变压器低压侧出线电缆热稳定校验

变压器低压侧出线电缆热稳定校验
变压器低压侧出线电缆热稳定校验

变压器低压侧出线电缆热稳定校验

设计人员常对变压器高压侧电缆作短路热稳定校验。但低压侧电缆的短路热稳定校验往往容易被忽略,尤其是配至消防控制中心和弱电机房等处的出线回路,由于负荷容量不大、所选电缆截面较小,有时并不满足规范对电缆热稳定的要求。

1 电缆热稳定校验的重要性

根据GB 50054—2011《低压配电设计规范》第3.2.14条、第6.2.3条和GB 50217 2007《电力工程电缆设计规范》第3.7.7条的规定,电缆应能承受预期的故障电流或短路电流和短路保护的动作时间,对于非熔断器保护回路,应该校验电缆的相导体和保护导体的最小截面。

如果电缆不满足热稳定校验的要求.则在短路时电缆的绝缘层可能被破坏.同时可能影响到近旁的电缆和电气装置,甚至引发电气火灾。电缆的热稳定校验是设计过程中的重要环节。

2 变压器低压侧出线电缆的热稳定校验要求

根据GB 50054—2011第3.2.14条、第6.2.3条的规定,绝缘导体的热稳定,应按其截面积校验,且应符合下列规定:

当短路持续时间小于等于5 S(但不小于0.1 S)时,绝缘导体的截面积应符合下式:

-------------

短路持续时间小于0.1 s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5 S时.校验绝缘导体截面积应计入散热的影响。由上式可得:-----------

3 民用建筑中典型案例校验

3.1 短路参数计算

假设变压器高压侧的短路容量为S=300 MVA,则l 000 kVA变压器的低压出

I=1处(U

n =0.38 kV,u

k

%=6)的短路电流计算如下:

取基准容量:S

j =100 MVA,基准电压:U

j

= 1.05 U

n

=0.4 kV,基准电流:

-----------

电力系统的阻抗:

------

变压器的阻抗:

--------

变压器低压出口处的短路阻抗:

---------

变压器低压出口处的短路电流:

--------

假设这个短路点远离发电厂,短路电路的总电阻较小,总电抗较大(R

Σ≤XΣ/3)时,t一0.05 s。取短路电流峰值系数K

P

=1.8,矩路全电流最大有效值,

I P =1.51 I

K

=1.51×22.8=34.4 kA 。

3.2 保护电器自动切断电流的动作时间

a.低压出线开关的主保护分闸时间(即低压馈线屏出线开关的脱扣时间)

可查样本获得。如出线开关的长延时整定电流值为40 A,由上面的数据可知,短路电流I

K

=22.8 kA,是长延时整定电流的570倍。一般带热磁脱扣器的断路器,

其短路瞬动的脱扣时间为0.015~0.03 s;带电子脱扣器的断路器,其短路瞬动的脱扣时间为0.007—0.01s。

b.根据《工业与民用配电设计手册》(第3版)高压电缆的热稳定校验的要求,其动作的时间宜采用后备保护时间和断路器分闸时间之和。对于变压器低压侧的出线电缆如果也采用这个原则,则低压出线电缆的最近的后备保护(即变压器低压进线主开关的分闸)时间取0.15~0.2 s。

3.3 系数k的取值

由导体、绝缘和其他部分的材料以及初始和最终温度决定的系数k.其值应按下式计算:

--------

该式需要确定好几个参数才能算出后的结果.所以,一般是参照相导体的初始、最终温度和系数表(见表1)来确定k值。

-------

3.4 电缆热稳定校验

a.相导体的系数k按表1选择,k=143,假设取后备保护时间t=0.15 S,则:

----------

=34.4 kA,b.当断路器分闸时间小于0.1 s时,短路全电流最大有效值,I

P

相导体的系数k按表1选择,k=143,查某限流型断路器的相应技术数据I2t =0.7×10O0000.得:

-------

由上面计算可以看出,在限流型断路器的限流保护下,由12t值校验的电缆允许最小截面较公式S≥I/k×t1/2校验的电缆允许最小截面有所减小。

同理,可以得出1 000 kVA的变压器,其热稳定校验所允许的低压出线电缆的最小截面,见表2。

-----------

由表2可见,如果变压器低压出线断路器分闸时间不大于0.1 s,则在限流断路器的保护下,额定电流为40A的断路器所保护的出线电缆,其热稳定校验所允许的电缆最小截面为6 mm YJV电缆即可,与根据负荷计算电流按电缆载流量选择的电缆截面相仿;如果断路器的分闸时间大于0.1 S,如t=0.15 S,则热稳定校验所允许的出线电缆的最小截面会增大很多,一不小心,就可能会违规。而对于保护导体,可以按照上述公式与相应预期故障电流来校验,也可根据GB 50054—2011表3.2.14来选择保护导体的截面,在这里就不示例校验了。

4 结语

电气设计时应依据规范中的相应要求、根据电网的短路容量、变压器容量,以及保护电器切除短路电流的实际参数.综合考虑变压器低压侧低压配出电缆的最小截面,以满足电缆热稳定校验要求。

