继电保护整定计算公式1

继电保护整定计算公式1
继电保护整定计算公式1

继电保护整定计算公式汇编

为进一步规范我矿高压供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下:

一、电力变压器的保护:

1、瓦斯保护:

作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KVA以上的油浸变压器,均应装设瓦斯保护。

(1)重瓦斯动作流速:0.7~1.0m/s。

(2)轻瓦斯动作容积:S b<1000KVA:200±10%cm3;S b在1000~15000KVA:250±10%cm3;S b在15000~100000KVA:300±10%cm3;S b>100000KVA:350±10%cm3。

2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、

II及差动线圈。

3、电流速断保护整定计算公式:

(1)动作电流:I dz=K k×I(3)dmax2

继电器动作电流:

其中:K k—可靠系数,DL型取1.2,GL型取1.4;K jx —接线系数,接相上为1,相差上为

I(3)dmax2—变压器二次最大三相短路电流;K i—电流互感器变比;K u—变压器的变比一般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为:

其中:K k—可靠系数,取3~6。

K jx —接线系数,接相上为1,相差上为;I1e—变压器一次侧额定电流;K i—电流互感器变比

(2)速断保护灵敏系数校验:

其中:I(2)dmin1—变压器一次最小两相短路电流;I dzj —速断保护动作电流值;K i—电流互感器变比

4、过电流保护整定计算公式:

(1)继电器动作电流:

其中:K k—可靠系数,取2~3(井下变压器取2)。K jx —接线系数,接相上为1,相差上为 I1e—变压器一次侧额定电流;K f—返回系数,取0.85;K i—电流互感器变比

(2)过流保护灵敏系数校验:

其中:I(2)dmin2—变压器二次最小两相短路电流I dzj —过流保护动作电流值;K i—电流互感器变比;

K u—变压器的变比

过流保护动作时限整定:一般取1~2S。

5、零序过电流保护整定计算公式:

(1)动作电流:

其中:K k—可靠系数,取2。

I2e—变压器二次侧额定电流;K i—零序电流互感器变比(适用于Y—Y0—12接线的变压器)(2)零序过电流保护灵敏系数校验:

其中:I d1min2—变压器二次最小单相短路电流

I dz —零序过流继电器动作电流值;K i—零序电流互感器变比

二、高压电动机的保护:

1、电流速断保护:

(1)异步电动机:

其中:K k—可靠系数,DL型取1.4~1.6,GL型取1.6~1.8

K jx —接线系数,接相上为1,相差上为√3

I qd—电动机的启动电流I qd=n qd×I de=(5~6)I de;K i—电流互感器变比

注:带排水泵的电机启动电流应按所配电抗器的参数进行计算

(2)同步电动机:

①应躲过起动电流(按异步电动机速断保护公式计算)

②应躲过外部短路时输出的电流:

其中:K k—可靠系数,DL型取1.4~1.6,GL型取1.6~1.8

K jx —接线系数,接相上为1,相差上为: K i—电流互感器变比;

I’’dmax—最大运行方式时,外部三相短路时,同步电动机的反馈电流

其中:X’’d—同步电动机次暂态电抗标么值;φe—电动机额定功率因数角;I e—电动机额定电流取其中最大者为同步电动机的速断保护值

(3)速断保护灵敏系数校验:(同步电动机、异步电动机)

其中:I(2)dmin—电机出口处最小两相短路电流; I dzj —速断保护动作电流值;K i—电流互感器变比 2、纵联差动保护:

(1)躲过下列不平衡电流,取其较大者:

①异步或同步电动机,由起动电流引起的不平衡电流:

其中:K k—可靠系数,取1.2~1.4

I qd—电动机的启动电流I qd=n qd×I de=(5~6)I de;K i—电流互感器变比

②躲过外部短路时,同步电动机输出电流引起的不平衡电流:

其中:K k—可靠系数,取1.2~1.4

—同步电动机外部三相短路时的输出电流;K i—电流互感器变比

(2)纵联差动保护灵敏系数校验:

其中:—保护装置安装处最小两相短路电流;I dz —纵差保护动作电流;K i—电流互感器变比

3、过流保护:

(1)动作电流:

其中:K k—可靠系数,动作于信号时取1.1,动作于跳闸时取1.2~1.4

K jx —接线系数,接相上为1,相差上为

I e—电动机的额定电流;K f—返回系数,取0.85;K i—电流互感器变比

(2)对同步电动机兼作失步保护的动作电流:

其中:K jx —接线系数,接相上为1,相差上为

I e—同步电动机的额定电流;K i—电流互感器变比

(3)过流保护动作时限:应躲过电动机的起动时间,t> t qd,一般取10~15S

4、低电压保护:

(1)动作电压取50%电机的额定电压。

(2)动作时限取1S(不需自起动)、10~15S(需自起动)

三、电力电容器保护

1、电流速断保护;

(1)动作电流:

其中:K jx —接线系数;I e—单台电容器的额定电流;—每相电容器安装台数

K i—速断保护电流互感器变比;—可靠系数,考虑躲过冲击电流取2~2.5

(2)速断保护灵敏系数校验:

其中:I(2)dmin—被保护电容器安装处最小两相次暂态短路电流;

I dzj —速断保护动作电流值;K i—电流互感器变比

2、当电容器容量较小时(300KVar以下),可采用熔断器保护相间短路,熔体的额定电流按下式选择:

其中:I ce—电容器组的额定电流;—可靠系数,取2~2.5

四、3~10KV线路的保护

1、架空线路的保护整定

(1)电流速断保护:

其中:—可靠系数(通俗一点讲就是为了你整定的保护定值能可靠的躲过你计算出来的短路电流,而选取的一个系数,一般会在1.1-1.3之间,选取主要靠经验,需要你权衡是尽量不让保护误动还是不让它拒

动,DL型取1.2,GL型取1.4); K jx—接线系数,均为1

I(3)dmax—被保护线路末端三相最大短路电流;K i—速断保护电流互感器变比一般计算公式:按躲过最大设备起动电流加其余设备的额定电流之和计算。

注:新站至井下主供电缆回路按被保护线路末端三相最大短路电流的30%~50%计算整定值。

(2)电流速断保护灵敏系数校验:

其中:—保护安装处最小两相短路电流;I dzj —速断保护动作电流值;K i—电流互感器变比(3)电流速断最小保护范围校核

被保护线路实际长度应大于被保护线路的最小允许长度

被保护线路的最小允许长度:

其中:K K—可靠系数,DL型取1.2,GL型取1.4;α—系数,最小与最大运行方式系统计算电抗之比;β—被保护线路允许的最小保护范围,取0.15

—被保护线路每公里阻抗标么值。=

也可用公式:

其中:U xp—保护安装处的平均相电压,V;X x,max—最小运行方式下归算到保护安装处的系统电抗,Ω;X0—线路每公里电抗,Ω/Km

(4)过电流保护:其中:

K k—可靠系数,考虑自起动因素时,取2~3,不考虑自起动因素时,DL型取1.2,GL型取1.4; K jx —接线系数,接相上为1,相差上为 I‘lm—被保护线路最大计算负荷电流,当最大负荷电流难以确定时,可按两倍的电缆安全电流计算,此时,可靠系数取1。K i—电流互感器变比; K f—返回系数,取0.85

(5)过流保护灵敏系数校验:近后备:其中:

I(2)dmin—被保护线路末端最小两相短路电流;I dzj —过流保护动作电流值;K i—电流互感器变比

远后备:其中:

I(2)‘dmin—远后备计算点最小两相短路电流;I dzj —过流保护动作电流值;K i—电流互感器变比

2、电缆线路的保护整定

(1)电流速断保护:

其中:—可靠系数,DL型取1.2,GL型取1.4;K jx—接线系数,均为1;

I(3)dmax—被保护线路末端三相最大短路电流;K i—速断保护电流互感器变比一般计算公式:按躲过最大设备起动电流加其余设备的额定电流之和计算。

注:新站至井下主供电缆回路按被保护线路末端三相最大短路电流的30%~50%计算整定值。

(2)电流速断保护灵敏系数校验:

其中:—保护安装处最小两相短路电流; I dzj —速断保护动作电流值;K i—电流互感器

变比

(3)过电流保护:

其中:K k—可靠系数,取1.2~1.4 ; K jx —接线系数,接相上为1,相差上为

I‘lm—被保护线路最大计算负荷电流,应实测或用额定值乘以需用系数求得,此时,可靠系数取1.2~1.4,当最大负荷电流难以确定时,可按两倍的电缆安全电流计算,此时,可靠系数取1。

K i—电流互感器变比;K f—返回系数,取0.85

(4)过流保护灵敏系数校验:近后备:

其中:I(2)dmin—被保护线路末端(或变压器二次侧)最小两相短路电流;

I dzj —过流保护动作电流值; K i—电流互感器变比

五、高防开关电子保护器的整定:

1、电子式过流反时限继电保护装置,按变压器额定电流整定。I Z≤I e

继电保护及自动装置配置

1.保护及自动装置配置

电力系统继电保护及自动装置是指在电网发生故障或异常运行时起控制的自动装置。电力系统中自动装置,用于防止电力系统稳定破坏或事故扩大而造成大面积停电或对重要客户的供电时间中断。

1.1继电保护保护配置

图6-10是600MW(300MW),500kV发编组单元的保护配置图,保护配置选用DGT-801型数字式发电机变压器保护配置,高压侧为3/2断路器,发电机匝间(横差保护)、主变纵差保护。发电机后备和异常运行保护为对称过负荷(反时限)保护、不对称过负荷(反时限)保护、复合电压过流保护、过电压保护、失磁保护、失步保护、100%定子接地保护

转子一点和两点接地保护、低频保护。主变压器后备和异常运行保护为主变阻抗保护,零序电流保护。(按照规程要求说明主保护、后备保护、异常保护)

1.2发电机组安全自动装置的配置

(1)备用电源和备用设备自动投入装置。对于发电厂用电系统,由于其故障所引起的严重后果,必须加强厂用电的供电可靠性。但对于厂电来讲,采用环网供电,往往是用电系统的运行及其继电保护装置更加复杂化,反而会造成更严重的事故,因而多采用所谓辐射性的供电网络,为了提高其供电可靠性,往往采用备用电源自动投入装置BZT。

