EZH2组蛋白甲基转移酶在肿瘤发生发展中的作用_朱静

EZH2组蛋白甲基转移酶在肿瘤发生发展中的作用_朱静
EZH2组蛋白甲基转移酶在肿瘤发生发展中的作用_朱静

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

组蛋白甲基转移酶活性or抑制分析试剂盒(H3K27)

EpiQuik组蛋白甲基转移酶活性/抑制检 测试剂盒(H3K27) EpiQuik? Histone Methyltransferase Activity/Inhibition Assay Kit (H3-K27) 产品名称:EpiQuik组蛋白甲基转移酶活性/抑制检测分析试剂盒(H3K27),EpiQuik? Histone Methyltransferase Activity/Inhibition Assay Kit (H3K27) 产品货号:P-3005 规格:48次、96次分析 产品简介: EpiQuik组蛋白甲基转移酶活性/抑制检测试剂盒(H3K27)是方便实验人员专门检测组蛋白H3第27位赖氨酸(H3-K27)的组蛋白甲基转移酶活性/抑制分析的一整套工具。该试剂盒即时使用,提供全部必需的试剂用于成功进行组蛋白甲基转移酶活性/抑制性试验,不接触放射性物质或任何特殊设备(启维益成有售)。 这个试剂盒具有如下优点: ●快速操作,3小时内可完成。 ●安全独创的比色测定,不接触放射性物质,无需提取和层析分析。 ●专一性检测H3-K27组蛋白甲基转移酶活性/抑制。 ●可剥离的微孔板让实验人员灵活选择手工或高通量分析。 ●极其简便,结果可靠,一致的分析条件。 背景信息: EpiQuik组蛋白甲基转移酶活性/抑制检测试剂盒(H3K27)是为了专门检测组蛋白H3第27位赖氨酸处组蛋白甲基转移酶活性而设计的。在该试剂盒在实际检测中,组蛋白底物紧密结合在微孔表面,组蛋白甲基化转移酶把腺苷基蛋氨酸(Adomet)的一个甲基基团转移到组蛋白H3基质的第27个赖氨酸上将其甲基化。甲基化的H3-K27能被一种高亲和性抗体识别,其数量与组蛋白甲基转移酶活性成线性关系,并且可通过HRP偶联的二抗显色系统进行定量。因此,组蛋白甲基转移酶活性可以依据其所转换的甲基化H3-K27的数量进行计算(启维益成有售)。 试剂盒组分: HM1 (10X 冲洗缓冲液) HM2 (组蛋白检测缓冲液) HM3 (腺苷基蛋氨酸)* HM4 (生物素标记的底物, 25 μg/ml)* HM5 (组蛋白甲基转移酶标准品, 10 μg/ml)* HM6 (结合抗体, 100 μg/ml)* HM7 (检测抗体, 200 μg/ml)* HM8 (显色溶液)

蛋白酶酶切位点

蛋白酶酶切位点 木瓜蛋白酶巯基蛋白酶具有广泛特异性TPCK,TLCK,抑蛋白酶醛肽α-巨球蛋白,烷化剂胃蛋白酶酸蛋白酶广泛特异性胃蛋白酶抑制素 胰蛋白酶丝氨酸蛋白酶在K或R之后TLCK,PMSF,抑蛋白酶醛肽抑肽酶,α巨球蛋白人体20种氨基酸及其英文缩写