标签:电缆短路

高压电缆热稳定校验计算书

筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿 编制:机电科 筠连县分水岭煤业有限责任公司

井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为 电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算

A Z I 5.174693305 .0310000 3v 3=?== ∞ (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 23mm 51.2705.0142/5.17469t )/(min ===∞)(K I S Smin<50mm 2 故选用 MYJV 22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km ) 电缆截面S (mm 2 ) 4 6 10 16 2 5 35 50 70 95 120 150 185 240 交联聚乙烯 R 4.988 3.325 2.035 1.272 0.814 0.581 0.407 0.291 0.214 0.169 0.136 0.11 0.085 X 0.093 0.093 0.087 0.082 0.075 0.072 0.072 0.069 0.069 0.069 0.07 0.07 0.07 附表二 不同绝缘导体的热稳定计算系数 绝缘材料 芯线起始温度(° C ) 芯线最高允许温度(°C ) 系数K 聚氯乙烯 70 160 115(114) 普通橡胶 75 200 131 乙丙橡胶 90 250 143(142) 油浸纸绝缘 80 160 107 交联聚乙烯 90 250 142

变压器低压侧出线电缆热稳定校验

变压器低压侧出线电缆热稳定校验 设计人员常对变压器高压侧电缆作短路热稳定校验。但低压侧电缆的短路热稳定校验往往容易被忽略,尤其是配至消防控制中心和弱电机房等处的出线回路,由于负荷容量不大、所选电缆截面较小,有时并不满足规范对电缆热稳定的要求。 1 电缆热稳定校验的重要性 根据GB 50054—2011《低压配电设计规范》第3.2.14条、第6.2.3条和GB 50217 2007《电力工程电缆设计规范》第3.7.7条的规定,电缆应能承受预期的故障电流或短路电流和短路保护的动作时间,对于非熔断器保护回路,应该校验电缆的相导体和保护导体的最小截面。 如果电缆不满足热稳定校验的要求.则在短路时电缆的绝缘层可能被破坏.同时可能影响到近旁的电缆和电气装置,甚至引发电气火灾。电缆的热稳定校验是设计过程中的重要环节。 2 变压器低压侧出线电缆的热稳定校验要求 根据GB 50054—2011第3.2.14条、第6.2.3条的规定,绝缘导体的热稳定,应按其截面积校验,且应符合下列规定: 当短路持续时间小于等于5 S(但不小于0.1 S)时,绝缘导体的截面积应符合下式: ------------- 短路持续时间小于0.1 s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5 S时.校验绝缘导体截面积应计入散热的影响。由上式可得:----------- 3 民用建筑中典型案例校验 3.1 短路参数计算 假设变压器高压侧的短路容量为S=300 MVA,则l 000 kVA变压器的低压出 I=1处(U n =0.38 kV,u k %=6)的短路电流计算如下: 取基准容量:S j =100 MVA,基准电压:U j = 1.05 U n =0.4 kV,基准电流: ----------- 电力系统的阻抗: ------ 变压器的阻抗: -------- 变压器低压出口处的短路阻抗: --------- 变压器低压出口处的短路电流: -------- 假设这个短路点远离发电厂,短路电路的总电阻较小,总电抗较大(R Σ≤XΣ/3)时,t一0.05 s。取短路电流峰值系数K P =1.8,矩路全电流最大有效值, I P =1.51 I K =1.51×22.8=34.4 kA 。 3.2 保护电器自动切断电流的动作时间 a.低压出线开关的主保护分闸时间(即低压馈线屏出线开关的脱扣时间) 可查样本获得。如出线开关的长延时整定电流值为40 A,由上面的数据可知,短路电流I K =22.8 kA,是长延时整定电流的570倍。一般带热磁脱扣器的断路器,