发电机准同期并列是发电厂很频繁的日常操作,如果操作错误,导致冲击电流过大,可能使机组的大轴扭曲及引起发电机的绕组线圈变形、撕裂、绝缘损坏,眼中的肺通气并列会造成机组和电网事故,所以电力部门将并网自动化列为电力系统化的一项重要任务。另外,随着计算机技术的发展和电力系统自动化水平的不断提高,对同期设备的可靠性、可操作性等性能也提出了更高的要求。

(2)PSS-660型数字式自动准同期装置。PSS-660型数字是自动准同期装置主要实现数目可配置的1~16个对象的线路型同期或机组型自动准同期。PSS-660型适用于各种场合的发电机组或线路并网。(选取不同装置介绍)

(3)WBKQ-01B微机型设备电源快速切换装置。早发电厂中,厂用电的完全可靠性直接关系到发电机组、发电厂及至整个电力系统的完全运行。以前厂用电切换基本采用工作电源的辅助接点直接或经低压继电器、延时继电器启动备用电源投入。这种方式未经同步检定,电动机异受冲击。合上备用电源时,母线残压与备用电源之间的相角差接近180度将会对电动机造成过大的冲击。若经过延时母线残压衰减到一定幅值后再投入备用电源,由于断电时间过长,母线电压和电机的转速均下降过大,备用电源合上后,电动机组的自动启动电流很大,母线电压将可能难以恢复,从而对发电厂的锅炉系统的稳定性带来严重的危害。

本设计采用南自WBKQ-01B微机型备用电源快速切换装置。该装置是专门为解决厂用电的完全运行而研制的,可避免备用电源电压与母线残压在相角、频率相差过大时合闸而对对点击造成冲击,如市区快速切换的机会,则装置自动转为同期判别残压及长延时的慢速切换,同时在店跌落过程中,可按延时甩去部分非重要负荷,以利用重要辅机的自启动,提高厂用电快切的成功率。

WBKQ-01B是在原有WBKQ-01B的基础上改进、完善的新一代备用电源快速切换装置。该装置改进了测频、测相回路,运用32位单片机强大的运算功能,采用软件进行测量,提高了装置在切换暂态过程中测频、测相的准确性和可靠性。该装置采用了先进的软件算法,保证了工作电源或备用电源与母线电源不同频率时的采样、计算的准确性。装置采用免调整理念设计,多用的补偿采用软件进行调整,重要参数采用密码锁管理,大屏幕中文图形化显示,使得用户对厂电源的各种运行参数一目了然。常用电源故障时采用实时测量相角差速度及加速度实现同期判别功能。内置独立的通信、打印机管理单元使得多台置可共享一台打印机,也具有与DCS系统或监控系统通信功能。

2.继电保护及自动装置的整定原则

2.1比率制动式纵差保护

整定原则及取值建议有如下几点:

(1)比率制动系数K2(曲线斜率)。K2应按躲过区外三相短路时产生的最大咱太不平衡差流来整定,通常对发电机完全纵差,即K2=0.3~0.5

(2)起动电流Iq。按躲过正常工况下最大不平衡差流来整定。不平衡差流产生的原因主要是差动保护两侧TA的变化误差。保护装置中通道回路的调整误差,即Iq=(0.3~0.4)Ie(3)拐点电流Ig。Ig的大小,决定保护开始产生制动作用的电流大小,建议按躲过外部故障切除后的暂态过程中产生的最大不平衡差流整定,即Ig=(0.5~0.8)Ig

(4)负序电压U2.解除循环闭锁的负序电压(二次值),即U2=9~12V

(5)差动保护灵敏度校验。按有关技术规定,发电机纵差保护的灵敏度必须满足机端两相金属性短路时差动保护的灵敏系数,即Klm≥2

其中,灵敏系数Klm为机端两相金属性短路时,短路电流与差动保护动作电流之比值,Klm越大,保护动作越灵敏,可靠性就越高。

2.2发电机横差保护

发电机横差保护,是发电机定子绕组匝间短路(同分支匝间短路及同相不同分支的匝间短路)线棒开焊的主保护,也能保护定子绕组相间短路,整定原则及取值意见如下:

(1)动作电流Ig。在发电机单元横差保护中,有专用的滤过三次谐波的措施。因此,单元件横差保护的动作电流,应按躲过系统内不对称短路或发电机失磁失歩时转子偏心产生的最大不平衡电流,即Ig=(0.3~0.4)Ie

式中Ie-发电机二次额定电流。

(2)动作延时t1.与转子两点接地保护动作延时相配合。一般取0.5~1.0s

2.3变压器纵差保护

变压器纵差保护,是变压器内部引出线上短路故障的主保护,它能反映变压器内部及出线上的相间短路、变压器内部匝间短路及电流系统侧的单相接地短路故障。另外,只能躲过变压器空充电及外部故障切除后的励磁涌流。

(1)整定原则及取值建议:

1)比率制动系数K2(曲线斜率),比率制动系数K2整定原则,按躲过变压器出口三项短路时产生的最大暂态不平横差流来整定,即过拐点的斜线

通过出口区外故障最大差流对应点的上方,一般取0.4~0.5.

2)启动电路Iq。整定原则为能可靠躲过变压器正常运行时的不平衡差流。一般为

Iq=(0.4~0.5)Ie

3)拐点电流Ig。变压器各侧差动TA的型号及变比不可能相同。因此,各侧TA 的暂态特性的差异较大,为躲过区外远处故障或进区故障切除瞬间产生较大不平衡差流的影响,建议拐点电流为 Ig=(0.5~0.7)Ie

4)二次谐波制动比η。空投变压器时,励磁涌流的大小,三席谐波分量的多少或波形畸变程度,与变压器的容量、结构、所在系统中的位置及合闸角等因素有关。为了使差动保护能可靠的躲过变压器空投时励磁涌流,又能确保变压器内部故障时故障电流波形有畸变(含有二次谐波分量)时,差动保护能可靠动作,应根据别保护变压器的容量、结构和在系统中的位置,整定出适当的二次谐波制动比。一般取0.13~0.2.

5)差动速断倍数Is。变压器差动速断动作倍数的整定原则,应按躲过变压器的空投时的励磁涌流或外部短路时最大不平衡差流来整定。而变压器励磁涌流的大小与变压器的容量、结构、所在系统中的位置等均有关,对于大容量的变压器一般为Is=4~6(倍)

6)解除TA断线功能差流倍数Iet。差流大于Iet整流值时,解除TA断线判别环节。一般TA断线引起的差流大于最大负荷电流,Iet=0.8~1.3(倍)

TA二次回路开路是危险的,特别是大容量变压器TA二次开路,会造成TA绝缘损坏\保护装置或二次回路着火,还会危及人生安全。因此,建议删掉TA断线判别功能,即Iet=0.8~1.3(倍)7)变压器额定电流Ie。基准侧差动TA二次电流的计算为Ie=Se/(√3Uejna)式中Se—变压器额定容量:Uej—基准侧额定相间电压:na—其准侧差动TA变化

(2)灵敏度校验。变压器差动保护的灵敏度要求为Ksen≥2

满足灵敏度要求,才能保证区内发生的各类型故障(有各种各样的暂态过程)时保护动作的可能性。

2.4发电机反时限对称过负荷保护

发电机反时限对称过负荷保护,是发电机定子是过热保护,主要用于内冷式大型汽轮机发电机。整定原则及取值建议如下:

(1)定时限整定值Ig1。按躲过发电机的额定电流来整定,即

Ig1=KrelIe/0.95

式中Krel-可靠系数取1.05:Ie-发电机额定电流(TA二次值)。

(2)定时限动作延t1通常取6~9s。

(3)反时限下限起动电流Is。按与过负荷保护电流相配合整定。Is=1.15Ig

(4)反时限下限长延时ts。按照发电机允许过负荷能力曲线上1.15Ie。对应时间为0.87~0.9倍来整定。通常取300~600s。

(5)反时限上限电流Iup。按照发电厂高压母线三项短路时发电机提供的短路电流来整定。一般为1.05倍。即Iup=1.05G

(6)反时限上限动作延时Iup上限动作延时应按与发电厂高压母线出线的纵联保护或距离I段保护动作时限相配合整定。一般取0.3~0.5s。

(7)散热系数K2.散热系数K2之值一般为1~1.1之间。

2.5发电机反时限不对称过负荷保护

发电机反时限不对称过负荷保护,适用于大型内冷式汽轮发电机。是发电机的转子的过热保护,也叫转子表层过热保护。整定原则及取值建议如下:

(1)定时限整定值I2g1。电流整定值I2g1按发电机长期允许的负序电流I2∞来整定,即

I2g1= Krel.I2∞/0.95;式中 Krel—可靠系数取1.2: I2∞—发电机长期允许的负序电流。(2)定时限动作延时t11,通常取6~9s。

(3)反时限下限起动电流I2s. )反时限下限起动电流I2s,可按定时限动作电流的1.05~1.11倍来整定。即I2s=(1.05~1.1)I2g1

(4)反时限下限长延时ts,通常取300~600s。

(5)反时限上限电流I2up。上限动作电流I2up,应按发电厂主变高压侧母线发生两相短路时发电机所提供的负序电流的1.05倍来整定。

(6)反时限上限动作延时tup,上限动作延时tup应按于发电机高压母线出线纵联保护或距离保护I段的动作延时配合整定。通常取0.3~0.5s。

(7)热值系数K1及散热系数K2.热值系数K1,按发电机制造厂家提供的转子表层允许负序过负荷能力确定。若无厂家提供的数据,可按发电机的容量取值。

对于容量为200~300MW的内冷式汽轮发电机,可取K1=8~10(通常K1=10)。对于容量为300~600MW 的汽轮发电机,可取K1=6~8.容量越大,K1的取值应越小。散热系数K2,根据发电机的长期允许负序电流能力来确定。通常K2值不大于0.01.

2.6复合电压过流保护

发电机的复合电压过流保护主要作为发电机相间短路的后备保护。当发电机作为自并励方式时,过流原件应有电流记忆功能。正定原则及取值建议如下:

(1)过流定值Ig。动作电流Ig应按躲过正常运行时发电机的额定电流来整定。即

Ig=KrelIg/0.95;式中 Krel—可靠系数,取1.2: Ig—发电机额定电流(TA二次值)。

(2)低电压定值U1.低电压定值U1 ,按躲过发电机正常运行时可能出现的最低电压来整定,另外,对于发电机复合电压过电流保护还应考虑强行励磁动作时的电压。通常为

U1 =(0.7~0.75)Ue;式中Ue—发电机额定电压TA二次值).