名称三字符号单字符号 丙氨酸Ala A 精氨酸Arg R 天冬氨酸Asp D 半胱氨酸Cys C 谷氨酰胺Gln Q 谷氨酸Glu/Gln E 组氨酸His H 异亮氨酸Ile I 甘氨酸Gly G 天冬酰胺Asn N 亮氨酸Leu L 赖氨酸Lys K 甲硫氨酸Met M 苯丙氨酸Phe F 脯氨酸Pro P 丝氨酸Ser S 苏氨酸Thr T 色氨酸Trp W 酪氨酸Tyr Y 缬氨酸Val V 【生化】特异性蛋白酶的酶切位点 胰蛋白酶arg、lys,得到以arg、lys为C末端残基的肽段。胰凝乳蛋白酶phe、trp、tyr 等疏水aa。胃蛋白酶phe、trp、tyr等疏水aa。木瓜蛋白酶arg、lys。葡萄球菌蛋白酶,磷酸缓冲液ph7.8时断裂glu、asp。碳酸氢铵缓冲液ph7.8或醋酸铵缓冲液ph4.0时断裂glu。梭菌蛋白酶arg,用于不溶性蛋白的长时间裂解。CNBr断裂Met。羟胺断裂asn—gly间的肽键。二硫键可以用巯基化合物还原法或者过甲酸氧化法断裂.。 木瓜蛋白酶(Papain),又称木瓜酶,是一种蛋白水解酶。木瓜蛋白酶是番木瓜(Carieapapaya)中含有的一种低特异性蛋白水解酶,广泛地存在于番木瓜的根、茎、叶和果实内,其中在未成熟的乳汁中含量最丰富。木瓜蛋白酶的活性中心含半胱氨酸,属于巯基蛋白酶,它具有酶活高、热稳定性好、天然卫生安全等特点,因此在食品、医药、饲料、日化、皮革及纺织等行业得到广泛应用。 木瓜蛋白酶是一种蛋白水解酶,分子量为23406,由一种单肽链组成,含有212个氨基酸残基。至少有三个氨基酸残基存在于酶的活性中心部位,他们分别是Cys25、His159和Asp158,另外六个半胱氨酸残基形成了三对二硫键,且都不在活性部位。纯木瓜蛋白酶制品可含有:(1)木瓜蛋白酶,分子量21000,约占可溶性蛋白质的10%;(2)木瓜凝乳蛋白酶,分子量26000,约占可溶性蛋白质的45%;(3)溶菌酶,分子量25000,约占可溶性蛋白质的20%;及纤维素酶等不同的酶。 番木瓜未成熟果实中含有木瓜蛋白酶(Papain)、木瓜凝乳蛋白酶A(Chymopapain A )、木瓜凝乳蛋白酶B(Chym opapain B )、木瓜肽酶B (PapayaPeptidase B ) 等多种蛋白水解酶。且已知四种半胱氨酸蛋白酶的一级结构具有高度的同源性。其中,木瓜蛋白酶属巯基蛋白酶,可水解蛋白质和多肽中精氨酸和赖氨酸的羧基端,并能优先水解那些在肽键的N-端具有二个羧基的氨基酸或芳香L-氨基酸的肽键。

组蛋白甲基化转移酶G9a对NK细胞功能调节作用的研究

中文摘要 目的: 自然杀伤细胞(Natural Killer cell,NK细胞)作为一种固有免疫细胞,在免疫系统中发挥着重要作用。目前关于NK细胞的研究主要集中于NK细胞表面受体以及相关信号通路对其发育和功能的影响等方面,我们研究发现NK细胞在发挥功能时,会伴随着染色质及其组蛋白修饰状态的变化,而组蛋白甲基化转移酶G9a 在组蛋白修饰中具有重要的作用,并且组蛋白甲基化转移酶G9a对造血干细胞以及T细胞发育有着重要的影响,另外组蛋白甲基化转移酶G9a是否会影响NK 细胞的发育及其功能尚未报道,因此探讨组蛋白甲基化转移酶G9a在NK细胞的作用具有重要意义,本研究主要从表观遗传学的角度探讨G9a如何影响NK 细胞的功能及其作用机制。 方法: 第一部分:从GEO数据库中分析相关数据,在NK细胞免疫信号通路被激活的情况下,寻找表达水平变化最显著的组蛋白甲基化酶和去甲基化酶,发现G9a 在NK细胞激活之后显著下调,并用qPCR实验验证G9a的变化。从外周血中分选获得原代NK细胞,加入抑制G9a酶活性的小分子抑制剂,采用western blot 方法检测加入小分子抑制剂后,G9a修饰的NK细胞中IFN-γ启动子区域H3K9me2的修饰水平;并用流式细胞术分析NK细胞在被激活的情况下,抑制G9a的酶活性后IFN-γ的表达变化。 第二部分:采用qPCR在转录水平检测不同条件激活的NK细胞系的IFN-γ的表达变化,并用流式细胞术和ELISA等技术检测IFN-γ在蛋白水平的表达变化;ChIP-qPCR检测在抑制G9a酶活性前后,NK细胞系中IFN-γ启动子区域H3K9me2的修饰水平变化。 结果: 第一部分:高通量分析结果显示,NK细胞在被激活的情况下,G9a的表达量下调;在抑制NK细胞中G9a甲基转移酶活性后,可以增强NK细胞分泌IFN-γ的能力。 第二部分:通过在转录水平和蛋白水平两个层次上的检测发现,抑制NK细胞G9a甲基转移酶活性后,NK细胞分泌IFN-γ的能力增强;ChIP-qPCR实验结果 I

