锂电池常见理论

锂电池常见理论
锂电池常见理论

一、锂电池与锂离子电池

锂电池的特点

1、具有更高的能量重量比、能量体积比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;

3、自放电小可长时间存放,这是该电池最突出的优越性;

4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;

5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次;

6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;

7、可以随意并联使用;

8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;

锂离子电池具有以下优点:

1、电压高,单体电池的工作电压高达3.6-3.9V,是Ni-Cd、Ni-H电池的3倍

2、比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L

3、循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力.

4、安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5、自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。

6、可快速充放电,1C充电是容量可以达到标称容量的80%以上。

7、工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。

锂离子电池也存在着一定的缺点,如:

1、电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较少),

电解质体系提纯困难。

2、不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。

3、需要保护线路控制。A、过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电;B、过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。成本高。与其它可充电池相比,锂电池价格较贵。

二、锂离子电池相关参数

1.容量

这是大家比较关心的一个参数。智能手机早已普及,我们在使用智能手机的时候,最为担心的就是电量不足,需要频繁充电,有时还找不到地方充电。早期的功能机,正常使用情况下,满充的电池可以待机3~5天,一些产品甚至可以待机7天以上。可是到了智能机时代,待机时间就显得惨不忍睹了。这里面很重要的一个原因,就是手机的功耗越来越大,而电池的容量却没有同比例的增长。

容量的单位一般为“mAh”(毫安时)或“Ah”(安时),在使用时又有额定容量和实际容量的区别。额定容量是指满充的锂离子电池在实验室条件下(比较理想的温湿度环境),以某一特定的放电倍率(C-rate)放电到截止电压时,所能够提供的总的电量。实际容量一般都不等于额定容量,它与温度、湿度、充放电倍率等直接相关。一般情况下,实际容量比额定容量偏小一些,有时甚至比额定容量小很多,比如北方的冬季,如果在室外使用手机,电池容量会迅速下降。

2.能量密度

能量密度,指的是单位体积或单位重量的电池,能够存储和释放的电量,其单位有两种:Wh/kg,Wh/L,分别代表重量比能量和体积比能量。这里的电量,是上面提到的容量(Ah)与工作电压(V)的积分。在应用的时候,能量密度这个指标比容量更具有指导性意义。

基于当前的锂离子电池技术,能够达到的能量密度水平大约在100~200Wh/kg,这一数值还是比较低的,在许多场合都成为锂离子电池应用的瓶颈。这一问题同样出现在电动汽车领域,在体积和重量都受到严格限制的情况下,电池的能量密度决定了电动汽车的单次最大行驶里程,于是出现了“里程焦虑症”这一特有的名词。如果要使得电动汽车的单次行驶里程达到500公里(与传统燃油车相当),电池单体的能量密度必须达到300Wh/kg以上。

锂离子电池能量密度的提升,是一个缓慢的过程,远低于集成电路产业的摩尔定律,这就造成了电子产品的性能提升与电池的能量密度提升之间存在一个剪刀差,并且随着时间不断扩大。

3.充放电倍率

这个指标会影响锂离子电池工作时的连续电流和峰值电流,其单位一般为C(C-rate的简写),如1/10C,1/5C,1C,5C,10C等。举个例子来阐述倍率指标的具体含义,某电池的额定容量是10Ah,如果其额定充放电倍率是1C,那么就意味着这个型号的电池,可以以10A的电流,进行反复的充放电,一直到充电或放电的截止电压。如果其最大放电倍率是10C@10s,最大充电倍率5C@10s,那么该电池可以以100A的电流进行持续10秒的放电,以50A的电流进行持续10秒的充电。

充放电倍率对应的电流值乘以工作电压,就可以得出锂离子电池的连续功率和峰值功率指标。充放电倍率指标定义的越详细,对于使用时的指导意义越大。尤其是作为电动交通工具动力源的锂离子电池,需要规定不同温度条件下的连续和脉冲倍率指标,以确保锂离子电池使用在合理的范围之内。

4.电压

锂离子电池的电压,有开路电压、工作电压、充电截止电压、放电截止电压等一些参数,本文不再分开一一论述,而是集中做个解释。

开路电压,顾名思义,就是电池外部不接任何负载或电源,测量电池正负极之间的电位差,此即为电池的开路电压。

工作电压,就是电池外接负载或电源,处在工作状态,有电流流过时,测量所得的正负极之间的电位差。一般来说,由于电池内阻的存在,放电状态时的工作电压低于开路电压,充电时的工作电压高于开路电压。