(3)负序电压U2g。U2g的整定原则,是躲过正常运行时发电机端最大的负序电压。即

U2g=(8%~10%)Ue

(4)动作延时t11及t12.保护的动作延时t11及t12,应按与相邻原件后备保护的动作时间相配合整定。

(5)电流记忆时间t0 0 t0应略大于t12延时。

2.7发电机过电压保护

保护反映发电机定子电压。其输入电压为机端TV二次相电压(例如UCA),动作后经延时切除发电机。整定原则及取值建议如下:

动作电压Ug。对于200MW及以上的汽轮发电机,动作电压Ug为

Ug=(1.3~1.35)Ue;式中Ug-发电机额定电压(TA二次值)。

(2)动作延时t0动作延时t可取0.3~0.5s

2.8发电机失磁保护(阻抗原理)

正常运行时,若阻抗复平面表示机端测量阻抗,则阻抗的轨迹在第一象限或第四象限(进行运行)内,发电机失磁后,机端测量阻抗的轨迹将沿着等有功阻抗圆进入异步边界圆。整定原则及取值建议如下:

(1)系统低电压动作定制值Uh1.按发电机失磁后不破坏系统稳定来整定。通常为

Uh1=(0.85~0.9)Uhe;式中Uhe-系统母线额定电压(TV二次值)。

(2)机端低电压动作定值Ug1。按照以下两个条件来整定:躲过强行励磁启动电压及不破坏厂用电的安全。一般为Ug1=0.8Ue

式中Ue-发电机额定电压(TV二次值)。

(3)阻抗圆圆心Xc。Xc一般为负值,当阻抗圆为过坐标原点的下拋圆时,通常取:Xc=-0.6Xd (4)阻抗圆半径Xr。当阻抗圆为过坐标原点的下拋圆时,可取:Xr=0.6Xd

(5)转子低电压特性曲线系数Kfd。即Kfd=Krel 125*Se/(XdΣUfs0*866)

式中Krel-可靠系数,取1.1~1.4:Se-发电机二次额定视在功率:Ufs0-发电机空载转子电压。

XdΣ=Xd+Xs(标么值)

(6)转子低电压初始动作定值Ufdl。一般取发电机空载励磁电压的0.6~0.8倍,即

Ufdl=(0.6~0.8)Ufd0

(7)发电机反应功率P1,(也称凸极功率)即

P1=?(1/XqΣ-1/ XdΣ)Se;XdΣ=Xd+Xs;XqΣ=Xq+Xs

式中Xd,Xq-发电机d轴和q轴的电抗标么值。

(8)发电机过功率定值Pg,按发电机过载异步功率定值,一般取0.4~0.5倍的额定功率(二次值),即Pg=(0.4~0.5)Pe

式中Pe-发电机二次额定有功功率。

(9)动作延时t1、t2。根据汽轮机和水轮机失磁异步运行能力,及失磁时对机组过流,机端电压系统电压的影响而定。

2.9发电机基波零序电压式定子接地保护

基波零序电压式定子接地保护,保护范围为由机端至机内90%左右的定子绕组单向接地故障。可做小机组的定子接地保护。也可与三次谐波定子接地合用,组成大、中型发电机的100%定子接地保护。整定原则及取值建议如下:

(1)动作电压3Uog.在保护装置中,设置有性能良好的三次谐波滤过器,因此,3Uog应按正常运行时TV开口三角绕组或中性点单相TV二次可能出现的最大基波零序电压来整定。

当发电机定子引出线不是封闭式母线,而经穿墙套管引自室外时,可取10~13V。当发电机出线为封闭母线时,可取5~10V。

(2)动作延时.应大于主变高压侧接地短路时后备保护最长动作时间来整定。若简化计算一般取6~9V.

2.10发电机三次谐波电压式定子接地保护

三次谐波电压式定子接地保护范围是:反映发电机中性点向机内20%左右定子绕组或机端附近定子绕组单相接地故障。与零序基波电压式定子接地保护联合构成100%的定子接地保护。整定原则及取值建如下:

⑴幅值系数K1和相位系数K2。幅值及相位系数K1及k2的整定,应在发电机空

载定电压下进行自整定。

(2)制动系数k3。制动系数k3的整定有两种方法。一种是在发电机小负荷工况下,设置一接地电阻,使3ω保护刚刚动作后,确定并写入K3的值:另一种方法,是在发电机空载额定电压,操作界面键盘,输入K3值.

对于汽轮发电机,接地电阻一般选2~5KΩ,K2一般取0.4~0.8。

(3)动作延时t1,即t1=(6~9)s

2.11发电机注入式转子一点接地

在DGT801系列装置中,转自一点接地保护的注入直流电源系装置自产。因此,在发电机运行及不运行时,均可监视发电机励磁回路的对地绝缘。该保护动作灵敏、无死区。整定原则及取值建议如下:

(1)动作电阻Rg1及Rg2的整定:

1) Rg1为高定值:当转子对地绝缘电阻大幅值降低时,发出信号。Rg1取8~10KΩ较为适宜的。2)Rg2为低定值:动作后用于切机。考虑转子两点接地的危机,Rg2取0.5~1KΩ较为合理。

(2)动作时间t1及t2可取6~9s

2.12发电机两点接地保护

二次电压动作值可按式整定:U2ωg=KrelU2ω2Heδ;式中Krel-可靠系数,取8~10:

U2ω2Heδ-发电机额定工况下测的最大的二次谐波负序电压,一般为0.1~0.2.

动作延时t,可取0.5~1.0s,以防止外部故障暂态过程中保护误动。

2.13发电机频率异常保护

汽轮机叶片有自己的自振频率。并网运行的发电机,当系统频率异常时,汽轮机叶片可能产生共振,从而使叶片发生疲劳,长久下去可能损坏汽轮机的叶片。发电机频率异常保护,是保护汽轮机安全的。发电机保护的定值清单如下表所示

能性几乎等于零。因此,当频率异常保护用于切除发电机时,其各段频率及累计时间,应与低频减载或高周切机装置相配合。

各段频率的取值及累计时间,应根据汽轮机制造厂提供的数据乘以可靠系数在进行整定。

工程应用时,可根据需要选择为低频、高频、或频率积累保护。应按要求选择保护出口段数。

2.14阻抗保护

变压器低阻抗保护,主要作为变压器相间短路的后备保护,有时还兼作相邻设备(母线、线路等)相间短路的后备保护。整定原则及取值建议如下:

(1)向阻抗ZF及反阻抗ZB的整定。对于发电机变压器的阻抗保护,当阻抗保护的输入电压及电流取自机端时,阻抗圆应整定为具有偏移的方向阻抗圆。此时为

ZF =ZT;ZB≈(3~4) ZT式中ZT变压器的二次阻抗。

当阻抗保护的输入电压及电流去自主变高压侧时,阻抗圆应整定为过原点的下拋圆。此时为

ZF ≈0;ZB=(4~5)ZT

(2)动作延时t1及t2.阻抗保护的动作延时,应大于相邻线路保护距离I段的动作时间,而小于相邻线路对侧距离Ⅱ段的动作时间。考虑到系统发震荡的影响,t1取1.5s、t2取2s是合理的。

(3)过电流动作值Ig。按躲过发电机或变压器做大负荷电流来整定,即

Ig=(1.1~1.15)Ie式中Ie-发电机或变压器的额定电流。

(4)负序电流动作值I2g。按躲过正常运行时最大的不平衡负序电流来整定,即

I2g=(0.1~0.2)Ie对于降压变压器或联变阻抗保护的整定应参照有关的规程的规定。

2.15变压器零序电流保护

变压器零序电流保护,反映变压器Y0侧零序电流的大小,是变压器接地保护的后备保护,也兼作相邻设备接地短路的后备保护。保护的接入电流可取变压器中性点TA二次电流或引出端二次零序电

流或由TA二次三相电流进行自产。当零序电流大于整定值时,经延时作用于信号或出口。整定原则及取值建议如下:

(1)零序I段的整定。动作电流3Iogl应按照相邻线路首段接地故障时变压器提供的零序电流来整定,且考虑与相邻接地保护的I段相配合。

动作延时t11应与相邻线路接地I段保护最长动作延时相配合,即t11=t'1+Δt

式中t'1-相邻线路各接地保护I段的最长动作时间:Δt-时间级差,取0.3~0.5s。

动作延时为t12=t1+Δt

另外,要求t12不大于2s。

(2)零序Ⅱ的整定。零序过流Ⅱ段的动作电流3Iog2,应按照相邻线路下一级线路接地故障时变压器提供的零序电流来整定,且与相邻接地保护的后备段相配合。

动作延时t21应与相邻线路接地保护Ⅱ段的动作延时相配合。即

t21=t'2+Δt式中t'2-相邻线路接地保护Ⅱ段动作延时。

2.16低电压启动的过电流保护

(1)动作电流的整定原则按变压器额定电流整定,即Idz=KkIe/Kf

式中Kk-可靠系数,取1.2:Ie-变压器额定电流(TA二次值)。

(2)灵敏度校验:按变压器低压母线故障时的最小短路电流二次值校验要求灵敏度大于2。

(3)动作电压整定原则:按躲过正常运行时母线最低工作电压整定,根据经验可取Udz=0.7Ue式中Ue-变压器额定电压(TV二次值)。

(4)电压灵敏度校验:按后备保护范围末端三相段路时,保护安装处的最大电压要求大于2。3继电保护及自动装置的整定计算

3.1相关参数计算

3.1.1相关阻抗(只考虑电抗,用X表示)参数计算

(1)正序阻抗\零序阻抗计算结果见表6-20

1)系统最大方式下的正序阻抗:

X *1ls∑min=(X *1L1+X *1s1min)∕∕(X *1L2+ X *1s2min)∕∕(X *1L3+ X *1s3min) =(0.309+0.2)//(0.146+0.25)//(0.655+0.4)=0.148