碱性蛋白酶活力测定

碱性蛋白酶活力测定 1 定义 1克固体酶粉(或1mL液体酶),在一定温度和pH值条件下,1min水解酪素产生1μg酪氨酸为1个酶活力单位,以u/g(u/mL)表示。 2 福林法 2.1 原理 碱性蛋白酶在一定的温度与pH值条件下,水解酪素底物,产生含有酚基的氨基酸(如:酪氨酸、色氨酸等),在碱性条件下,将福林试剂(Folin)还原,生成钼蓝与钨蓝,用分光光度法测定,计算其酶活力。 2.2 试剂和溶液 2.2.1福林酚试剂已配 2.2.2 碳酸钠溶液c(Na 2CO 3 )=0.4mol/L 称取无水碳酸钠(Na 2CO 3 )21.2g,用水溶解并定容至500mL。 2.2.3 三氯乙酸(CCl 3 ·COOH)=0.4mol/L 称取三氯乙酸16.34g,用水溶解并定容至500mL。 2.2.4氢氧化钠溶液c(NaOH)=0.05mol/L 按GB601配制。 2.2.5 硼酸缓冲溶液(pH10.5) 甲液称取硼酸钠(硼砂)19.08g,加水溶解并定容至1000mL。 乙液称取氢氧化钠4.0g,加水溶解并定容至1000mL。 使用溶液取甲液500mL、乙液400mL混匀,用水稀释至1000mL。 上述缓冲溶液,需用pH计校正。 2.2.6 10g/L 酪素溶液 称取酪素1.000g,精确至0.001g,用少量0.5mol/L氢氧化钠溶液湿润后,加入适量的各种适宜pH的缓冲溶液约80mL,在沸水浴中边加热边搅拌,直至完全溶解,冷却后,转入100mL容量瓶中,用硼酸缓冲溶液稀释至刻度。此溶液在冰箱内储存,有效期为3天。 2.2.7100μg/mL L-酪氨酸标准溶液 a.称取预先于105℃干燥至恒重的L-酪氨酸0.1000g,精确至0.002g,用1mol/L盐酸60mL溶解后定容至100mL,即为1mg/mL酪氨酸标准溶液。 b.吸取1mg/mL酪氨酸标准溶液10.00mL,用0.1mol/L盐酸定容至100mL,即得到100μg/mL L-酪氨酸标准溶液。 2.3 仪器和设备 2.3.1恒温水浴(40±0.2)℃

m6A甲基化酶的种类及功能盘点——m6A专题

m6A甲基化酶的种类及功能盘点| m6A专题 图1 m6A甲基化加工过程 m6A这种甲基化修饰被证明是可逆化的,包括甲基化转移酶、去甲基化酶和甲基化阅读蛋白等共同参与。其中甲基化转移酶包括METTL3/14、WTAP和KIAA1429等,主要作用就是催化mRNA上腺苷酸发生m6A修饰。而去甲基化酶包括FTO和ALKHB5等,作用是对已发生m6A修饰的碱基进行去甲基化修饰。阅读蛋白主要功能是识别发生m6A 修饰的碱基,从而激活下游的调控通路如RNA降解、miRNA加工等。 表1 RNA甲基化酶类型总结

1.m6A甲基化转移酶 甲基化转移酶(methyltransferase)也叫Writers,是一类重要的催化酶,能够让mRNA上的碱基发生m6A甲基化修饰。METTL3、METTL14、WTAP和KIAA1492都属于m6A甲基化转移酶的核心蛋白。这些蛋白并不是各自孤立的,而是会形成复合物(complex)共同行使催化功能。由于酵母和线虫等生物缺少这四种核心蛋白中的一种或几种,所以m6A甲基化修饰属于高等真核生物独有的碱基修饰反应。 图2 METTL3-METTL14蛋白复合物晶体结构示意图 结构生物学研究表明,METTL3和METTL14这两种蛋白有关键的催化结构域,两者之间会形成杂络物(hetero complex)。其中METTL3是具有催化活性的亚基,而METTL14会在底物识别上起到关键作用。另外WTAP、Vir以及其他类型的factors也是杂络物的重要组成部分。其中WTAP在招募METTL3和METTL14起到十分重要的作用。这些蛋白无论在体内(in vivo)还是体外(in vitro)都会一起对腺苷酸进行甲基化修饰。除了人和小鼠等哺乳动物,果蝇、酵母甚至拟南芥中也发现了类似的同源蛋白(homologous protein)。 2.m6A去甲基化酶 在真核生物中,已发现的m6A去甲基化酶主要包括FTO和ALKBH5等。FTO蛋白全称Fat mass and obesity-associated protein,属于Alkb蛋白家族中的一员并且与肥胖相关。1999年,FTO基因首次在小鼠中被克隆。2007年,三项独立的队列研究分别证实当FTO基因产生突变时,会增加肥胖的风险。同样在小鼠模型中,FTO被敲除或过表