充/放电截止电压,是指电池允许达到的最高和最低工作电压。超过了这一限值,会对电池产生一些不可逆的损害,导致电池性能的降低,严重时甚至造成起火、爆炸等安全事故。

电池的开路电压和工作电压,与电池的容量存在一定的对应关系。

5.寿命

锂离子电池的寿命会随着使用和存储而逐步衰减,并且会有较为明显的表现。仍然以智能手机为例,使用过一段时间的手机,可以很明显的感觉到手机电池“不耐用”了,刚开始可能一天只充一次,后面可能需要一天充电两次,这就是电池寿命不断衰减的体现。

锂离子电池的寿命分为循环寿命和日历寿命两个参数。循环寿命一般以次数为单位,表征电池可以循环充放电的次数。当然这里也是有条件的,一般是在理想的温湿度下,以额定的充放电电流进行深度的充放电(100% DOD或者80%DOD),计算电池容量衰减到额定容量的80%时,所经历的循环次数。

日历寿命的定义则比较复杂,电池不可能一直在充放电,有存储和搁置,也不可能一直处于理想环境条件,会经历各种温湿度条件,充放电的倍率也是时刻在变化的,所以实际的使用寿命就需要模拟和测试。简单的说,日历寿命就是电池在使用环境条件下,经过特定的使用工况,达到寿命终止条件(比如容量衰减到80%)的时间跨度。日历寿命与具体的使用要求是紧密结合的,通常需要规定具体的使用工况,环境条件,存储间隔等。

日历寿命比循环寿命更具有实际意义,但由于日历寿命的测算非常复杂,而且耗时太长,所以一般电池厂家只给出循环寿命的数据。如需要获得日历寿命的数据,通常要额外付费,且要等待很长时间。

6.内阻

锂离子电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,它包括欧姆内阻和极化内阻,极化内阻又包括电化学极化内阻和浓差极化内阻。

欧姆内阻由电极材料、电解质、隔膜电阻及各部分零件的接触电阻组成。极化内阻是指电化学反应时由极化引起的电阻,包括电化学极极化和浓差极化引起的电阻。

内阻的单位一般是毫欧姆(mΩ),内阻大的电池,在充放电的时候,内部功耗大,发热严重,会造成锂离子电池的加速老化和寿命衰减,同时也会限制大倍率的充放电应用。所以,内阻做的越小,锂离子电池的寿命和倍率性能就会越好。

7.自放电

电池在放置的时候,其容量是在不断下降的,容量下降的速率称为自放电率,通常以百分数表示:%/月。

自放电是我们不希望看到的,一个充满电的电池,放个几个月,电量就会少很多,所以我们希望锂离子电池的自放电率越低越好。

这里需要特别注意,一旦锂离子电池的自放电导致电池过放,其造成的影响通常是不可逆的,即使再充电,电池的可用容量也会有很大损失,寿命会快速衰减。所以长期放置不用的锂离子电池,一定要记得定期充电,避免因为自放电导致过放,性能受到很大影响。

8.工作温度范围

由于锂离子电池内部化学材料的特性,锂离子电池有一个合理的工作温度范围(常见的数据在-40℃~60℃之间),如果超出了合理的范围使用,会对锂离子电池的性能造成较大的影响。

不同材料的锂离子电池,其工作温度范围也是不一样的,有些具有良好的高温性能,有些则能够适应低温条件。锂离子电池的工作电压、容量、充放电倍率等参数都会随着温度的变化而发生非常显著的变化。长时间的高温或低温使用,也会使得锂离子电池的寿命加速衰减。因此,努力创造一个适宜的工作温度范围,才能够最大限度的提升锂离子电池的性能。

除了工作温度有限制之外,锂离子电池的存储温度也是有严格约束的,长期高温或低温存储,都会对电池性能造成不可逆的影响。

二、锂离子电池的正负极材料

我们经常会看到磷酸铁锂,三元等专业的锂离子电池术语,这些都是根据锂离子电池正极材料来区分锂离子电池的类型。相对来讲,锂离子电池的正、负极材料对电池性能的影响比较大,是大家比较关心的方面。那么,当前市场上都有哪些常见的正负极材料呢?用他们做锂离子电池,又有哪些优缺点?