X *1GT2= X *1G2+ X *1T2=0.3+0.125=0.425

X *1K1。∑min=( X *1ls∑min// X *1G2+ X *1T1)// X *1G1

=(0.148//0.425+0.125)//0.3=0.137

2)系统最小运行方式下的正序阻抗为

X *1K1。∑min=(X *1ls∑max// X *1G2+ X *1T1)// X *1G1

=(0.210//0.425+0.125)//0.3=0.141

3)系统最大运行方式下的零序阻抗。由于K1所在的变压器的角形侧,因为零序阻抗为无穷大。(4)画出K2点故障时各序阻抗的简化图,如图6-12所示。

1)系统最大运行方式下正序阻抗。

2)系统最小运行方式下正序阻抗。

3)系统最大运行方式下零序阻抗。

X *0ls∑min=(X *0L1+X *0s1min)∕∕(X *0L2+ X *0s2min)∕∕(X *0L3+ X *0s3min) =(0.309+0.5)//(0.146+0.625)//(0.665+1.0)=0.505

X *0K2。∑min= X *0SLΣmin// X *0TΣ=0.505//0.0625=0.0556

4)系统最小运行方式下另序阻抗的计算结果如表6-22所示。

3.1.2额定运行参数及互感器变化

(1)发电机各主要参数:额定功率:PGN=600MW:功率因数:cosφ=0.9:额定电压:UGN=20KV:额定电流为IGN=PGN/(√3 UGN. cosφ)=600*1000/(√3*20*0.9)=19245(A),电流互感器变比取为nTA1=2000/5=4000,发电机二次侧额定电流为Ie=IGN/ nTA1=19245/4000=4.18(A)

(2)变压器各主要参数:额定功率:S e=800MVA;额定电压; UTN=20KV:额定电流为Ie=ITNSe/(√3UTN)=800*1000/(√3*20)=23094(A);电流互感器变化(低压侧)为Nta2=25000/5=5000:变压器二次侧额定电流为Ie=IGN/ nTA2=23094/5000=4.62(A).

3.13继电保护正定计算结果

整个保护的整定计算结果见表6-23~表6-24.

表6-23 发电机纵差保护整定值

表6-25变压器二次谐波制动式差动保护定值单

表6-26反时限对称过负荷保护定值单

表6-27反时限不对称过负荷保护定值单

表6-28复合电压闭锁过电流保护定值单

PASS-660数字式准同期装置由于最多支持16个同期对象,所以系统共有16组定值,分别对应于每个同期对象,但系统定值只有一组。如果相应的对象选择成功,则系统会自动的把改组对象的定值调入到内存中。另外,虽然每组同期对象都有默认的定值,但是为了安全,各组的定值只有固定化以后,才能够进行同期操作,否则系统会拒绝同期合闸的。

该模件定值如表6-35所示

表6-35PASS-660数字式自动准同期装置定值单

3.20WBKQ-01B微机型备用电源快速切换装置整定计算

WBKQ-01B微机型各用电源快速切换装置的整定计算结果见表6-36

10 kV配电线路结构复杂,有的是用户专线,只接一两个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几十米,有的线路长到几十千米;有的线路上配电变压器容量很小,最大不超过100 kV A,有的线路上却达几千千伏安的变

压器;有的线路上设有开关站或用户变电站,还有多座并网小水电站等。有的线路属于最末级保护。陕西省镇安电网中运行的35 kV变电站共有7座,主变压器10台,总容量45.65 MV A;35 kV线路8条,总长度135 km;10 kV线路36条,总长度1240 km;并网的小水电站41座(21条上网线路),总装机容量17020 kW。

1 10 kV线路的具体问题

对于输电线路而言,一般无T接负荷,至多T接一、两个集中负荷。因此,利用规范的保护整定计算方法,各种情况都能够计算,一般均满足要求。但对于10 kV配电线路,由于以上所述的特点,在设计、整定、运行中会碰到一些具体问题,整定计算时需做一些具体的、特殊的考虑,以满足保护的要求。

2 保护整定应考虑系统运行方式

按《城市电力网规划设计导则》,为了取得合理的经济效益,城网各级电压的短路容量应该从网络的设计、电压等级、变压器的容量、阻抗的选择、运行方式等方面进行控制,使各级电压下断路器的开断电流以及设备的动热稳定电流得到配合,该导则推荐10 kV短路电流I k≤16 kA。

系统最大运行方式,流过保护装置短路电流最大的运行方式(由系统阻抗最小的电源供电)。

系统最小运行方式,流过保护装置短路电流最小的运行方式(由系统阻抗最大的电源供电)。

在无110 kV系统阻抗资料的情况时,由于3~35 kV系统容量与110 kV系统比较,相对较小,其各元件阻抗相对较大,则可近似认为110 kV系统容量为无穷大,对实际计算结果没有多大影响。

选取基准容量Sjz = 100 MV A,10 kV基准电压Ujz = 10.5kV,10 kV基准电流Ijz = 5.5 kA,10 kV 基准阻抗Zjz = 1.103Ω。

3 整定计算方案

10 kV配电线路的保护,一般采用瞬时电流速断(Ⅰ段)、定时限过电流(III段)及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护,如保护Ⅱ段、电流电压速断、电压闭锁过电流、电压闭锁方向过电流等。现针对一般保护配置进行分析。

3.1 瞬时电流速断保护

由于10 kV线路一般为多级保护的最末级,或最末级用户变电站保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电站的线路,选择性靠重合闸来纠正。分为两种类型进行整定计算。

放射状类型:按躲过本线路末端(主要考虑主干线)最大三相短路电流整定。时限整定为0 s (保护装置只有固有动作时间无人为延时)。

专线类型:按躲过线路上配电变压器低压侧出口最大三相短路电流整定。时限整定为0 s(保护装置只有固有动作时间无人为延时)。

特殊问题的解决如下

当线路很短时,最小方式时无保护区;或下一级为重要的用户变电站时,可将速断保护改为限时电流速断保护。动作电流与下级电流速断保护配合(即取1.1倍的下级保护最大速断值),动作时限较下级电流速断大一个时间级差,此种情况在城区较常见,在新建变电站或改造变电站时,建议保护配置采用微机保护,这样改变保护方式就非常容易。在无法采用其它保护的情况下,可依靠重合闸来保证选择性。

当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大三相短路电流整定。此种情况一般能同时保证选择性与灵敏性,按放射状类型整定。

对于多条线路重叠故障,引起主变压器断路器越级跳闸时,按常规,在继电保护整定计算中是不考虑重叠故障的,但可采用加装瞬时电流速断保护,一般可整定于0 s 动作,使线路故障在尽可能短的时限内切除;在上下级保护时限配合可能的情况下,适当调整10 kV线路过电流保护与主变压器过电流保护的时限级差,以使主变压器过电流保护有足够的返回时间。

对于10 kV开关站进线保护,其速断保护按所有出现的最大一台变压器速断保护相配合(带延

时)。

双侧电源线路的方向电流速断保护定值,应按躲过本线路末端最大三相短路电流整定;无方向的电流速断保护定值应按躲过本线路两侧母线最大三相短路电流整定。对双回线路,应以单回运行作为计算的运行方式;对环网线路,应以开环方式作为计算的运行方式。

单侧电源线路的电流速断保护定值,按双侧电源线路的方向电流速断保护的方法整定。

对于接入供电变压器的终端线路(含T接供电变压器或供电线路),如变压器装有差动保护,线路电流速断保护定值,允许按躲过变压器低压侧母线三相最大短路电流整定。如变压器以电流速断作为主保护,则线路电流速断保护应与变压器电流速断保护配合整定。

灵敏度校验(保护性能分析)。按最大运行方式下,线路最大保护范围不应小于线路全长的50%。按最小运行方式下,线路最小保护范围不应小于线路全长的15%~20%。瞬时电流速断保护虽能迅速切除短路故障,但不能保护线路全长。

3.2 定时限过电流保护

按躲过本线路最大负荷电流整定。时限整定为0.3s(微机保护),按阶梯型原则整定。

特殊问题的解决如下。

当线路较长,过电流保护灵敏度不够时(如20 km以上线路),可采用复压闭锁过流或低压闭锁过流保护,此时负序电压取0.06Ue(Ue为额定电压),低电压取0.6~0.7Ue,动作电流按正常最大负荷电流整定,只考虑可靠系数及返回系数。当保护无法改动时,应在该线路适当处加装柱上断路器或跌落式熔断器,作为后一段线路的主保护,其额定电流按后面一段线路的最大负荷电流选取。

最终解决办法是调整网络结构,使10 kV线路供电半径符合规程要求。

当过电流保护,灵敏度不够时(如变压器为5~10kV A或线路极长),由于每台变压器高压侧均有跌落式熔断器,因此可不予考虑。

当过电流定值偏大,甚至大于瞬时电流速断定值时,而导致保护灵敏度不够时,可考虑保证1.5倍的灵敏度(近后备)整定。

对于时限级差配合无法满足整定要求时,因10 kV线路保护处于系统多级保护的最末端,而上级后备保护动作时限限制在一定数值范围内,可能会出现时限逐级配合后无法满足要求时,对于只有一台主变压器的变电站,可采用主变压器高压侧过电流保护相同的动作时限,使主变压器10 kV 断路器动作时间增加0.5 s,有利于该断路器与10kV线路保护的配合。与逐级配合整定相比,对用户的停电影响相同,在实际中也是允许的。

对于上网小水电10 kV线路,应躲过小水电输送的最大三相短路电流,按双侧电源线路考虑,采用方向过电流保护。

4 三相一次重合闸

10 kV配电线路一般采用后加速的三相一次重合闸,由于安装于末级保护上,所以不需要与其他保护配合。考虑的主要是重合闸的重合成功率,以使用户负荷尽量少影响。根据有关统计分析,架空线路的瞬时性故障次数,约占故障次数的70%左右,重合闸的成功率约50%~70%。

因而重合闸对电力系统供电可靠性起了很大的作用。

重合闸整定时间, 应等于线路对有足够灵敏系数的延时段保护的动作时间,加上故障点足够断电去游离时间和裕度时间,再减去断路器合闸固有时间。

单侧电源线路的三相重合闸时间除应大于故障点断电去游离时间外,还应大于断路器及操作机构, 复归原状准备好再次动作的时间。单侧电源线路的三相一次重合闸动作时间不宜小于1 s。

双侧电源线路的三相重合闸时间,除了考虑单侧电源线路重合闸的因素外,还应考虑线路两侧保护装置,以不同时间切除故障的可能性。对于多回线并列运行的双侧电源线路的三相一次重合闸,其无电压检定侧的动作时间不宜小于5 s。