蛋白酶的种类

蛋白酶的论述 摘要:蛋白酶(英语:Protease)是生物体内的一类酵素(酶),它们能够分解蛋白质。分解方法是打断那些将氨基酸连结成多肽链的肽键。抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。 1.木瓜蛋白酶 1.1木瓜蛋白酶简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 1.2木瓜蛋白酶的特点 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。木瓜蛋白酶由212个氨基酸残基组成,当用氨基肽酶从N末端水解掉分子中的2/3肽链后,剩下的1/3肽链仍保持99%的活性,说明木瓜蛋白酶的生物活性集中表现在C末端的少数氨基酸残基及其所构成的空间结构区域。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。1.3木瓜蛋白酶物理化学性质 本品为乳白色至微黄色粉末,具有木瓜特有的气味,稍具有吸湿性。水解蛋白质能力强,但几乎不能分解蛋白胨,易溶于水,甘油,不溶于一般的有机溶剂,耐热性强。由木瓜制得的商品酶制剂中,含有如下三种酶:(1)木瓜蛋白酶,分

酶作用机理和调节【生物化学】

酶作用机理和调节 一、选择题 ⒈关于酶活性中心的描述,哪一项正确?() A、所有的酶都有活性中心; B、所有酶的活性中心都含有辅酶; C、酶的必须基团都位于酶的活性中心内; D、所有的抑制剂都是由于作用于酶的活性中心; E、所有酶的活性中心都含有金属离子 ⒉酶分子中使底物转变为产物的基团是指:() A、结合基团; B、催化基团; C、疏水基团; D、酸性基团; E、碱性基团

⒊酶原的激活是由于:() A、氢键断裂,改变酶分子构象; B、酶蛋白和辅助因子结合; C、酶蛋白进行化学修饰; D、亚基解聚或亚基聚合; E、切割肽键,酶分子构象改变 ⒋同工酶是指() A、辅酶相同的酶; B、活性中心的必需基团相同的酶; C、功能相同而分子结构不同的酶; D、功能和性质都相同的酶; E、功能不同而酶分子结构相似的酶 ⒌有关别构酶的结构特点,哪一项不正确?() A、有多个亚基; B、有与底物结合的部位; C、有与调节物结合的部位; D、催化部位和别

构部位都位于同一亚基上;E、催化部位与别构部位既可以处于同一亚基也可以处于不同亚基上。 ⒍属于酶的可逆性共价修饰,哪项是正确的? A、别构调节; B、竞争性抑制; C、酶原激活; D、酶蛋白和辅基结合; E、酶的丝氨酸羟基磷酸化 ⒎溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?() A、底物形变; B、广义酸碱共同催化; C、临近效应与轨道定向; D、共价催化; E、无法确定 ⒏对具有正协同效应的酶,其反应速度为最大反应速度0.9时底物浓度([S]0.9)与最大反应

旗开得胜速度为0.1时的底物浓度([S]0.1)二者的比值[S]0.9/[S]0.1应该为() A、>81; B、=81; C、<81; D、无法确定 ⒐以Hill系数判断,则具负协同效应的别构酶() A、n>1; B、n=1; C、n<1; D、n≥1; E、n≤1

碱性蛋白酶

碱性蛋白酶 产品概述 奥迪尔碱性蛋白酶是经原生质体诱变方法选育的枯草杆菌通过深层发酵、提取及精制而成的一种蛋白水解酶。广泛应用于制革、丝绸、食品、医疗、酿造等行业。 产品原理 碱性蛋白酶活性成分属于一种丝氨酸内切碱性蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,在有机溶剂中它还可催化多肽的合成。 产品特性 1.温度范围:有效温度范围20-60℃,最适温度范围在35-45℃。 2.PH值范围:有效pH范围6-11,最适pH值范围9.5-10.5 产品性状 1.产品规格:固体100000u/g,200000u/g粉末(颗粒状);液体 100000u/ml 液体酶pH(25℃):7.0-9.0,容重:≤1.25g/ml;固体酶细度(0.4mm标准筛通过率):≥80%。 2.酶活力定义:1g固体酶粉(或1ml液体酶),在40℃±0.2℃、 pH10.5条件下,1min水解酪蛋白产生1μg酪氨酸,为1个酶活力单位,以u/g(u/ml)表示。

3.产品标准:执行中华人民共和国国家标准GB/T23527-2009 应用方法 1.碱性蛋白酶用于皮革加工具有简化工序、缩短周期、提高成品质 量、增加的率、降低生产成本等优点。用于浸水工序的加酶量为 0.02-0.1%(按原料质量计,酶活力以10万u/ml计,下同),20- 25℃作用12-20小时;用于皮革软化的加酶量为0.05-0.2%,35-38℃作用3-6小时;用于脱毛的加酶量为0.1-0.3%,20-35℃作用12-20小时。以上使用pH均为9-11. 2.碱性蛋白酶用于丝绸脱胶有丝素不受损伤、不起毛丝和蓬松的效 果。原料经过前处理,按0.8-2.4%加酶,pH9-11,40-50℃的条件下作用30-60min。 3.碱性蛋白酶用于软骨素生产,可有效提高收率和纯度。原料在碱 提取后,按照0.2-0.6%的添加量,pH8-10,温度40-50℃的酶解条件作用4-8小时。 4.碱性蛋白酶用于肝素钠的生产,可提高分子均一性和产品纯度。 原料盐解后按照2-4g碱性蛋白酶每根小肠的加量,在45-60℃、pH9-11的条件下保温4-6小时。 5.碱性蛋白酶用于活性肽等蛋白质原料加工中,可提高营养价值, 易于吸收。推荐用法为:料液比1:3-9,pH值8-10,温度50-