1.正极材料

首先,我们来看看正极材料,正极材料的选择,主要基于以下几个因素考虑:

1)具有较高的氧化还原反应电位,使锂离子电池达到较高的输出电压;

2)锂元素含量高,材料堆积密度高,使得锂离子电池具有较高的能量密度;

3)化学反应过程中的结构稳定性要好,使得锂离子电池具有长循环寿命;

4)电导率要高,使得锂离子电池具有良好的充放电倍率性能;

5)化学稳定性和热稳定性要好,不易分解和发热,使得锂离子电池具有良好的安全性;

6)价格便宜,使得锂离子电池的成本足够低;

7)制造工艺相对简单,便于大规模生产;

8)对环境的污染低,易于回收利用。

当前,锂离子电池的能量密度、充放电倍率、安全性等一些关键指标,主要受制于正极材料。

2.负极材料

相对而言,针对锂离子电池负极材料的研究,没有正极材料那么多,但是负极材料对锂离子电池性能的提高仍起着至关重要的作用,锂离子电池负极材料的选择应主要考虑以下几个条件:

1)应为层状或隧道结构,以利于锂离子的脱嵌;

2)在锂离子脱嵌时无结构上的变化,具有良好的充放电可逆性和循环寿命;

3)锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量;

4)氧化还原反应的电位要低,与正极材料配合,使电池具有较高的输出电压;

5)首次不可逆放电比容量较小;

6)与电解质溶剂相容性好;

7)资源丰富、价格低廉;

8)安全性好;

9)环境友好。

锂离子电池负极材料的种类繁多,根据化学组成可以分为金属类负极材料(包括合金)、无机非金属类负极材料及金属氧化物类负极材料。

(1)金属类负极材料:这类材料多具有超高的嵌锂容量。最早研究的负极材料是金属锂。由于电池的安全问题和循环性能不佳,金属锂作为负极材料并未得到广泛应用。近年来,合金类负极材料得到了比较广泛的研究,如锡基合金,铝基合金、镁基合金、锑基合等,是一个新的方向。

(2)无机非金属类负极材料:用作锂离子电池负极的无机非金属材料主要是碳材料、硅材料及其它非金属的复合材料。

(3)过渡金属氧化物材料:这类材料一般具有结构稳定,循环寿命长等优点,如锂过渡氧化物(钛酸锂等)、锡基复合氧化物等。

就当前的市场而言,在大规模商业化应用方面,负极材料仍然以碳材料为主,石墨类和非石墨类碳材料都有应用。在汽车及电动工具领域,钛酸锂作为负极材料也有一定的应用,主要是具有非常优异的循环寿命、安全性和倍率性能,但是会降低电池的能量密度,因此不是市场主流。其他类型的负极材料,除了SONY 在锡合金方面有产品推出,大多仍以科学研究和工程开发为主,市场化应用的比较少。

三、定义

锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。

四、结构及工作原理

1、当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO

2、LiNiO2、LiMn2O4。

2、做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2 +3x +5y)/2)等。

3、电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的混合溶剂体系。

4、隔膜采用聚烯微多孔膜如PE、PP或它们复合膜,尤其是PP/PE/PP三层隔膜不仅熔点较低,而且具有较高的抗穿刺强度,起到了热保险作用。

5、外壳采用钢或铝材料,盖体组件具有防爆断电的功能。

五、SEI膜

在液态锂离子电池首次充放电过程中,电极材料与电解液在固液相界面上发生反应,形成一层覆盖于电极材料表面的钝化层。这种钝化层是一种界面层,具有固体电解质的特征,是电子绝缘体却是Li+的优良导体,Li+可以经过该钝化层自由地嵌入和脱出,这层钝化膜被称为SEI膜。

负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI 膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如

Li2CO3、LiF、Li2O、LiOH 等和各种有机成分如ROCO2Li 、ROLi 、(ROCO2Li)2等。

SEI 膜的形成对电极材料的性能产生至关重要的影响。一方面,SEI 膜的形成消耗了部分锂离子,使得首次充放电不可逆容量增加,降低了电极材料的充放电效率;另一方面,SEI 膜具有有机溶剂不溶性,在有机电解质溶液中能稳定存在,并且溶剂分子不能通过该层钝化膜,从而能有效防止溶剂分子的共嵌入,避免了因溶剂分子共嵌入对电极材料造成的破坏,因而大大提高了电极的循环性能和使用寿命。因此,深入研究SEI膜的形成机理、组成结构、稳定性及其影响因素,并进一步寻找改善SEI 膜性能的有效途径,一直都是世界电化学界研究的热点。

SEI 膜作为电极材料与电解液在电池充放电过程中的反应产物,它的组成、结构、致密性与稳定性主要是由电极和电解液的性质决定,同时也受到温度、循环次数以及充放电电流密度的影响。