绝缘导线的热稳定校验

现对《低压配电设计规范》GB50054-95的第4.2.2条的规定,谈谈我的意见。 第4.2.2条:绝缘导线的热稳定校验应符合下列规定: 一. 当短路持续时间不大于5s时,绝缘导体的热稳定应按下式进行校验: S≥It0.5/K(4.2.2) 式中 S——绝缘导体的线芯截面(mm2); I——短路电流有效值(均方根值A); t——在已达到允许最高持续工作温度的导体内短路电流持续作用的时间(s); K——不同绝缘的计算系数。 二.不同绝缘、不同线芯材料的K值,应符合表4.2.2的规定。 三.短路持续时间小于0.1s时,应计入短路电流非周期分量的影响;大于5s时应计入散热的影响。 在执行该条规定时,需注意下列问题: 1. 公式(4. 2.2)只适合短路持续时间不大于5s。 2. 短路电流I如何确定: a) 相线的热稳定校验: 在220/380配电系统中,一般以三相短路电流为最大。两相短路电流在远离发电机处发生短路时仅为三相短路电流的0.866倍,只有在发电机出口处短路时两相短路电流可能达三相短路电流的1.5倍。因此,当短路点远离发电机时,校验相线的热稳定时I值采用三相短路电流值;在发电机出口处发生短路时I值采用两相短路电流。 b) 中性线(N)的热稳定校验:取相线对中性线的短路电流作为I值。 c) TN-C系统的PEN、TN-S系统的PE、TT系统的PE、IT系统的PE线热稳定校验:TN-C系统的PEN及TN-S系统的PE线的热稳定校验取相线对PEN或PE线的短路电流作为I值。 TT系统,考虑到某一设备发生中性线碰外壳接地,因中性线基本上为地电位,故障电流甚小,回路上的过电流保护以及RCD都无法动作,此故障作为第一次故障得以长期潜伏下来。但因中性线碰设备外壳与PE线导通,此TT系统实际已转变为TN系统。其后设备发生相线碰外壳时,PE线上流过的故障电流将和TN系统同样大,以金属导体为通路的金属性短路电流。因此TT系统的PE线的热稳定校验所采用的I值需考虑上述的要求。 IT系统,如果某一设备发生第一次接地故障后不能及时消除(例如遇到难以找到故障点和消除故障,或绝缘监测器失灵未发出报警信号等情况),其后其他设备发生第二次接地故障,则故障扩大为两相短路,这时PE线上将通过两相短路电流而非微量的接地电容电流。因此IT系统的PE线热稳定校验所采用的I值应为上述两相短路电流值。 国际电工标准非常重视电气事故的防范措施,在不少情况下需考虑发生两个故障引起的危险,上述即是两例。 d) 短路持续时间小于0.1S时短路电流中的非周期电流分量的发热将起到较显著作用。例如采用带限流作用的断路器,其全分断时间小于0.1s。此时需先按断路器无限流作用计算预期的短路电流值,然后根据制造厂所提供的“I2t——预期短路电流”特性曲线查找对应的I2t值。根据K2S2≥I2t来校验热稳定(该I2t中的I值,是包括非周期分量电流分量的均方根值)。 注:相——N短路电流及相——PE短路电流的如何计算,可参照《工业与民用配电设计手册》的相关内容。 3. 短路持续时间t如何确定: a) 采用断路器的瞬时脱扣器作为短路保护时,t为断路器全分断时间(包括灭弧时间)——全分断时间可查断路器的样本或由断路器制造厂提供。

井下高压电缆热稳定性校验

井下高压电缆热稳定性校验

————————————————————————————————作者:————————————————————————————————日期:

井下高压电缆热稳定性校验 机电运输部 二○一二年七月

一、井下高压电缆明细: 水泵一回路 MYJV 428.7/10-3*150mm 2-520m(6KV) 水泵二回路 MYJV 428.7/10-3*95mm 2-520m(6KV) 井下一回路MYJV 428.7/10-3*150mm 2-520m(6KV) 井下二回路MYJV 428.7/10-3*95mm 2-520m(6KV) 12采区上部一回路MYJV 328.7/10-3*95mm 2-1300m(6KV) 12采区上部二回路MYJV 328.7/10-3*70mm 2-1300m(6KV) 12采区下部一回路MYJV 328.7/10-3*70mm 2-600m(6KV) 12采区下部二回路MYJV 328.7/10-3*70mm 2-600m(6KV) 14采区回路MYJV 328.7/10-3*70mm 2-1400m(6KV) 南翼配电点回路MYJV 328.7/10-3*70mm 2-495m(6KV) 二、校验计算 1、井下水泵一回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为 MYJV 428.7/10-3*150mm 2(6KV ),电缆长度为520m 。 短路电流的周期分量稳定性为 X=0.08*0.52=0.0416Ω; R=0.295*0.52=0.1534 Ω ;Ω=+=+=158.01534.00416.02222 X R Z ,A Z I 23021158 .0363003v 3=?==∞ 用短路电流不衰减假想时间等于断路器的动作时间(0.25s )故电缆最小热值稳定截面为

10KV变压器高低压侧电流计算

10KV变压器高低压侧电流计算 三相变压器额定电流的计算公式为: Ⅰ=变压器额定容量÷(1.732 ×变压器额定电压) 1、快速估算法 变压器容量/100,取整数倍,然后*5.5=高压侧电流值,如果要是*144,就是低压侧电流值! 比如说1000KVA的变压器/100取整数倍后是10,那么高压侧电流就是10*5.5=55A,低压侧电流就是10*144=1440A 2、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KVA的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说1600KVA的变压器,高压侧电流就是1600/1000*57.73=92.368A,低压侧电流就是1600/1000*1443.42=2309.472A 3、粗略估算法 高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电

流 =1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法 4、公式计算法 I=S/1.732/U I--电流,单位A S--变压器容量,单位kVA U--电压,单位kV 5、最大电流计算 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高频负荷如电机的高频谐波等综合因素了,这样计算就非常麻烦了。 只说一个简单的,在过载的情况下,油变的过载系数是1.2,干式的过载系数是1.5,也就是通过上述方法计算出变压器的额定电流值之后,再乘以过载系数,从而得到最大电流值,用以高低压侧开关的整定和变压器后备限流熔断器数值的设计和整定! 值得注意一点:10 KV 变压器的输出电压为 400 V ,不是 380 V ,这是变压器的标准设计