在10 kV配电线路中,多为照明负荷,供电可靠性要求较低,短时停电不会造成很大的损失。为了保证瞬时性故障能可靠消除,提高重合闸的重合成功率,可酌情延长重合闸动作时间,一般采

用1.5 s的重合闸时间。

10 kV配电线路继电保护的配置虽然简单,但由于线路的复杂性和负荷的多变性,在保护装置的选型上值得重视。根据镇安电网保护配置情况及运行经验,建议在新建变电站保护配置中采用微机保护。微机保护在具备电流速断、过电流及重合闸的基础上,还应具备低压(或复压)闭锁、时限速断、带方向保护等功能,以适应线路及负荷变化对保护方式的不同要求。

该整定计算方案经多年运行考验,符合选择性、灵敏性、速动性、可靠性“四性”原则,对于10 kV 配电线路,动作时间小于0.5 s,保证了10 kV设备和线路的热稳定,同时选择性好,动作时间准确,未出现误动情况,保证了供电的可靠性。

继电保护的作用及故障处理方法

一、前言

随着电力系统的高速发展和计算机技术,通讯技术的进步,继电保护向着计算机化、网络化,保护、测量、控制、数据通信一体化和人工智能化方向进一步快速发展。与此同时越来越多的新技术、新

理论将应用于继电保护领域,这要求我们继电保护工作者不断求学、探索和进取,达到提高供电可靠性的目的,保障电网安全稳定运行。

二、继电保护在供电系统障碍中的作用

(一)保证继电系统的可靠性是发挥继电保护装置作用的前提

继电系统的可靠性是发挥继电保护装置作用的前提。一般来说继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。

(二)继电保护在电力系统安全运行中的作用

继电保护在电力系统安全运行中的作用主要有以下三点:

1.保障电力系统的安全性。当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置

迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大

限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特

定要求(如保持电力系统的暂态稳定性等)。

2.对电力系统的不正常工作进行提示。反应电气设备的不正常工作情况,并根据不正常工作情况

和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。

3.对电力系统的运行进行监控。继电保护不仅仅是一个事故处理与反应装置,同时也是监控电力

系统正常运行的装置。

三、继电保护常见故障

电压互感器二次电压回路在运行中出现故障是继电保护工作中的一个薄弱环节。作为继电保护

测量设备的起始点,电压互感器对二次系统的正常运行非常重要,PT二次回路设备不多,接线也不复杂,但PT二次回路上的故障却不少见。由于PT二次电压回路上的故障而导致的严重后果是保护误动或拒动。据运行经验,PT二次电压回路异常主要集中在以下几方面:PT二次中性点接地方式异常;表现为二次未接地(虚接)或多点接地。二次未接地(虚接)除了变电站接地网的原因,更多是由接线工艺引起的。这样PT二次接地相与地网间产生电压,该电压由各相电压不平衡程度和接触电阻决定。这个电压叠

加到保护装置各相电压上,使各相电压产生幅值和相位变化,引起阻抗元件和方向元件拒动或误动。PT 开口三角电压回路异常;PT开口三角电压回路断线,有机械上的原因,短路则与某些习惯做法有关。在电磁型母线、变压器保护中,为达到零序电压定值,往往将电压继电器中限流电阻短接,有的使用小刻

度的电流继电器,大大减小了开口三角回路阻抗。当变电站内或出口接地故障时,零序电压较大,回路

负荷阻抗较小,回路电流较大,电压(流)继电器线圈过热后绝缘破坏发生短路。短路持续时间过长就会烧断线圈,使PT开口三角电压回路在该处断线,这种情况在许多地区发生过。PT二次失压;PT二次失压是困扰使用电压保护的经典问题,纠其根本就是各类开断设备性能和二次回路不完善引起的。

电流互感器是供给继电保护和监控系统判别系统运行状态的重要组件。作为继电保护对电流互感器

的基本要求就是电流互感器能够真实地反映一次电流的波形,特别是在故障时,不但要求反映故障电

流的大小,还要求反映电流的相位和波形,甚至是反映电流的变化率。而传统的电磁式电流互感器是利用电磁感应原理通过铁心耦合实现一、二次电流变换的。由于铁心具有磁饱和特性,是非线性组件,

当一次电流很大,特别是一次电流中非周期分量的存在将使严重饱和,励磁电流成几十倍、几百倍增加,而且含有大量非周期分量和高次谐波分量,造成二次电流严重失真,严重影响了继电保护的正确动作。由电工基础理论可知,电流互感器在严重饱和时,其一次电流中的直流分量很大,使其波形偏于时间轴

的一侧。铁心中有剩磁,且剩磁方向与励磁电流中直流分量产生的磁通方向相同,在短路电流直流分量和剩磁的共同作用下,铁心在短路后不到半个周期就饱和了。于是,一次电流全部变为励磁电流,二次

电流几乎为0。由于电流互感器严重饱和,使其传变特性变差甚至输出为0,才导致了断路器保护的拒动,引起主变压器后备保护越级跳闸。

针对目前微机继电保护装置自身的特点,造成了微机保护装置故障一般有以下这些原因:电源问题,比如电源输出功率的不足会造成输出电压下降,若电压下降过大,会导致比较电路基准值的变化,充

电电路时间变短等一系列问题,从而影响到微机保护的逻辑配合,甚至逻辑功能判断失误。尤其是在事故发生时有出口继电器、信号继电器、重动继电器等相继动作,要求电源输出有足够的功率。如果现场发生事故时,微机保护出现无法给出后台信号或是重合闸无法实现等现象,应考虑电源的输出功率

是否因元件老化而下降。对逆变电源应加强现场管理,在定期检验时一定要按规程进行逆变电源检验。干扰和绝缘问题,微机保护的抗干扰性能较差,对讲机和其他无线通信设备在保护屏附近使用,会导致

一些逻辑元件误动作。微机保护装置的集成度高,布线紧密。长期运行后,由于静电作用使插件的接线焊点周围聚集大量静电尘埃,可使两焊点之间形成了导电通道,从而引起继电保护故障的发生。

四、继电保护故障处理方法

(一)替换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小

查找故障范围。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其他地方查故障。

(二)参照法

通过正常与非正常设备的技术参数对照,从不同处找出不正常设备的故障点。此法主要用于查认为接线错误,定值校验过程中发现测试值与预想值有较大出入又无法断定原因之类的故障。在进行回路改造和设备更换后二次接线不能正确恢复时,可参照同类设备接线。在继电器定值校验时,如发现某一只继电器测试值与其整定值相差甚远,此时不可轻易判断此继电器特性不好,或马上去调整继电器

上的刻度值,可用同只表计去测量其他相同回路的同类继电器进行比较。

(三)短接法

将回路某一段或一部分用短接线接入为短接,来判断故障是存在短接线范围内,还是其他地方,以

此来缩小故障范围。此法主要用于电磁锁失灵、电流回路开路、切换继电器不动作、判断控制等转

换开关的接点是否好。

(四)直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。

10KV开关拒分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

(五)逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在

这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

省电力公司发电机保护整定计算课件

第一节概述 发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分贵重的电器元件,因此,应该针对各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。 1故障类型及不正常运行状态: 1.1 故障类型 1)定子绕组相间短路:危害最大; 2)定子绕组一相的匝间短路:可能发展为单相接地短路和相间短路; 3)定子绕组单相接地:较常见,可造成铁芯烧伤或局部融化; 4)转子绕组一点接地或两点接地:一点接地时危害不严重;两点接地时, 因破坏了转子磁通的平衡,可能引起发电机的强烈震动或将转子绕组烧损; 5)转子励磁回路励磁电流急剧下降或消失,即发电机低励或失磁:从电 力系统吸收无功功率,从而引起系统电压下降,如果系统中无功功率储备不足,将使电力系统中邻近失磁发电机的某些电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至可使系统因电压崩溃而瓦解。 6)发电机与系统失步:会出现发电机的机械量和电气量与系统之间的振 荡,这种持续的振荡对发电机组和电力系统产生有破坏力的影响;7)发电机过励磁故障:并非每次都造成设备明显破坏,但多次反复过励 磁,将因过热而使绝缘老化,降低设备的使用寿命。 1.2 不正常运行状态 1)由于外部短路引起的定子绕组过电流:温度升高,绝缘老化;

2)由于负荷等超过发电机额定容量而引起的三相对称过负荷,温度升 高,绝缘老化; 3)由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过 负荷:在转子中感应出100hz的倍频电流,可使转子局部灼伤或使护环受热松脱,从而导致发电机重大事故。此外还会引起发电机100Hz的振动; 4)由于突然甩负荷引起的定子绕组过电压:调速系统惯性较大,在突 然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿; 5)由于励磁回路故障或强励时间过长而引起的转子绕组过负荷; 6)由于汽轮机主气门突然关闭而引起的发电机逆功率:当机炉保护动作或调速控制回路故障以及某些人为因素造成发电机转为电动机运行时,发电机将从系统吸收有功功率,即逆功率。危害:汽轮机尾部叶片有可能过热而造成事故。 2 汽轮发电机保护类型 1)发电机差动保护:定子绕组及其引出线的相间短路保护; 2)匝间保护:定子绕组一相匝间短路或开焊故障的保护; 3)单相接地保护:对发电机定子绕组单相接地短路的保护; 4)发电机的失磁保护:反应转子励磁回路励磁电流急剧下降或消失; 5)过电流保护:反应外部短路引起的过电流,同时兼作纵差动保护的后备保护; 6)阻抗保护:反应外部短路,同时兼作纵差动保护的后备保护; 7)转子表层负序电流保护:反应不对称短路或三相负荷不对称时发电机定子绕组中出现的负序电流;

煤矿井下继电保护整定计算试行

郑州煤炭工业(集团)有限责任公司( 函) 郑煤机电便字【2016】14号 关于下发井下供电系统继电保护整定方案 (试行)的通知 集团公司各直管矿井及区域公司: 为加强井下供电系统安全的管理,提高矿井供电的可靠性,必须认真做好供电系统继电保护整定工作。结合郑煤集团公司所属矿井的实际情况,按照电力行业的有关标准和要求,特制定《井下供电系统继电保护整定方案》(试行),请各单位根据井下供电系统继电保护整定方案,结合本单位的实际情况,认真进行供电系统继电保护整定计算,并按照计算结果整定。在实际执行中不断完善,有意见和建议的,及时与集团公司机电运输部联系。 机电运输部 二〇一六年二月二十九日 井下供电系统继电保护整定 方案(试行) 郑煤集团公司