DNA甲基转移酶在肿瘤中的研究进展

龙源期刊网 https://www.360docs.net/doc/1513954423.html, DNA甲基转移酶在肿瘤中的研究进展 作者:裴嘉瑶李洪艳 来源:《科学与财富》2017年第18期 摘要:DNA甲基化是表观遗传学的重要研究内容,DNA甲基化参与了生物体的染色体稳定、遗传印记的维持等正常的生理活动过程。DNA甲基转移酶是负责将甲基转移到DNA上的酶。DNMT1,DNMT3A,DNMT3B是哺乳动物体内发挥作用的三种主要DNA甲基转移酶,它们在细胞内单独或联合起来发挥着功能。本文对DNA甲基转移酶在肿瘤发生发展中的作用加以概述。 关键词:DNA甲基化,DNA甲基转移酶,CpG岛,肿瘤 引言 基因组表观遗传学是相对于传统的遗传学而提出的一个概念,其研究的不是基因序列的改变,而是研究基因组的修饰变化所引起的基因表达改变。这种修饰是可遗传的,可对生物体产生长期效应[1]。DNA甲基化是表观遗传学的一个重要研究内容,是由DNA甲基转移酶催化 完成的,主要包括DNMT 1,DNMT 2和DNMT 3。研究表明,DNA甲基转移酶(DNMTs)缺陷而引起的基因表观遗传改变往往伴随着肿瘤的发生和发展。本文综述了近年DNMTs在肿瘤中的研究进展。 1 DNA甲基化现象 DNA甲基化是哺乳动物基因组最常见的修饰方式。它是在DNA甲基转移酶(DNMTs)的催化下,以甲硫氨酸为供体,将甲基转移到胞嘧啶的第五个碳原子上。DNA甲基化是一个可逆的过程,在体内同时存在着主动或被动的去甲基化过程。 2 DNA甲基转移酶(DNMTs) DNA甲基化修饰是由DNA甲基转移酶催化完成的。目前为止,在哺乳动物体内主要存在三种DNA甲基转移酶,分别命名为DNMT 1,DNMT 2和DNMT 3。其中,DNMT 3又分为DNMT 3A和DNMT 3B两个亚型。DNMT 2,虽然具有与其他的DNMT同源的序列,并且能够甲基化小的tRNAs,但是目前通常认为它不是DNA甲基化酶。 2.1 DNMT 1 DNMT 1是第一个被克隆出来的DNA甲基转移酶。它由N-端的调节区,C-端的催化区组成,该酶的催化能力需要N-端和C-端的相互作用。但也有研究表明,DNMT1的半胱氨酸富 集区可与未甲基化的CpG岛作用。这说明除了催化区域外,DNMT1的其他结构域与酶的活性有重要关系。DNMT 1可以维持基因组中的全部甲基化。一般认为,它主要负责在DNA复制

甲基化综述

DNA甲基化及其在食用菌中的研究潜力 前言 DNA甲基化是在DNA上添加甲基基团的一种化学修饰作用,作为一种表观遗传行为,DNA甲基化状态的改变可导致基因结构和功能异常,进而引起生物体表型的变化。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达,其对遗传物质的影响主要是通过抑制基因表达来起作用。同时,有研究表明,亲代遗传、激素、miRNA、年龄等内源性因素以及温度、湿度、盐离子浓度、重金属等环境因素都对生物体DNA甲基化水平及模式有影响。目前,DNA 甲基化的检测方法种类较多,如甲基化特异性PCR、亚硫酸测序法、限制性内切酶PCR、变性液相高效色谱法等。然而,目前DNA甲基化的研究主要集中在动、植物领域,在应用前景广泛并处于方兴未艾阶段的食用菌领域研究较少。同时,食用菌生长发育容易受到内源性物质以及环境因素的影响,并有研究报道DNA甲基化对蕈菌生长发育有影响。所以,对DNA甲基化在食用菌领域进行深入地研究是十分有必要和有意义的。 什么是DNA甲基化 DNA甲基化是指,在甲基转移酶的作用下,甲基基团从供体转移到DNA的碱基上。在动物中,DNA甲基化主要发生在胞嘧啶的第五位碳原子上,形成5-甲基胞嘧啶,而几乎所有的5-甲基胞嘧啶都发现与CG 二核苷酸序列中,这种CG二核苷酸序列经常成串存在,俗称CG岛,并