高压电缆热稳定校验计算书

*作品编号:DG13485201600078972981* 创作者:玫霸* 筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿

编制:机电科 筠连县分水岭煤业有限责任公司 井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为

电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算 (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 Smin<50mm2故选用 MYJV22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km)

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

干式变压器低压出线方式及其接口配合

(1)低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之变压器可提供标准封闭母线端子,方便与外部母排的联接。 带外壳(IP20)产品,在外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 (2)低压标准横排侧出线:当中试高测变压器与低压配电屏并排放置时,为方便其端子间的联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 (3)低压标准立排侧出线:与横排侧出线相似,武汉中试高测电气有限公司当选用多米诺屏等母排为竖向布置的低压配电屏时,变压器可提供低压立排侧出线。 目前,我国树脂绝缘干式变压器年产量已达10000MVA,成为世界上干式变压器产销量最大的国家之一。随着低噪(2500KVA以下配电变压器噪声已控制在50DB以内)、节能(空载损耗降低达25%)的SC (B)9系列的推广应用,使得我国干式变压器的性能指标及其制造技术已达到世界先进水平。 随着干式变压器的推广应用,其生产制造技术也获得长足发展,可以预测,未来的干式变压器将在如下几方面获得进一步发展。 (1)节能低噪:随着新的低耗硅钢片,箔式绕组结构,阶梯铁心接缝,环境保护要求,噪声研究的深入,以及计算机优化设计等新材料、新工艺、新技术的引入,将使未来的干式变压器更加节能、更加宁静。 (2)高可靠性:提高产品质量和可靠性,将是人们的不懈追求。在电磁场计算、波过程、浇注工艺、热点温升、局放机理、质保体系及可靠性工程等方面进行大量的基础研究,积极进行可靠性认证,进一步提高干式变压器的可靠性和使用寿命。 (3)环保特性认证:以欧洲标准HD464为基础,开展干式变压器的耐气候(C0、C1、C2)、耐环境(E0、E1、E2)及耐火(F0、F1、F2)特性的研究与认证。 (4)大容量:从50~2500KVA配电变压器为主的干式变压器,向10000~20000KVA/35KV电力变压器拓展,随着城市用电负荷不断增加,城网区域变电所越来越深入城市中心区、居民小区、大型厂矿等负荷中心,35KV大容量的小区中心供电电力变压器将获广泛应用。 (5)多功能组合:从单一变压器向带有风冷、保护外壳、温度计算机接口、零序互感器、功率计量、封闭母线及侧出线等多功能组合式变压器发展。 (6)多领域发展:从以配电变压器为主,向发电站厂用变压器、励磁变压器、地铁牵引整流变压器、大电流电炉变压器、核电站、船用及采油平台用等特种变压器及多用途领域发展。

10KV变压器低压侧断路器的选 择与整定 - 2018.1.5

10KV变压器低压侧断路器的选择与整定 一、低压侧断路器的选择与整定 1、变压器低压侧进线断路器长延时过电流脱扣器的整定倍数 在个别的设计中,进线断路器长延时过电流脱扣器整定值为 I r=1.1I n,这是错误的,正确的应为I r=1.0I n (其中,I n为脱扣器额定电流)。因为变压器低压侧进线断路器一般采用框架断路器,通常选用的有ABB、施耐德、西门子、穆勒或国产的常熟断路器厂等的产品,其脱扣器均为四段保护的电子脱扣器;其中长延时过电流脱扣器的整定值为I r=(0.4-1.0)I n,各个产品的整定电流级差是不相同的。 如施耐德的micrologic2.0a/5.0/6.0/7.0脱扣器: I r= (0.4/0.5/0.6/0.7/0.8/0.9/0.95/0.98/1.0) I n。 如ABB的pr121/p脱扣器:I r =(0.4-1.0) I n,级差为0.025 I n; pr121/p、pr123/p脱扣器:I r =(0.4-1.0) I n,级差为0.01 I n 。 常熟ES35脱扣器:I r =(0.4-1.0) I n 所以进线断路器的长延时过电流脱扣器整定为1.1倍的额定电流是做不到的,这个问题的出现可能是与配电变压器低压侧进线断路器长延时过电流整定电流宜为变压器低压侧额定电流的1.1倍之说相混淆了。 2 、变压器低压侧进线断路器的保护整定 长延时过电流脱扣器整定为 式中,为断路器长延时脱扣器可靠系数,取1.1; 为变压器低压侧额定电流。 短延时过电流脱扣器整定为 时限可取0.4s,要与高压侧配合 , 式中,m为过电流倍数,可取2-4;为断路器短延时脱扣器可靠系数,取1.3。