前言 为提高煤矿井下供电继电保护运行水平,确保井下供电可靠性,指导供电管理人员对高低压保护整定工作,集团公司组织编写了《井下供电系统继电保护整定方案》(试行)。 《井下供电系统继电保护整定方案》共分为六章,第一章高低压短路电流计算,第二章井下高压开关具有的保护种类,第三章矿井高压开关短路、过载保护整定原则及方法,第四章井下供电高压电网漏电保护整定计算,第五章低压供电系统继电保护整定方案,第六章127伏供电系统整定计算方案。 由于煤矿继电保护技术水平不断提高,技术装备不断涌现,加之编写人员水平有限,编写内容难免有不当之处,敬请各单位在今后的实际工作中要针对新情况新问题不断总结和完善,对继电保护的整定计算方案提出改进意见和建议。 二〇一六年二月二十九日 目录 第一章高低压短路电流计算............................................................ 第一节整定计算的准备工作...................................................... 第二节短路计算假设与步骤...................................................... 第三节各元件电抗计算............................................................ 第四节短路电流的计算............................................................ 第五节高压电气设备选择......................................................... 第六节短路电流计算实例......................................................... 第二章高压配电装置所具有的保护种类 ............................................ 第一节过流保护装置............................................................... 第二节单相接地保护............................................................... 第三节其它保护种类...............................................................

继电保护整定计算公式定理汇总

继电保护整定计算公式汇编 为进一步规范我矿高压供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正: 一、电力变压器的保护: 1、瓦斯保护: 作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KV A以上的油浸变压器,均应装设瓦斯保护。 (1)重瓦斯动作流速:0.7~1.0m/s。 (2)轻瓦斯动作容积:S b<1000KV A:200±10%cm3;S b在1000~15000KV A:250±10%cm3;S b在15000~100000KV A:300±10%cm3;S b>100000KV A:350±10%cm3。 2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、II及差动线 圈。 3、电流速断保护整定计算公式: (1)动作电流:Idz=Kk×I(3)dmax2

继电器动作电流:u i d jx K dzj K K I K K I ???=2 max ) 3( 其中:K k —可靠系数,DL 型取1.2,GL 型取1.4 K jx —接线系数,接相上为1,相差上为√3 I (3)dmax2—变压器二次最大三相短路电流 K i —电流互感器变比 K u —变压器的变比 一般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为: i e jx K dzj K I K K I 1??= 其中:K k —可靠系数,取3~6。 K jx —接线系数,接相上为1,相差上为√3 I 1e —变压器一次侧额定电流 K i —电流互感器变比 (2)速断保护灵敏系数校验:

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

继电保护整定计算

第一部分:整定计算准备工作 一、收集电站有关一、二次设备资料。如一次主接线图,一次设备参数(必 须是厂家实测参数或铭牌参数);二次回路设计,继电保护配置及原理接线图,LH、YH变比等。 二、收集相关继电保护技术说明书等厂家资料。 三、准备计算中的指导性资料。如电力系统继电保护规程汇编(第二版)、专 业规章制度;电力工程设计手册及参数书等。 第二部分:短路电流的计算 为给保护定值的整定提供依据,需对系统各种类型的短路电流及短路电压进行计算。另外,为校核保护的动作灵敏度及主保护与后备保护的配合,也需要计算系统的短路故障电流。 一、短路电流的计算步骤: 1、阻抗换算及绘制出计算系统的阻抗图。 通常在计算的系统中,包含有发电机、变压器、输电线路等元件,变压器各侧的电压等级不同。为简化计算,在实际计算过程中采用标幺值进行。 在采用标幺值进行计算之前,尚需选择基准值,将各元件的阻抗换算成相对某一基准值下的标幺值,再将各元件的标幺阻抗按实际的主接线方式连接起来,绘制出相应的标幺阻抗图。 2、简化标幺阻抗图。 为计算流经故障点的短路电流,首先需将各支路进行串、并联简化及D、Y换算,最终得到一个只有一个等效电源及一个等效阻抗的等效电路。 3、求出总短路电流。 根据简化的标幺阻抗图,计算总短路电流。计算方法有以下两种,即查图法和对称分量法。 (1)查图法计算短路电流:首先求出发电机对短路点的计算电抗,然后根据计算电抗及运行曲线图查出某一时刻的短路电流。所谓运行曲线图是标征短路电流与计算电抗及经历时间关系的曲线图。 (2)用对称分量法计算短路电流:首先根据不对称故障的类型,绘制出与故障相对应的各序量网路图,然后根据序量图计算出各短路序量电流,最后求出流经故障点的短路电流。 4、求出各支路的短路电流,并换算成有名值。 求出的电流为标幺值电流,可按下式换算成有名值电流。 I=I*×S B/√3U B 式中:I—有名值电流单位为安培 I*—标幺值电流 —基准容量; S B —该电压等级下的基准电压。 U B

10kv系统继电保护整定计算与配合实例

10kV系统继电保护整定计算与配合实例 系统情况: 两路10kV电源进线,一用一备,负荷出线6路,4台630kW电动机,2台630kVA变压器,所以采用单母线分段,两段负荷分布完全一样,右边部分没画出,右边变压器与一台电动机为备用。 有关数据:最大运行方式下10kV母线三相短路电流为I31=5000A,最小运行方式下10kV母线三相短路电流为I32=4000A,变压器低压母线三相短路反应到高压侧Id为467A。 一、电动机保护整定计算 选用GL型继电器做电动机过负荷与速断保护 1、过负荷保护 Idzj=Kjx*Kk*Ied/(Kf*Ki)=4.03A 取4A 选GL12/5型动作时限的确定:根据计算,2倍动作电流动作时间为,查曲线10倍动作时间为10S 2、电流速断保护 Idzj=Kjx*Kk*Kq*Ied/Ki=24A 瞬动倍数为24/4=6倍 3、灵敏度校验 由于电机配出电缆较短,50米以内,这里用10kV母线最小三相短路电流代替电机端子三相短路电流. Km=(24X15)=>2 二、变压器保护整定计算 1、过电流保护 Idzj=Kjx*Kk*Kgh*Ie/(Kf*Ki)=8.4A 取9A 选GL11/10型动作时限取灵敏度为Km=(20X9)=> 2、电流速断保护 Idzj=Kjx*Kk*Id/Ki=20=35A 35/9=,取4倍灵敏度为Km=(180X4)=>2 3、单相接地保护 三、母联断路器保护整定计算

采用GL型继电器,取消瞬时保护,过电流保护按躲过任一母线的最大负荷电流整定。 Idzj=Kjx*Kk*Ifh/(Kh*Ki)=*30)=6.2A 取7A与下级过流保护(电动机)配合:电机速断一次动作电流360A,动作时间10S,则母联过流与此配合,360/210=倍,动作时间为(电机瞬动6倍时限)+=,在GL12型曲线查得为5S曲线(10倍)。所以选择GL12/10型继电器。 灵敏度校验:Km1=(7X30)=>1.5 Km2=(7X30)=> 四、电源进线断路器的保护整定计算 如果采用反时限,瞬动部分无法配合,所以选用定时限。 1、过电流保护 按照线路过电流保护公式整定Idzj=Kjx*Kk*Igh/(Kh*Ki)=12.36A,取12.5A动作时限的确定:与母联过流保护配合。定时限一次动作电流500A,为母联反时限动作电流倍,定时限动作时限要比反时限此倍数下的动作时间大,查反时限曲线倍时t=,所以定时限动作时限为。选DL-11/20型与DS时间继电器构成保护。 灵敏度校验:Km1==> 2、带时限速断保护 与相邻元件速断保护配合

继电保护监督标准规程目录(2016)

精心整理 继电保护监督标准规程目录(2016) 1.GBT50976-2014继电保护及二次回路安装及验收规范 2.GBT50703-2011电力系统安全自动装置设计规范 3.GB/T50479-2011电力系统继电保护及自动化设备柜(屏)工程技术规范 4.GB50171-2012电气装置安装工程盘、柜及二次回路接线施工及验收规范 5.GB/T50062-2008电力装置的继电保护和自动装置设计规范 6. 7. 8. 9. 10. 11. 12.) 13. 14. 15. 16. 17. 18. 19. 求 20. 21.) 22.DL/T5136-2012火力发电厂、变电所二次接线设计技术规程 23.DL/T5132-2001水力发电厂二次接线设计规范 24.DL/T814-2013配电自动化系统技术规范(代替DL/T814-2002) 25.DL/T1349-2014断路器保护装置通用技术条件 26.DL/T1153-2012继电保护测试仪校准规范 27.DL/T1075-2007数字式保护测控装置通用技术条件 28.DL/T1073-2007电厂厂用电源快速切换装置通用技术条件

29.DL/T1066-2007水电站设备检修管理导则 30.DL/T1033.3-2006电力行业词汇第3部分:发电厂、水力发电 31.DL/T1011-2006电力系统继电保护整定计算数据交换格式规范 32.DL/T995-2006继电保护和电网安全自动装置检验规程 33.DL/T994-2006火电厂风机水泵用高压变频器 34.DL/T993-2006电力系统失步解列装置通用技术条件 35.DL/T872-2004小接地电流系统单相接地保护装置 36.DL/T866-2015电流互感器和电压互感器选择及计算导则(代替DL/T866-2004) 37. 38. 39. 40. 41. 42. 43. 44. 45. 46.) 47. 48.) 49. 50. 51. 52. 53. 54.DL/T364-2010光纤通道传输保护信息通用技术条件 55.DL/T280-2012电力系统同步相量测量装置通用技术条件 56.DL/T1101-200935kV~110kV变电站自动化系统验收规范 57.DL/T1213-2013火力发电机组辅机故障减负荷技术规程 58.DL/T814-2013配电自动化系统技术规范(代替DL/T814-2002) 59.DL/T827-2002灯泡贯流式水轮发电机组启动试验规程