且大约70–80%的CG二核苷酸序列都被甲基化;在植物中,甲基化的胞嘧啶主要出现在B型DNA的沟内,而该部位正是DNA结合蛋白相互作用的部位。 DNA甲基化是被属于一个基因家族的一系列甲基转移酶所催化,这些酶中常见的有Dnmt1,Dnmt3a和Dnmt3b等。Dnmt1是一种维持性甲基化酶,它只作用于只有一条链发生甲基化的DNA链,主要通过对亲本甲基化模式进行复制。在减数分裂时,Dnmt1识别DNA双链中只有亲代链发生甲基化的半甲基化位点,并催化甲基基团从供体转移到未甲基化的胞嘧啶上,使该位点双链全甲基化;Dnmt3a和Dnmt3b属于从头甲基化酶,它们则能够使之前没发生甲基化的区域进行甲基化,从而对细胞分化起调控作用。 甲基化的生物学效应及其作用机理 DNA甲基化精确的功能有待进一步研究,目前学术界公认的两类功能是:宿主防御模型和基因调控模型。 宿主防御模型是指,生物体基因组内转座子的甲基化和外源DNA 的甲基化。由于转座子大量地存在于基因组中,并且转座效应对生物体大部分是有害的,而转座子发生甲基化能抑制其转座活性,因此转座子甲基化能够保护生物体免受转座效应带来的威胁;同时,生物体在遭受外源DNA侵袭时,例如病毒基因组和基因片段整合到宿主基因组中,容易产生对机体有害的蛋白质或造成基因结构紊乱。而宿主细胞内甲基转移酶能通过对外源DNA序列进行甲基化,以抑制其对宿主基因组造成伤害。

蛋白酶的种类

蛋白酶的种类 1.木瓜蛋白酶 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

2.胃蛋白酶 胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。可分解蛋白质中苯丙氨酸或酪氨酸与其他氨基酸形成的肽键,产物为蛋白胨及少量的多肽和氨基酸,该酶的最适pH为2左右。 3.中性蛋白酶 中性蛋白酶是由枯草芽孢杆菌经发酵提取而得的,属于一种内切酶,可用于各种蛋白质水解处理。在一定温度、PH值下,本品能将大分子蛋白质水解为氨基酸等产物。可广泛应用于动植物蛋白的水解,制取生产高级调味品和食品营养强化剂的HAP和HVP,此外还可用于皮革脱毛、软化、羊毛丝绸脱胶等加工。 利用中性蛋白酶的酶促反应,可把动植物的大分子蛋白质水解成小分子肽或氨基酸,以利于蛋白质的有效吸收和利用,其水解液AN%高,水解度高,风味佳,已广泛用于生产高级调味品和食品营养强化剂,各种动物来源性抽提物生产功能性骨、肉提取物(骨素)、水产提取物、蛋白胨、肽等及研究开发一些高附加值的功能食品。

酸性蛋白酶的应用

YR-ACPro 酸性蛋白酶 ◇产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。 包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。 蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。 本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌(Aspergillus)深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 ◇工作机理: 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。 ◇产品特性: 本产品能够产生最大活性的pH范围是2.5-6.0,最适pH值是3.5;温度范围是10-50℃(50-122°F),最适温度是50℃。 ◇产品规格: 产品为固体:酶活力为 10,000 U/g) 酶活力单位定义: 温度为40℃,pH3.0条件下,1分钟内释放1ug酪氨酸所需要的酶量。 ◇使用说明: 用作饲料添加剂时,本产品的添加量为5-10U/g。 在酿造业使用时,本产品的添加比例为5U/g。 ◇产品包装及储存: 本产品的包装规格为25kg/箱。也可根据客户需求提供大小不等的包装。