干式变压器的低压出线方式

干式变压器的低压出线方式 干式变压器低压出线方式有哪些?SC(B)9系列大致含义? 干式变压器低压出线方式有哪些? 1、低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之干式变压器可提供标准封闭母线端子,方便与外部母排联接。 带外壳(IP20)产品,外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 2、低压标准横排侧出线:当干式变压器与低压配电屏并排放置时,为方便其端子间联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 3、低压标准立排侧出线:与横排侧出线相似,当选用多米诺屏等母排为竖向布置低压配电屏时,变压器可提供低压立排侧出线。 SC(B)9系列是什么东西? 树脂绝缘干式变压器是我公司引进国外先进技术,自主开发了SC9、SCB9系列以及SC10、SCB10系列干式变

压器,由于线圈被环氧树脂包封,所以难燃,防火、防爆、免维护,无污染,体积小,可直接安装在负荷中心。一般现在有些使用的ZSG三相干式变压器也是基于这个理念的。同时科学合理的设计和浇注工艺,使产品局部放电量更小,噪声低,散热能力强,在强迫风冷条件下可以在125%额定负载下长期运行,并配有智能温控仪,具有故障报警,超温报警,超温跳闸以及黑匣子功能,并通过RS485串行接口与计算机相连,可以集中监视和控制。 由于我们公司干式变压器具有以上特点,因此广泛应用于输变电系统,如宾馆饭店,机场,高层建筑,商业中心,住宅小区等重要场所,以及地铁,冶炼,电厂,轮船,海洋钻井平台等环境恶劣场所。

井下高压电缆热稳定性校验

井下高压电缆热稳定性校验 机电运输部 二○一二年七月

一、井下高压电缆明细: 水泵一回路 MYJV 428.7/10-3*150mm 2-520m(6KV) 水泵二回路 MYJV 428.7/10-3*95mm 2-520m(6KV) 井下一回路MYJV 428.7/10-3*150mm 2-520m(6KV) 井下二回路MYJV 428.7/10-3*95mm 2-520m(6KV) 12采区上部一回路MYJV 328.7/10-3*95mm 2-1300m(6KV) 12采区上部二回路MYJV 328.7/10-3*70mm 2-1300m(6KV) 12采区下部一回路MYJV 328.7/10-3*70mm 2-600m(6KV) 12采区下部二回路MYJV 328.7/10-3*70mm 2-600m(6KV) 14采区回路MYJV 328.7/10-3*70mm 2-1400m(6KV) 南翼配电点回路MYJV 328.7/10-3*70mm 2-495m(6KV) 二、校验计算 1、井下水泵一回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为 MYJV 428.7/10-3*150mm 2(6KV ), 电缆长度为520m 。 短路电流的周期分量稳定性为 X=0.08*0.52=0.0416Ω; R=0.295*0.52=0.1534 Ω ;Ω=+=+=158.01534.00416.02222 X R Z ,A Z I 23021158 .0363003v 3=?==∞ 用短路电流不衰减假想时间等于断路器的动作时间(0.25s )故电缆最小热值稳定截面为 23mm 81.40141 25.023021tj min ===∞C I S ,Smin<150mm 2 故选用 MYJV 42 3*150 电缆完全符合要求。

10kV变压器低压侧短路电流计算及低压配电柜选型

10kV变压器低压侧短路电流计算及低压配电柜选型 摘要:随着中国经济的快速发展,电力工业为经济发展提供了可靠的物质保障。在国内增加用电量,如何确保电力供应的安全性和可靠性是一个值得关注的重要 课题。本文分析了10kV配电盘中高低压开关的特点,并对确保10kV配电柜中高 低压开关的安全性提出了一些建议。希望它可以作为电力工业发展和中国电力工 业发展的指南。 关键词:10kV配电房;高低压开关;选择;保护 引言 配电房是电力系统的核心环节之一,对维护电力系统的正常运转具有重要的 影响。配电房内置有许多种类的器械设备,需要做好相互之间的配合,才能保证 电力系统的稳定性。在10kV配电房中,高低压开关之间保护配合不合理将会为 电力系统的运转添加很多麻烦,这严重影响了电力系统的正常运转。为维护电力 系统的稳定性,国家逐渐完善了城乡电网,规范了10kV配电房内的相关设备, 大大方便了电力系统的管理。 一、高低压配电设备设计范围 1.1本工程新建拐排二站公用箱式变压器1台;2、由10kV沙田F3泗盛线三 盛支线N1公用电缆分接箱敷设电缆 ZRC-YJV22-8.7/15kV -3×120mm2/285m(新敷)至新建拐排二站公用箱式变压器; 1.2新增线路部分 1)高压线路部分: 新敷设10kV电力电缆ZRC-YJV22-8.7/15kV-3×120共285米;其中235米沿原 有电缆沟敷设,50米沿新顶4孔管敷设;新安装10kV户内型电缆终端头共2套,其中3×120共 2套。 2)低压线路部分: 新敷设1kV电力电缆ZRC-YJV220.6/1kV-4×240共197米;其中197米沿新建 电缆埋管敷设;新安装1kV电缆终端头共2套,其中4×240共 2套; 1.3新增高压设备部分 新安装全绝缘SF6负荷开关柜2台;新安装800kVA终端型预装式箱变(配干变)1台; 1.4新增低压配电部分 新装户内GCK-800低压柜3面,其中进线柜1面,出线柜1面,无功补偿柜 1面;无功补偿按配变容量20%补偿,即160kVar,采用动态无功补偿装置; 1.5新增电缆通道及设备基础部分 新建800kVA预装式箱变基础1座(两侧井口),箱变镀锌围栏1套; 新建2层2列行车排管71米;新建1层2列行车排管117米;新建电缆排管工作井6座,其中: a)2层2列排管行人直线井3座; b)1层2列排管行车人转角井1座; c)1层2列排管行车工作井1座; d)1层2列排管行车转角井1座; 1.6新增配电房部分 新建CSG-10B-YB-M13-02预装箱式变电站1间,面积为2.3米×3.3米(长×

