格, 300K) [3]。通过调整成分、掺杂和改进制备方法可以进一步提高这些材料的ZT,通过化学气相沉积( CVD )过程得到综合两维Sb2Te3/Bi2Te3超晶格薄膜的ZT高达2.5[4],ZT的研究还在继续进行[5]。但是这些热电材料存在制备条件要求较高,需在一定的气体保护下进行,不适于在高温下工作以及含有对人体有害的重金属等缺点。 3.2方钴矿(Skutterudite)热电材料 Skutterudide是CoSb3的矿物名称,名称为方钴矿,是一类通式为AB3的化合物(其中A是金属元素,如Ir、Co、Rh、Fe等;B是V族元素,如As、Sb、P等)。二元Skutterudite 化合物是窄带隙半导体,其带隙仅为几百毫电子伏,同时此类化合物具有较高的载流子迁移率和中等大小的反Seebeek系数,但热导率比传统的热电材料要高.此类化合物的显著特点

热电材料研究进展修订稿

热电材料研究进展 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

热电材料研究进展 热电材料研究进展 颜艳明1,应鹏展1,2,张晓军1,崔鑫3 (1中国矿业大学材料科学与工程学院,江苏徐州,221116 2中国矿业大学应用技术学院,江苏徐州,221008 3河南永煤集团城郊煤矿,河南永城, 476600,) 摘要:本文介绍了热电材料的种类及各种热电材料的ZT值,提高热电材料热电性能的方法及热电材料在温差发电和制冷方面的应用,并对其发展前景进行了展望。 关键词:热电材料;热导率;载流子 Progress of thermoelectric materials Yanyanming1,Yingpengzhan1,2,zhangxiaojun1,cuixin3 (1:Shool of Materials, CUMT,Xuzhou , Jiangsu, 221116 2: School of applied Technology,CUMT,xuzhou,Jiangsu,2211163: Yong suburban coal mine in Henan Coal Group,yongcheng,Henan,476600) Abstract: This paper is described the types of thermoelectric materials and every thermoelectric materials’ ZT value,the way to improve the thermoelectric m aterials’ performance of thermal power and the application of thermoelectric materials’ on thermal power generation and refrigeration, also give its future development prospects. Key words: Thermoelectric materials; Thermal conductivity; Carrier 1、引言 在以石油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式, 以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的。于是,从上个世纪九十年代以来, 能源转换材料(热电材料)的研究成为材料科学的一个研究热点。尤其是近几年, 国际上关于热电材料的研究更是非常火热。目前,热电材料的研究主要集中在三个领域:室温以下的低温领域、从室温到700K的中温领域和700K以上的高温领域。 热电材料(又称温差电材料)是利用固体内部载流子和声子的输运及其相互作用来实现将热能和电能之间相互转换的半导体功能材料,其具有无机械可动部分、运行安静、小型轻便及对环境无污染等优点,在温差发电和制冷领域具有重要的应用价值和广泛的应用前景。 较好的热电材料必须具有较高的Seebeck系数,从而保证有较明显的热电

热电材料作为环境友好的能源转化材料

热电材料作为环境友好的能源转化材料,已显示出了引人瞩目的应用前景,但是热电器件走向实际应用的最大问题在于它的转换效率。从热力学的基本定理来说,热电优值没有上限。即使是应用固体理论模型和较为实际的数据计算得到的优值上限为ZT=4,仍远远大于目前己获得的最大ZT值。通过寻求新类型或新结构的热电材料,优化制备工艺等,将有可能使材料优值得到明显提高。 从目前的研究现状来看,未来热电材料的研究方向趋于以下几个方面: 2.纳米复合热电材料的研究 1.低维热电材料的研究 降低材料维度,使用二维量子阱,一维量子线超晶格可以有效提高费米能级附近的态密度,增加载流子有效质量,提高Seebeek系数,同时材料中大量晶界对声子的散射使热导率大幅降低,两方面的共同作用使材料ZT值大幅提高。 即在三维块体材料中引入或原位生成纳米结构,或者将低维材料体系聚合成微纳复合材料,纳米结构的引入一方面可以大幅降低热导率,另一方面,可以通过量子限制效应大幅提高费米能级附近的电子态密度,提高Seebeck系数。 电子跃迁示意图 导电聚合物的热电优值(ZT)优化只是处于起步阶段,还需要关于形态,化学和电子结构对三个主要的热电参数的影响进行了系统的了解。因为热电特性都彼此相关,以及导电聚合物众所周知的形态复杂性及其物理性质的各向异性,这一问题变得困难起来。就在过去几十年的导体和半导体聚合物研究的基础上,为聚合物基有机热电材料的发展奠定了坚实的基础。这一新兴研究领域的一个主要挑战是理解在导电聚合物各种塞贝克效应的来源以获得高的能量因子。此外,材料的热电性能表征也应得到发展。今天,从废物和太阳热能中大面积地进行热电能量收

热电材料的研究进展

热电材料的研究进展李玲玲,张丽鹏,于先进(山东理工大学化学工程学院,淄博255049)摘 要 本文论述了不同种类热电材料的结构特征和热电性能。阐述了提高热电材料热电性能的方法、途径以及热电材料在温差发电和制冷等方面的应用,并指出热电材料作为能源的转化方式必将成为材料界的研究重点。关键词 热电材料;热电性能;进展中图分类号: T Q174. 75文献标识码: A1 引言热电材料(又称温差电材料)是一种利用固体内部载流子的运动实现热能和电能的直接相互转化的功能材料。其工作原理是固体在不同温度下具有不同的电子(或者空穴)激发特征,当热电材料两端存在温差时,材料两端电子(或者空穴)激发数量的差异将形成电势差(电压)。从1823年Thoums Seebeck发现热电效应到今天已有180多年的历史,其间人们一直不断探求和开发其可能的工业用途。热电偶是其中最为成功的例子[ 1]。但由于金属的热电效应相当微弱,不能作为能量转换装置[ 2]。而真正将这一效应发展为有使用意义的能量转换装置则是在20世纪50年代。1909年到1911年,德国Altenkirch 先后建立了热电发电及制冷理论,这一理论表明,优良的热电材料必须具有高的Seebeck系数(S),从而保证有较明显的的热电效应,较小的热导率( )以保留接点处的热量,高的电导率( )以减少Joule热损失,即材料热电性能的优劣取决于其热电优值Z[ 3]。表示如下式:Z= S2 / 影响热电材料的优值Z的3个参数Seebeck系数、热导率、电导率都是温度的函数。同时优值Z又敏感地依赖于材料种类、组分、掺杂水平和结构[ 4]。因此每种热电材料都有各自的适宜工作温度范围,习

相关文档
最新文档