锂电池原理及工艺流程

锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极 3.0工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二、工艺流程 1、基本工作原理 1)、正极反应:LiCoO2 ===== Li1-xCoO2 + x Li+ + xe- 2)、负极反应:6C + x Li+ + xe- ===== LixC6 3)、电池反应:LiCoO2 + 6C ====== Li1-xCoO2 + LixC6 4)、电池的电动势: (1)、定义:在没有电流的情况下,电池正、负极两端的电位差。 (2)、影响因素:由电极材料决定,不受其它任何辅助材料影响。 2、电压特性 1)、开路电压:用电压表直接测量的正、负极两端的电压。 E = V – I R 2)、工作电压范围:2.75 ~ 4.2 volt。 3)、额定电压:3.6 volt。 4)、平均工作电压: 3.72 volt。 5)、影响电压特性的基本因素

锂电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

锂离子电池原理(基础篇)

锂离子电池原理及工艺流程 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1)组成电池的电动势高; 2)电化学活性高,即自发进行反应的能力强; 3)重量比容量和体积比容量大; 4)在电解液中的化学稳定性高; 5)具有高的电子导电性; 6)资源丰富,价格便宜。 2、电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1)稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;2)比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1)在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2)离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3)应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4)材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程 一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)

锂电池分类、结构与工作原理

锂电池原理 锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳.常见的正极材料主要成分为LiCoO2 ,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流. 锂电池的种类 1、根据锂电池所用电解质材料不同分类 可以分为液态锂电池(lithium ion battery, 简称为LIB)和聚合物锂电池(polymer lithium ion battery, 简称为LIP)两大类。聚合物锂电池所用的正负极材料与液态锂都是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同, 锂电池使用的是液体电解质, 而聚合物锂电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。聚合物锂电池可分为三类: (1)固体聚合物电解质锂电池。电解质为聚合物与盐的混合物,这种电池在常温下的离子电导率低,适于高温使用。 (2)凝胶聚合物电解质锂电池。即在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。 (3)聚合物正极材料的锂电池。采用导电聚合物作为正极材料,其能量是现有锂电池的3倍,是最新一代的锂电池。由于用固体电解质代替了液体电解质,与液态锂电池相比,聚合物锂电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以提高整个电池的容量;聚合物锂电池还可以采用高分子作正极材料,其质量比能量将会比目前的液态锂电池提高50%以上。此外,聚合物锂电池在工作电压、充放电循环寿命等方面都比锂电池有所提高。基于以上优点,聚合物锂电池被誉为下一代锂电池。 2、按充电方式分类 按充电方式可分为不可充电的及可充电的两类。不可充电的电池称为一次性电池,它只能将化学能一次性地转化为电能,不能将电能还原回化学能(或者还原性能极差)。而可充电的电池称为二次性电池(也称为蓄电池)。它能将电能转变成化学能储存起来,在使用时,再将化学能转换成电能,它是可逆的。

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

关于浅谈锂电池充电电路原理及应用的专业论文

专业电子类论文 题目:浅谈锂电池充电电路原理及应用 作者:yyj 职称:自动化工程师 发表期刊号:XXX-XX 浅谈锂电池充电电路原理及应用 现代生活中,科技高速发展,电子产品需求量急升,应用之广,已达到一个新高度。从而对电子产品充电电池的要求,也越来越高。常用的电池有多种,而锂电池占据较大份额。锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 四、锂电池的充放电要求: 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

铅酸蓄电池的结构和工作原理

铅酸蓄电池的结构和工作原理 (一)铅酸蓄电池的结构 铅酸蓄电池主要由正极板组?负极板组?隔板?容器和电解液等构成,其结构如下图所示: 1.极板 铅酸蓄电池的正?负极极板由纯铅制成,上面直接形成有效物质,有些极板用铅镍合金制成栅架,上面涂以有效物质?正极(阳极)的有效物质为褐色的二氧化铅,这层二氧化铅由结合氧化的铅细粒构成,在这些细粒之间能够自由地通过电解液,将正极材料磨成细粒的原因是可以增大其与电解液的接触面积,这样可以增加反应面积,从而减小蓄电池的内阻?负极(阴极)的有效物质为深灰色的海绵状铅?在同一个电池内,同极性的极板片数超过两片者,用金属条连接起来,称为极板组