继电保护整定计算例题

如下图所示网络中采用三段式相间距离保护为相间短路保护。已知线路每公里阻抗Z 1=km /Ω,线路阻抗角?=651?,线路AB 及线路BC 的最大负荷 电流I m ax .L =400A ,功率因数cos ?=。K I rel =K ∏rel =,K I ∏ rel =,K ss =2,K res =,电源 电动势E=115kV ,系统阻抗为X max .sA =10Ω,X min .sA =8Ω,X max .sB =30Ω,X min .sB =15Ω;变压器采用能保护整个变压器的无时限纵差保护;t ?=。归算至115kV 的变压器阻抗为Ω,其余参数如图所示。当各距离保护测量元件均采用方向阻抗继电器时,求距离保护1的I ∏∏I 、、段的一次动作阻抗及整定时限,并校 验I ∏∏、段灵敏度。(要求∏sen ≥;作为本线路的近后备保护时,I ∏sen ≥;作为相邻下一线路远后备时,I ∏sen ≥) 解:(1)距离保护1第I 段的整定。 1) 整定阻抗。 11.Z L K Z B A rel set -I I ==Ω=??6.94.0308.0 2)动作时间:s t 01=I 。 (2)距离保护1第∏段的整定。 1)整定阻抗:保护1 的相邻元件为BC 线和并联运行的两台变压器,所以 ∏段整定阻抗按下列两个条件选择。

a )与保护3的第I 段配合。 I -∏∏+=3.min .11.(set b B A rel set Z K Z L K Z ) 其中, Ω=??==-I I 16.124.0388.013.Z L K Z C B rel set ; min .b K 为保护3 的I 段末端发生短路时对保护1而言的最小分支系数(见图 4-15)。 当保护3的I 段末端K 1点短路时,分支系数为sB AB sB sA b X X X X I I K ++==12 (4-3) 分析式(4-3)可看出,为了得出最小分支系数,式中SA X 应取最小值min .SA X ;而SB X 应取最大值max .SB X 。因而 max .min .min .1sB AB sA b X Z X K ++ ==1+30 30 4.08?+= 则 Ω=?+??=∏ 817.25)16.12667.14.030(8.01.set Z b )与母线B 上所连接的降压变压器的无时限纵差保护相配合,变压器保护范围直至低压母线E 上。由于两台变压器并列运行,所以将两台变压器作为一个整体考虑,分支系数的计算方法和结果同a )。 ?? ? ??+=-∏∏2min .1t b B A rel set Z K Z L K Z =Ω=? +??078.66)27.84667.14.030(8.0 为了保证选择性,选a )和b )的较小值。所以保护1第 ∏段动作阻抗为

发电机变压器继电保护整定计算

发电机变压器继电保护整定计算 第一章一般规定 保护定值的整定计算是配置和设计电力系统继电保护装置的一项主要内容,定值的整定计算正确与否决定了保护装置动作是否具有选择性和灵敏性。中华人民共和国电力行业标准DL/T684-1999《大型发电机变压器继电保护整定计算导则》已经出版发行,它对发电机和变压器继电保护的定值整定工作必将起到规范化的作用。 发电机变压器继电保护整定计算的主要任务是:在工程设计阶段保护装置选型时,通过整定计算,确定保护装置的技术规范;对现场实际应用的保护装置,通过整定计算,确定其运行参数(给出定值)。从而使继电保护装置正确地发挥作用,保障电气设备的安全,维持电力系统的稳定运行。 为简化计算工作,可按下列假设条件计算短路电流: a.可不计发电机、调相机、变压器、架空线路、电缆线路等阻抗参数中的电阻分量;在很多情况下,可假设旋转电机的负序阻抗与正序阻抗相等。 b.发电机及调相机的正序阻抗,可采用次暂态电抗X″d的饱和值。 c.各发电机的等值电动势(标么值)可假设为1且相位一致。仅在对失磁、失步、非全相等保护装置进行计算分析时,才考虑电动势之间的相角差问题。 d.只计算短路暂态电流中的周期分量,但在纵联差动保护装置(以下简称纵差保护)的整定计算中以非周期分量系数K ap考虑非周期分量的影响。 e.发电机电压应采用额定电压值,系统侧电压可采用额定电压值或平均额定电压值,不考虑变压器电压分接头实际位置的变动。 f.不计故障点的相间和对地过渡电阻。

第二章 发电机保护的整定计算 发电机内部短路包括定子绕组不同相之间的相间短路、同相不同分支之间和同相同分支之间的匝间短路,定子绕组的分支开焊故障,以及各种接地故障。 1 差动保护 纵差保护是比较被保护设备各个引出端电气量(例如电流)大小和相位的一种保护,见图1。发电机纵差保护的保护范围,除发电机定子绕组外还应包括发电机出口至断路器的连接线。不同容量的发电机选用的差动保护装置不同,其整定计算方法也不尽相同。 图1 纵联差动保护原理图 1.1 电磁式BCH-2型纵差保护 1.1.1 动作电流的整定计算 发电机纵差保护的动作电流,按下面两个条件计算,并取其中较大者为整定值I dz.z 。 a. 躲过外部短路时的最大不平衡电流 发电机外部短路时,差动保护的最大不平衡电流由式(2-1)进行估算 a )3(max k er cc ap unb.max /n I K K K I = (2-1) 式中:K ap ——非周期分量系数,取1.5~2.0;K cc ——互感器同型系数,取0.5;K er ——互感器 比误差系数,取0.1;I k.max (3) ——最大外部三相短路电流周期分量。(0.375左右) unb.max k dz I K I = 式中:K k ——可靠系数,取1.2~1.3。 b. 为避免保护在TA (即CT )二次回路断线时误动,保护动作电流应大于发电机的最大负荷电流 e.f k dz I K I = 式中:K k ——可靠系数,取1.3,I e.f ——发电机的额定电流。 取二者之中较大值作为动作电流。 差动继电器的动作电流为 a dz jx j dz n I K I = . 式中:K jx ——接线系数;n a ——TA 变比。 1.1.2 差动线圈匝数W cd 的计算

继电保护整定计算

附录一 1、电网元件参数计算及负荷电流计算 1.1基准值选择 基准容量:MVA S B 100= 基准电压:V V V B k 115av == 基准电流:A V S I B B B k 502.03/== 基准电抗:Ω==25.1323/B B B I V Z 电压标幺值:05.1=E 1.2电网元件等值电抗计算 线路的正序电抗每公里均为0.4Ω/kM ;负序阻抗等于正序阻抗;零序阻抗为1.2Ω/kM ;线路阻抗角为80o。 表格2.1系统参数表

1.2.1输电线路等值电抗计算 (1)线路AB 等值电抗计算: 正序电抗:Ω=?=?=41534.0x 1AB AB L X 标幺值: 1059.025 .1324 1=== * B AB AB Z X X 零序阻抗:Ω=?=?=42532.1x 0.0AB AB L X 标幺值: 3176.025 .13242 .0.0=== * B AB AB Z X X (2)线路B C 等值电抗计算: 正序电抗:Ω=?=?=42064.0x 1BC BC L X 标幺值: 5181.025 .1324 2=== * B B C BC Z X X 零序阻抗:Ω=?=?=72062.1x 0.0BC BC L X 标幺值: 5444.025 .13272 .0.0=== * B B C BC Z X X (3)线路AC 等值电抗计算: 正序电抗:Ω=?=?=11.2284.0x 1AC AC L X 标幺值: 8470.025 .13211.2 ===* B A C AC Z X X 零序阻抗:Ω=?=?=33.6282.1x 0.0AC AC L X 标幺值: 2541.025 .13233.6 .0.0=== * B A C AC Z X X (4)线路CS 等值电抗计算: 正序电抗:Ω=?=?=20504.0x 1CS CS L X 标幺值: 1512.025 .13220 === * B CS CS Z X X 零序阻抗:Ω=?=?=60502.1x 0.0CS CS L X

发变组保护整定计算算例

发变组保护整定计算算例 整定计算依据: 1、《DL/T 684-1999 大型发电机变压器继电保护整定计算导则》,以下简称《导则》 2、《GB/T 15544-1995 三相交流系统短路电流计算》 3、《大型发电机组继电保护整定计算与运行技术》高春如著 4、《RCS-985发电机变压器成套保护装置技术说明书》,以下简称:《说明书》 5、《厂用电系统设计》梁世康许光一著 第一章技术数据及短路电流计算 1.1发电机电气参数

1.2主变压器参数 1.3厂变参数

1.4励磁机参数 1.5系统阻抗(2011年7月16日,宁夏中调保护处提供系统参数,不含#1、#2、#3机) 计入#1、#3机组阻抗最大运行方式下归算至220kV 阻抗为0.00718,最小方式下系统阻抗为0.0174 1.6各电压等级基准值 1.7阻抗参数计算 1.7.1发电机阻抗 Xd=233.5%× 7.366100 =0.6368 Xd ′=24.5%×7.366100 =0.0668 Xd ″=15.7%×7.366100 =0.0428 X2=20.9%×7 .366100 =0.057 1.7.2主变阻抗

XT=XT0=14.02%×360 100 =0.0389 1.7.3厂高变阻抗 X T1-2′=15.5%× 40 100 =0.3875 计算用短路阻抗图,如图1-1 图1-1 #2发变组等值阻抗图 1.8短路电流计算 1.8.1最小运行方式下短路电流计算 1)d1点发生三相短路时,短路电流 发电机G 流过的短路电流(归算至220kV 侧,IB=238.6A): I (3)dmin= "1Xd XT +×IB=0428 .00389.01 +×238.6=12.24×238.6=2920.5A 换算为18kV 侧(归算至18kV 侧,IB=3207.6A )短路电流为I (3)dmin=12.24×3207.6=39261A I (2)dmin=0.866× I (3)dmin=0.866×2920.5A=2529.2A 换算为18kV 侧短路电流为I (2)dmin=0.866×12.24×3207.6=34000A 系统流向故障点短路电流

继电保护定值整定计算公式大全()..