变压器低压侧出线选择

BV电线 VV电缆 铜母线 裸铜绞线 镀锌扁钢 VV YJV mm 2mm 2mm 2mm 2mm 22003*240+1*1203*185+1*954(40*4)1*501*5015*31*3525*42502(3*150+1*70)3*300+1*1504(40*4)6301*701*7015*31*5040*43152(3*240+1*120)2(3*150+1*70)4(50*5)6301*701*7020*31*5040*44003*2(1*185)+1(1*185)2(3*185+1*95) 4(63*6.3) 8001*951*9520*31*7040*45003*2(1*240)+1(2*240)3*2(1*240)+1(1*240)3(80*6.3)+1(63*6.3)10001*1201*12025*31*7040*56303*2(1*400)+1(1*400)3*2(1*300)+1(1*300)3(80*8)+1(63*6.3)12501*1501*15025*31*9550*58003*4(1*185)+2(1*185)3*4(1*150)+2(1*150)3(100*8)+1(80*6.3)16001*1501*15030*41*9550*510003*4(1*240)+2(1*240)3*4(1*240)+2(1*240)3(125*10)+1(80*8) 20001*1501*15030*41*9550*512503*4(1*400)+2(1*400) 3*4(1*300)+2(1*300)3*[2(100*10)]+(100*10)25001*185 1*18530*41*12063*516003*[2(125*10)]+1*(125*10)31501*24010*41*15080*520003*[2(125*10)]+1(125*10)40001*24040*41*185100*525003*[3(125*10)]+1(125*16) 50001*300 40*5 1*240 80*8 注: 3、图集号04DX101-1,《民用建筑电气设计手册》第二版P166。 变压器低压侧中性点接地线选择变压器低压侧出线选择 1、变压器低压侧出线按环境温度选择铜芯电缆、铜母线、母线槽,过载系数取1.25.单芯电缆并列系数取0.8;多芯电缆并列系数取0.9;VV电缆温度系数取0.94;YJV电缆温度系数取0.96;母线温度校正系数取0.887。 2、中性点接地线按变压器D,yn11接法、变压器负序及零序阻抗等于正序阻抗、变压器低压侧出线5m、短路切除时间0.6s计算。低压电缆 低压铜母线(mm 2) 变压器容量(KVA) 变压器低压侧出线选择 母线槽(A)

高压电缆截面选择计算书

电缆截面选择计算 1.计算条件 A.环境温度:40℃。 B.敷设方式: ●穿金属管敷设; ●金属桥架敷设; ●地沟敷设; ●穿塑料管敷设。 C.使用导线:铜导体电力电缆 ●6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 ●380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 2.1导线的载流量 1)载流量的校正 A.温度校正 K1=√(θn-θa)/(θn-θc) 式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正 国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2=0.7 3)载流量的校正系数 K=K1×K2 2.2电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表

表2 0.6/1kV PVC绝缘电力电缆载流量表 表3 0.6/1kV XLPE绝缘电力电缆载流量表 2.3短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调

●配电线路的短路保护协调 S≥I×√t/K 式中:S:电缆截面,mm2; I:短路电流有效值(均方根值),A; t:短路电流持续作用时间,秒。 K:PVC绝缘电缆K=115;XLPE绝缘电缆K=143 ●380V电动机回路短路保护协调 电缆的允许电流大于线路短路保护熔断器熔体额定电流的40%。 2.4电缆的最小截面 A.6~10kV电力电缆:根据铜冶炼厂实际使用经验,采用断路器时,最小截面70~95 mm2。 (在新设计的工程中应根据短路电流数据进行计算) B.低压电力电缆:最小截面:4 mm2。 对于二次配电的容量较小或小功率电动机的电缆线路其截面经校核后可选为2.5 mm2。 C.交流控制回路的控制电缆最小截面 -电流回路:最小截面:≥2.5 mm2; -电压回路:最小截面:≥1.5 mm2; -其他回路:最小截面:1.5 mm2。 D.数字信号和模拟信号控制电缆最小截面:≥0.5 mm2,有特殊要求的数字通信电缆按设 备制造厂要求选择。 2.5线路的电压降 电动机起动时从配电盘到电动机端子之间线路的允许电压降在10~12%以内,正常运行时线路的电压降在2%以内。 线路电压降计算公式: ΔU%=K(Rcosφ+Xsinφ)I l/10Un 式中:ΔU%:线路电压降百分数,%; Un:标称电压,kV; R,X:线路单位长度的电阻和感抗,Ω/km; I:负荷计算电流,A; l:线路长度,km; cosφ:功率因数。 其中:X=2πf L L=(2ln(Dj/r)+0.5)10-4 L:电缆每相单位长度电感量,H/km; f:频率,Hz; Dj:几何均距,cm; r:电缆主芯线半径,cm;