甲基化

Dam、Dcm和CpG甲基化 原文地址:https://www.360docs.net/doc/1513954423.html,/biotech/exp/TechArticle/2010/c819172778.html DNA 甲基转移酶(MTases)普遍存在于原核和真核生物中,能将S-腺苷甲硫氨 酸上的甲基转移到腺嘌呤或者是胞嘧啶上。 当使用限制性内切酶消化DNA 时,要考虑是否有甲基化的问题,这是因为如果识别序列中某个特定碱基被甲基化后,切割就会被完全或者不完全阻断。 原核生物甲基化 在原核生物中,DNA 甲基化酶作为限制修饰系统的一个组成部分广泛存在,它们的作用是保护宿主菌不被相应的限制性内切酶切割。大多数实验室使用的大肠杆菌包括三种位点特异性的DNA 甲基化酶。 ?由dam 基因(Dam 甲基化酶)编码的甲基化酶能将甲基转移到GATC 序列中的腺嘌呤N6 位点上(1,2)。 ?由dcm 基因编码的Dcm 甲基化酶,能在CCAGG 和CCTGG (1,3)序列内部的胞嘧啶C5 位置上甲基化。 ?EcoKI 甲基化酶,即M.EcoKI 可将AAC(N6A)GTGC 和GCAC(N6A)GTT 上的腺嘌呤进行甲基化修饰。 如果限制性内切酶的识别位点是从表达Dam或Dcm 甲基化酶的菌株中分离而得,并且其甲基化识别位点与内切酶识别位点有重叠,那么该限制性内切酶的部分或全部酶切位点有可能不被切割。例如,从dam+ E.coli 中分离的质粒DNA 完全不能被识别序列为GATC 的MboI 所切割。 E.coli 菌株中的DNA 甲基化程度并不完全相同。pBR322 DNA 能被完全修饰(因此完全不能被MboI 切割),而λDNA 只有大约50% 的Dam 位点被甲基化,这是因为在λDNA 被包装到噬菌体头部之前,甲基化酶还没来得及将DNA 完全甲基化。因此,被Dam 或Dcm 甲基化完全阻断的酶却能对这些λDNA 进行部分切割。 被Dam 或Dcm 甲基化的限制性位点可以通过克隆DNA 至dam- /dcm- 菌株【如dam- /dcm- E.coli 感受态细胞(NEB #C2925)】进行去甲基化。 如果出现重叠位点,内切酶酶切也会被阻断。在这种情况下,Dam 或者Dcm 序列一部分来自内切酶识别序列,另一部分为识别序列左右旁侧的序列。在设计限制酶酶切时也应考虑到这种情况。 真核生物甲基化 在高等真核生物(如Dnmt1)中发现的CpG 甲基转移酶(CpG MTases),将甲基基团转移至胞嘧啶残基上的C5 位点。 CpG 甲基化形式受遗传因素的影响,具有组织特异性,并与基因表达相关。因此,我们推测CpG 甲基化在基因分化和表达中起了一定的作用(4)。 注意:在消化真核基因组DNA 时尤其要关注CpG甲基化的影响。需要注意的是,一旦DNA 被克隆到宿主菌中,将不存在CpG 甲基化形式。 甲基化敏感性

Dam、Dcm和CpG甲基化

Dam、Dcm和CpG甲基化 DNA 甲基转移酶(MTases)普遍存在于原核和真核生物中,能将 S-腺苷甲硫氨酸上的甲基转移到腺嘌呤或者是胞嘧啶上。 当使用限制性内切酶消化 DNA 时,要考虑是否有甲基化的问题,这是因为如果识别序列中某个特定碱基被甲基化后,切割就会被完全或者不完全阻断。 原核生物甲基化 在原核生物中,DNA 甲基化酶作为限制修饰系统的一个组成部分广泛存在,它们的作用是保护宿主菌不被相应的限制性内切酶切割。大多数实验室使用的大肠杆菌包括三种位点特异性的 DNA 甲基化酶。 ?由 dam 基因(Dam 甲基化酶)编码的甲基化酶能将甲基转移到 GATC 序列中的腺嘌呤 N6 位点上(1,2)。 ?由 dcm 基因编码的 Dcm 甲基化酶,能在CCAGG 和 CCTGG (1,3)序列内部的胞嘧啶C5 位置上甲基化。 ? EcoKI 甲基化酶,即 M.EcoKI 可将 AAC(N6A)GTGC 和 GCAC(N6A)GTT 上的腺嘌呤进行甲基化修饰。 如果限制性内切酶的识别位点是从表达 Dam或 Dcm 甲基化酶的菌株中分离而得,并且其甲基化识别位点与内切酶识别位点有重叠,那么该限制性内切酶的部分或全部酶切位点有可能不被切割。例如,从 dam+ E.coli 中分离的质粒 DNA 完全不能被识别序列为 GATC 的MboI 所切割。 E.coli 菌株中的 DNA 甲基化程度并不完全相同。pBR322 DNA 能被完全修饰(因此完全不能被 MboI 切割),而λDNA 只有大约 50% 的 Dam 位点被甲基化,这是因为在λDNA 被包装到噬菌体头部之前,甲基化酶还没来得及将 DNA 完全甲基化。因此,被 Dam 或 Dcm 甲基化完全阻断的酶却能对这些λDNA 进行部分切割。 被 Dam 或 Dcm 甲基化的限制性位点可以通过克隆 DNA 至 dam- /dcm- 菌株【如 dam- /dcm- E.coli 感受态细胞(NEB #C2925)】进行去甲基化。 如果出现重叠位点,内切酶酶切也会被阻断。在这种情况下,Dam 或者 Dcm 序列一部分来自内切酶识别序列,另一部分为识别序列左右旁侧的序列。在设计限制酶酶切时也应考虑到这种情况。 真核生物甲基化 在高等真核生物(如 Dnmt1)中发现的 CpG 甲基转移酶(CpG MTases),将甲基基团转移至胞嘧啶残基上的 C5 位点。