继电保护定值整定计算公式大全 1负荷计算(移变选择) 式中S ca -- 一组用电设备的计算负荷, kVA ; 刀P N --具有相同需用系数 K de 的一组用电设备额定功率之和, kW 综采工作面用电设备的需用系数 Ki e 可按下式计算 式中P maL 最大一台电动机额定功率, kW ; COS wm -- 一组用电设备的加权平均功率因数 2、高压电缆选择: (1) 向一台移动变电站供电时,取变电站一次侧额定电流,即 式中 S N —移动变电站额定容量,kV?A ; U 1N —移动变电站一次侧额定电压, V ; I 1N —移动变电站一次侧额定电流, A 。 (2) 向两台移动变电站供电时,最大长时负荷电流 流之和,即 ,, , (S N 1 S N 2)103 I ca I 1N1 I 1N2 = 3 U 1N (3) 向 3台及以上移动变电站供电时,最大长时负荷电流 l ca 为 I ca I 1N S N 103 (4-13) P N 103 ca K SC cOS wm (4-15) wm k de g P N COS wm (4-1 ) k de 0.4 0.6 P max P N (4-2) I ca 为两台移动变电站一次侧额定电 (4-14)

式中I ca —最大长时负荷电流,A ; P N—由移动变电站供电的各用电设备额定容量总和, kW ;

K sc —变压器的变比; COS wm 、n wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一 个采区供电的电缆,应取采区最大电流; 而对并列运行的电缆线路, 以考虑。 3、低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1 )流过电缆的实际工作电流计算 ① 支线。所谓支线是指 1条电缆控制1台电动机。流过电缆的长时最大工作电流即为 电动机的额定电流。 ② 干线。干线是指控制 2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流 l c a ,取2台电动机额定电流之和,即 I ca I N1 I N2 式中I ca —干线电缆长时最大工作电流, A ; U N —额定电压,V ; 则应按一路故障情况加 I I P N 103 ca N N cos N N I ca -长时最大工作电流, A ; I N -电动机的额定电流, A ; U N - 电动机的额定电压, V ; P N - -电动机的额定功率, kW ; cos N —电动机功率因数; N -电动机的额定效率。 (4-19) (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流 I ca ,用下式计算 I K de P N 103 I ca ?- 3U N COS wm (4-21) P N —由干线所带电动机额定功率之和, kW ; 式中

中北大学继电保护必考整定计算例题

如图所示,网络中各条线路上断路器上均装有三段式电流保护。已知电源最大、最小等效阻抗为Ω=9max .s Z 、Ω=6min .s Z , 线路阻抗Ω=10AB Z 、Ω=26BC Z ,线路BC 限时电流速断保护动作时限为s t BC 5.0=?II 、过流 保护时限为s t BC 5.2=?III ,线路BC 限时电流速断保护动作电流为KA I BC set 378.0.=∏,线路AB 最大负荷电流A I AB f 150.max .=,试计算 线路AB 各段保护动作电流及动作时限,并校验保护的灵敏系数。 (3.1=I rel k 、1.1=∏ rel k 、2.1=I∏rel k 、3.1=ss k 、85.0=re k ;电流速断保护不用校验灵敏性,限时电流速断保护灵敏性校验要求满足 35.1>∏lm K ,定时限过电流保护作为近后备保护时灵敏性校验要求 3.1>∏I lm K ,定时限过电流保护作为远后备保护时灵敏性校验要求2.1>∏I lm K ) 解:()KA Z Z E I AB s B d 335.1106337 min .)3(max ..=+= += φ ()KA Z Z E I AB s B d 124.1109337max .)3(min ..=+=+= φ ()KA Z Z Z E I BC AB s C d 509.026106337min .) 3(max ..=++=++=φ ()KA Z Z Z E I BC AB s C d 475.026 109337max .)3(min ..=++=++= φ 线路AB 电流速断保护(I 段保护): () ()KA I K I B d K AB dz 736 .1335.13.13max ...=?==I I ()s t AB 0=?I 线路AB 定时限电流速断保护(II 段保护): () ()KA I K I C d K BC dz 662.0509.03.13max ...=?==I I ()KA I K I BC dz K AB dz 728 .0662.01.1..=?==I II II ()s t AB 5.0=?∏ II 段保护灵敏性校验: ()()35.134.1728.0124.1866.023.3min ...2min ..<=?=?==∏∏∏ AB dz B d AB dz B d lm I I I I K ,不合格。 线路AB 定时限保护应与线路BC 定时限保护相配合: ()KA I K I BC dz K AB dz 416 .0378.01.1..=?==∏ II II II 段保护灵敏性校验: ()() 35.134.2416.0124.1866.023.3min ...2min ..>=?=?==∏∏∏AB dz B d AB dz B d lm I I I I K ,合格。 ()s t t BC AB 0.15.05.05.0=+=+?=?II II 线路AB 定时限过电流保护(III 段保护): ()KA I K K K I AB f h zq k AB dz 275.015.085 .03 .12.1.max ..=??= ??= III III ()s t t BC AB 0.35.05.25.0=+=+?=?III III III 段保护灵敏性校验: 做近后备保护时: ()() 3.15.3275.012 4.1866.023.3min ...2min ..>=?=?==III III III AB dz B d AB dz B d lm I I I I K ,合格; 做远后备保护时: ()() 2.150.1275.0475.0866.02 3.3min ...2min ..>=?=?==III III III AB dz C d AB dz C d lm I I I I K 。

10KV配电线路继电保护整定计算方案

35KV塘兴变电站10KV生活临建区线开关继电保护定值整定计算 编制:——张亮—— 审核:——————— 审定:——————— 2013年04月28日

10KV生活临建区线开关继电保护定值 整定计算 1.整定计算说明 1.1项目概述 本方案是为保证海南核电有限公司35KV塘兴变电站10KV生活临建区线安全、连续、可靠供电要求而设的具体专业措施,10KV生活临建区线为双电源1019开关和1026开关供电,所带负荷为7台箱变,其中1019开关取自10KV I段母线,1026开关取自10KV II段母线。正常运行时电源一用一备,箱变一次系统采用手拉手接线方式,电缆连接,箱变之间可通过箱变间联络开关灵活切换,最高带7台箱变,最低带1台箱变,现1019和1026开关保护装置型号均为WXH-822A微机保护,电流互感器为三相完全星形接线方式。箱变进线及联络开关为真空负荷开关,无保护功能,仅作为正常倒闸操作使用,变压器高压侧采用非限流型熔芯保护,低压侧为空气开关,带速断、过流及漏电保护。 1.2参考文献 1)电力系统继电保护与安全自动装置整定计算 2)电力系统继电保护实用技术问答 3)电力系统分析 4)电力网及电力系统 5)电力工程电力设计手册 6)许继微机保护测控装置说明书

2.线路及系统设备相关参数2.1回路接线图

2.2系统设备参数表 2.2.1开关参数表 10KV开关参数表 开关名称1019 1026 1013/1023/1053 1043/1073 1063/1033 安装地点变电站变电站1#/2#/5#箱变高压室4#/7#箱变高压室3#/6#箱变高压室开关型号CV1-12 CV1-12 XGN15-12 XGN15-12 XGN15-12 开关类型真空断 路器 真空断 路器 真空负荷开关真空负荷开关真空负荷开关 保护类型微机综 保 微机综 保 熔断器熔断器熔断器 额度电流A 1250 1250 125 80 100 额度电压KV 12 12 12 12 12 短路开断电 流KA 25 25 31.5 31.5 31.5 短路持续时 间S 4 4 4 4 4 出厂日期 2009 年4月 2009 年4月 出厂编号 制造厂家常熟开 关 常熟开 关 福建东方电器福建东方电器福建东方电器 备注1011/1012/1021/1022/1031/1032/1051/1052/1041/1042/1071/1072/1061/1062 开关无保护,仅具有控制和隔离作用

继电保护定值整定计算公式大全(最新)教学内容

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6.04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?== (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 ( 2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+=(4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为

3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ; N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、ηwm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103 ?== (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。

发电厂继电保护整定计算-大唐

发电厂继电保护整定计算 北京中恒博瑞数字电力有限公司 二零一零年五月

目录 继电保护基本概念 (4) 一、电力系统故障 (4) 二、继电保护概念 (4) 三、对继电保护提出的四个基本要求(四性)及其相互关系 (4) 标幺值计算 (7) 一、定义 (7) 二、基准值选取 (7) 三、标幺值计算 (7) 元件各序等值计算 (9) 一、设备类型: (9) 二、等值原因 (9) 三、主要元件等值 (9) 1.输电线路及电缆 (9) 2.变压器 (11) 3.发电机 (14) 4.系统 (14) 5.电容器 (15) 6.电抗器 (16) 不对称故障计算 (16) 一、原理(求解方法) (17) 二、各种不对称故障故障点电气量计算 (18) 三、保护安装处电气量计算 (20) 四、举例 (23) 阶段式电流保护 (26) 一、I段(电流速断保护) (26) 二、II端(延时速断) (26) 三、III端(延时过流) (27) 阶段式距离保护 (31) 一、基础知识 (31) 二、阶段式相间距离保护 (32) 三、阶段式接地距离 (33) 阶段式零序电流保护 (35) 一、基础知识 (35) 二、阶段式零序电流保护整定 (35) 发电厂继电保护整定计算概述 (37)

1、典型接线 (37) 2、发电厂接地方式 (37) 3、元件各序参数计算 (37) 4、故障计算 (38) 5、电厂保护配置特点 (39) 发电机差动保护(比率制动式) (40) 1. 原理 (40) 2.不平衡电流 (40) 3.比率制式差动保护 (41) 变压器(发变组)差动保护(比率制动) (43) 1.原理 (43) 2.平衡系数问题 (43) 3.相移问题 (44) 4.零序电流穿越性问题 (45) 5.变压器的励磁涌流及和应涌流 (45) 6.不平衡电流的计算 (47) 7.整定计算 (48) 发电机失磁保护 (49) 1. 基本知识 (49) 2. 失磁后果 (50) 3. 失磁过程 (50) 4. 保护 (52) 发电机失步保护 (53) 1、发电机失步原因 (53) 2、振荡时电气量的变化 (53) 3、失步保护原理及整定 (55) 发电机定子接地保护 (56) 1.故障分析 (56) 2. 基波零序电压保护 (57) 3. 三次谐波电压保护 (57) 厂用电保护 (58) 一、低压厂用电保护(400V接地,电网的最末端) (58) 二、低压厂变保护(6kV/400V) (60) 三、高压电动机 (64) 四、高厂变(启备变)保护 (66) 五、励磁变电流保护 (69) 六、励磁机保护(主励磁机) (70) 七、高压馈线保护 (71)

相关文档
最新文档