高低压电缆短路电流计算及热稳定性校验开关

短路电流计算及电缆动热稳定性校验 一、变电所开关断路器开断能力及电缆热稳定性校验 S1点三相短路电流计算: 35kV 变压器阻抗:2 22.1.u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X ===Ω 电缆电抗:02(x )0.415000.087808000.72()1000 1000i L X ??+?+== =Ω∑ () 电缆电阻:0 2 (x ) 0.11815000.1187808000.36()1000 1000 i L R ??+?+= = =Ω∑() 总阻抗: 1 1.15()Z ===Ω S1 点三相短路电流:(3)1 3.16()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长500米,变压器容量为500KV A ,查表的:(2)2d I =2.1KA S2 点三相短路电流:32 d d =2.4I I KA = 1、高压电缆的热稳定性校验。 电缆最小允许热稳定截面积: 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温

升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电缆负荷率为80%。 2min 70S mm ≤故选用 MYJV22-3×70电缆符合要求。 2、二回路电缆的热稳定性校验,与一回路电缆相同,不在做叙述。 3、高压开关断路器开断能力计算 查电气设备手册及设备说明书确定断路器型号及参数如表 6kV 母线三相稳态短路电流 Ip =3.16KA ZN9L-6/400-12.5断路器的额定开断电流=12.5KA 符合要求。 4、低压电缆热稳定性校验 电缆最小允许热稳定截面积: 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电缆负荷率为80%。 2min 70S mm ≤故选用 MY-3×70+1×25电缆符合要求。 5、低压开关分断能力校验 按照开关负荷侧最大三相短路电流不超过开关断路器分断电流为原则。KBZ 型馈电开关断路器分段电流为9KA 。

高压电缆热稳定校验

采区变电所高压电缆校验计算 采区(北翼)共安装KBSGZY-630/10型移动变电站2台、KBSGZY-315/10型移动变电站3台,高压电流总量为127.3A ,目前敷设两条MYJV22-3*50型交联聚氯乙烯铠装电缆,电缆载流量为150A ,长度分别为1000m. 系统短路容量S=1.73*31.5*10000V=545.58MVA, 系统的电抗为Xx=100/545.58=0.183Ω 高压电缆电阻、电抗: Xo=0.08Ω/km Ro=0.42Ω/km, Xg=Xo ×Lg=0.08Ω Rg=Ro ×Lg=0.42Ω, ΣX1= Xx+Xg/Kb 2+Xb=0.183+(0.08/8.32)+0.09142=0.27558Ω ΣR1=Rg/Kb 2+Rb=0.42/8.32+0.01488=0.02097Ω Id (2)=Ue/2√(ΣR)2+(ΣX)2=1200/0.5527=2170.95A 三相短路电流: I d 3 =1.15×I d 2=1.15×2170.95=2496.59A 1、高压电缆的热稳定性校验。 电缆最小允许热稳定截面积: S min =I d 3C ti =2496.598025.0=15.6mm 2 其中:i t ----断路器分断时间,一般取0.25s ;

C——电缆的热稳定系数,交联聚乙烯绝缘电力电缆短路允许温度120℃时,热稳定系数取80 最小允许热稳定截面积15.6mm2<50mm2(使用电缆截面)因此高压电缆的热稳定性符合要求。 2、导线截面积计算公式(导线距离/压降/电流关系) 铜线S=IL÷(54.4×ΔU);=126A*1000/(54.4*52)=44.46mm2 I-导线中通过的最大电流(A)=P/1.732*U=126A (计算线路电流I ,公式:I= P/1.732×U ,其中:P-功率,用“千瓦”U-电压,单位kV;计算线路电阻R,公式:R=ρ(0.0175)×L/S=0.35,其中:ρ-导体电阻率,铜芯电缆用0.0175代入L—线路长度,用“米”代入S-电缆的标称截面;ΔU-允许的压降(V);计算线路压降,公式:ΔU=I×R=52。 L-导线长度(m);S-导线的截面积(平方毫米) 计算电缆截面45mm2<50mm2(使用电缆截面)符合要求3、电缆载流量计算: 安装设备总高压电流为36*2+18*3=126A;MYJV22-3×50载流量为150A;126A<150A 经以上计算:MYJV22-3×50 8.7/10型电缆符合要求。