蛋白酶

一、蛋白酶将蛋白质变成了氨基酸还是多肽还是都有? 1、都有,主要是多肽,有少量氨基酸。 不同的蛋白酶所催化的肽键不同,即是不同的蛋白酶能使不同的肽键(不同的氨基酸形成的)断裂。有可能某蛋白酶(或多种蛋白酶)水解蛋白质时正好有单个的氨基酸生成。因此,蛋白质在蛋白酶的催化下水解的产物不能理解为只有多肽,而应该表述为主要产物是多肽,同时也有少量游离氨基酸生成。 2、如果是外切酶就是从两端切的酶就会产生氨基酸,如果是内切酶如常见的胃蛋白酶、胰蛋白酶就会从中间切,产生多肽。那个多取决于是内切酶还是外切酶 3、如果是蛋白酶的话,水解蛋白质的结果一定是多肽啦~~ 水解成多肽后,经肽酶进一步水解成氨基酸~ 4、从事实出发,我认为都有,这不仅与酶有关,和蛋白质本身也有关,一些蛋白质本来结构就相对简单。从高中考察的范围而言,我建议最好认为是多肽链,尤其在考试时,若不是“彻底水解”的提法,说变成氨基酸一般会错,因为命题指向通常是多肽链。 二、蛋白质在胃蛋白酶和胰蛋白酶的作用下变成氨基酸的反应属 于什么类型? 属于蛋白质的酶促降解,蛋白质先在蛋白酶的作用下分解成肽链,再在肽酶的作用下分解成氨基酸 三、胃蛋白酶、胰糜蛋白酶水解蛋白质获得的都是芳香族氨基 酸? 糜蛋白酶水解苯丙氨酸、酪氨酸、色氨酸等疏水残基的羧基形成的肽键。 糜蛋白酶水解疏水残基之间的肽键。 如果只用一种酶消化,得到的是各种长度不等的肽段,以及少量游离氨基酸。这些游离氨基酸中,有芳香族的,也有其它氨基酸。可能芳香族的稍多一些。 糜蛋白酶水解芳香族氨基酸的羧基形成的肽键,并不是直接将芳香族氨基酸切下来。 四、碱性蛋白酶可以催化蛋白质及其多肽的水解吗? 碱性蛋白酶(胰蛋白酶)可以催化蛋白质及其多肽的水解,胃蛋白酶(酸性条件下有催化作用)将蛋白质分解为多肽。 五、胰蛋白酶在催化蛋白质水解的时候为什么要先将肽链羰基极

酸性蛋白酶生产工艺

酸性蛋白酶生产工艺 1 蛋白酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3酸性蛋白酶的概述 酸性蛋白酶(acidic protease)在 1954 年首先由吉田在黑曲酶中发现。该酶广泛存在于霉菌、和担子菌中,细菌中极少发现,其最适pH3~4,相对分子质量 30000~40000,等电点(pH3~5)。酸性蛋白酶主要是一种羧基蛋白酶,大多数在其活动中心含有 2 个天冬氨酸残基。酶蛋白中酸性氨基酸含量高,而碱性氨基酸含量低。 不同微生物的酸性蛋白酶其氨基酸组成虽有所差别,但性质基本相同,许多性质也与动物胃蛋白酶相似,其活动中心肽键也基本相似,它对 DFP、PCMP (对氯汞苯甲酸)EDTA不敏感,及但能为DNA(二重氮乙酰亮氨酸甲酯)EPNP及(1,

2 环-3-对硝基苯养基丙烷),SDS(十二烷基磺酸钠)等抑制。DNA,EPNP 之所以能引起酶失活是由于活性中心天冬氨酸残基被酯化。DNA 只同有活性的酸反应,而同失活的酶不能反应。P-BPB(对溴酚乙酰溴)虽然也可同酶的1个天冬氨酸残基反应,但同它反应的天冬氨酸的位置与以上两种抑制不一样,故不能引起青霉酸性蛋白酶失活。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)水解动植物蛋白质,通过内切和外切作用将蛋白质水解为小肽和氨基酸。 1.5.2 pH对酶活及酶稳定性的影响 酸性蛋白酶稳定pH范围2.0~4.0之间,最适pH2.5,pH低于2.0、高于4.0将影响水解速度。 1.5.3 温度对酶活性及稳定性影响 酸性蛋白酶适宜温度范围30℃~50℃,最适作用温度为50℃,低于40℃酶活稳定,超过50℃,酶活性损失严重。 1.5.4 金属离子对酶活力的影响 酸性蛋白酶可被Mn2+、Ca2+、Mg2+离子激活,被Cu2+、Hg2+、Al3+

相关文档
最新文档