干式变压器低压有哪些出线方式

干式变压器低压有哪些出线方式 干式变压器低压出线方式有哪些?SC(B)9系列大致含义? 干式变压器低压出线方式有哪些? 1、低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之干式变压器可提供标准封闭母线端子,方便与外部母排联接。 带外壳(IP20)产品,外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 2、低压标准横排侧出线:当干式变压器与低压配电屏并排放置时,为方便其端子间联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 3、低压标准立排侧出线:与横排侧出线相似,当选用多米诺屏等母排为竖向布置低压配电屏时,变压器可提供低压立排侧出线。 SC(B)9系列是什么东西? 树脂绝缘干式变压器是我公司引进国外先进技术,自主开发了SC9、SCB9系列以及SC10、SCB10系列干式变压器,由于线圈被环氧树脂包封,所以难燃,防火、防爆、免维护,无污染,体积小,可直接安装在负荷中心。同时科学合理的设计和浇注工艺,使产品局部放电量更小,噪声低,散热能力强,在强迫风冷条件下可以在125%额定负载下长期运行,并配有智能温控仪,具有故障报警,超温报警,超温跳闸以及黑匣子功能,并通过RS485串行接口与计算机相连,可以集中监视和控制。 由于我们公司干式变压器具有以上特点,因此广泛应用于输变电系统,如宾馆饭店,机场,高层建筑,商业中心,住宅小区等重要场所,以及地铁,冶炼,电厂,轮船,海洋钻井平台等环境恶劣场所。 干式变压器的安全运行和使用寿命 干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致干式变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的,今对TTC-300系列温控系统作一简介。 (1)风机自动控制:通过预埋在低压绕组最热处的Pt100热敏测温电阻测取温度

10KV变电所中变压器低压侧断路器的选择与整定

10KV变电所中变压器低压侧断路器的选择与整定 摘要:针对民用建筑工程变电所的设计中较容易出现的问题,阐述了变电所中配电变压器低压侧进线断路器、母联断路器、出线断路器的选择、整定及保护配合等设计要点。 关键词:长延时、短延时、瞬时、过电流脱扣器、单相短路电流abstract: aiming at the civil engineering projects in the design of the substation is more easily to the problems, and expounds the distribution transformer substation of low voltage side in line circuit breaker, bus coupler circuit breakers, the choice of the circuit breaker to qualify, setting and protection between the key points of the design. key words: the long time delay, the short time delay, instantaneous, over electric current tripping device, single phase short-circuit current 中图分类号: tm4 文献标识码:a文章编号: 1、引言 近年来,笔者在民用建筑工程(包括住宅和公建)中完成了不少变电所的设计,积累了许多经验;但在图样的设计及校审过程中,也发现了一些值得推敲的问题。下面就这些具体问题进行讨论。2、配电变压器低压侧进线断路器的选择与整定

井下高压系统短路电流计算及高压控制开关分段能力和电缆热稳定校验 (1)

井下高压系统短路电流计算及高压控制开关分段能力和电缆热稳定校验 35KV变电站 中央变电所 采区变电所 S 3 井下高压系统短路电流计算及高压控制开关分段能力和电缆热稳定性校验: Y 0=0.38Ω/Km X 0=0Ω/Km (一)S 1点回路总阻抗 1、求短路回路中各元件折算阻抗;

R T1=△P K/1000·U N2/S N2=36/1000×10.52/5.02=3969/39690=0.144Ω X T1=U K%/100×U N2/S N=7.5/100×10.52/5.0=826.875/630=1.3123Ω R L1=0.163×1.11=0.18093Ω X L1=0.05×1.11=0.0555Ω (二)求短路回路总阻抗; X互=1.3123+0.0555=1.3678Ω (三)求S1点的短路参数; I S(3)=Vav/3×∑=10.5/3×1.3678=10.5/2.342=4.43KA i im=2.55I S(3)=2.55×4.43=11.30KA I im=1.52I S(3)=1.52×4.43=6.73KA S S=Uar2/X∑=10.52/1.35=81.66MVA I S2=0.866I S(3)=0.866×4.43=3.84KA 井下中央变电所高压真空配电装置(ZN28-630)极限允许通过电流值为31.5KA,2s热稳态电流为12.5KA。

(一)短路热稳定性校验 I2S(3)t=12.52×2>I S(3)·t i=4.432×0.25=4.91KA,满足要求 (二)短路动稳定校验 i im11.43KA<31.5KA(极限允许值),满足要求,i im为中央变电所高压配电装置出口处短路电流冲击值。 (三)断流能力校验 S=3×U×Is(3)=1.732×10.5×4.43=80.56MVA<100MVA(额定断流能力),满足要求。 S为中央变电所高压真空配电装置出口处短路容量。 用短路电流不衰减,假想时间等于断路器的动作时间(0.25s)故电缆最小热值稳定截面为 S min=Is(3)·t J/C=4.43·0.25/141=7.85mm2 S min<240mm2故选用ZRYJV22 3×240架空线符合要求。 因采区变电所、综采工作面配电点供电距离比中央变电所远,短路电流减小,不再做计算,高压真空配电装置、电压供电电缆符合要求。

相关文档
最新文档