或极板群?至于极板组内的极板数的多少,随其容量(蓄电能力)的大小而异?为了获得较大的蓄电池容量,常将多片正?负极板分别并联,组成正?负极板组,如下图所示: 安装时,将正?负极板组相互嵌合,中间插入隔板,就形成了单格电池?在每个单格电池中,负极板的片数总要比正极板的片数多一片,从而使每片正极板都处于两片负极板之间,使正极板两侧放电均匀,避免因放电不均匀造成极板拱曲? 2.隔板 在各种类型的铅酸蓄电池中,除少数特殊组合的极板间留有宽大的空隙外,在两极板间均需插入隔板,以防止正?负极板相互接触而发生短路?这种隔板上密布着细小的孔,既可以保证电解液的通过,又可

以阻隔正?负极板之间的接触,控制反应速度,保护电池?隔板有木质?橡胶?微孔橡胶?微孔塑料?玻璃等数种,可根据蓄电池的类型适当选定?吸附式密封蓄电池的隔板是由超细玻璃丝绵制作的,这种隔板可以把电解液吸附在隔板内,吸附式密封蓄电池的名称也是由此而来的? 3.容器 容器是用来盛装电解液和支撑极板的,通常有玻璃容器?衬铅木质容器?硬橡胶容器和塑料容器四种?容器用于盛放电解液和极板组,应该耐酸?耐热?耐震?容器多采用硬橡胶或聚丙烯塑料制成,为整体式结构,底部有凸起的肋条以搁置极板组?壳内由间壁分成3个或6个互不相通的单格,各单格之间用铅质联条串联起来?容器上部使用相同材料的电池盖密封,电池盖上设有对应于每个单格电池的加液孔,用于添加电解液和蒸馏水以及测量电解液密度?温度和液面高度? 4.电解液 铅酸蓄电池的电解液是用蒸馏水稀释高纯浓硫酸而成的?它的密度高低视铅蓄电池类型和所用极板而定,一般在15℃时为1.200~1.300g/cm3?蓄电池用的电解液(稀硫酸)必须保持纯净,不能含有危害铅酸蓄电池的任何杂质?电解液的作用是给正?负电极之间流动的离子创造一个液体环境,或者说充当离子流动的介质?电解液的相对密度对蓄电池的工作有重要影响,相对密度大,可减少结冰的危险并提

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

锂电池原理与实用工艺复习整理

锂电池原理与工艺复习 第一章化学电源的原理及类别 一、电池术语与及使用基本常识 1、电池的容量可以分为理论容量、额定容量、实际容量。 2、理论容量是把活性物质的质量按法拉第定律计算而得的最高理论值。为了比较不同系列的电池,常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,单位为Ah/kg (mAh/g)或Ah/L(mAh/cm3)。 3、实际容量是指电池在一定条件下所能输出的电量。它等于放电电流与放电时间的乘积,单位为 Ah,其值小于理论容量。 4、额定容量也叫保证容量,是按国家或有关部门颁布的标准,保证电池在一定的放电条件下应该放出的最低限度的容量。 5、电池阻包括欧姆阻和极化阻,极化阻又包括电化学极化与浓差极化。 6、终止电压(Cut-off discharge voltage)指电池放电时,电压下降到电池不宜再继续放电的最低工作电压值。 7、开路电压(Open circuit voltage OCV)电池不放电时,电池两极之间的电位差被称为开路电压。 8、放电深度(Depth of discharge DOD)在电池使用过程中,电池放出的容量占其额定容量的百分比,称为放电深度。 9、过放电(Over discharge)电池若是在放电过程中,超过电池放电的终止电压值,还继续放电时就可能会造成电池压升高,正、负极活性物质的可逆性遭到损坏,使电池的容量产生明显减少。 10、过充电(Over charge)电池在充电时,在达到充满状态后,若还继续充电,可能导致电池压升高、电池变形、漏夜等情况发生,电池的性能也会显著降低和损坏。 11、能量密度(Energy density)电池的平均单位体积或质量所释放出的电能。 12、自我放电(Self discharge)电池不管在有无被使用的状态下,由于各种原因,都会引起其电量损失的现象。 13、放电平台锂离子电池完全充电后,放电至3.6V时的容量记为C1,放电至3.0V时的容量记为C0,C1/C0称为该电池之放电平台(行业标准1C放电平台为70%以上) 14、充电循环寿命(Cycle life)电池在完全充电后完全放电,循环进行,直到容量衰减为初始容量的75%,此时循环次数即为该电池之循环寿命。 15、化成:电池制造后,通过一定的充放电方式将其部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成,电池只有经过化成后才能体现真实性能。 16、分容:电池在制造过程中,因工艺原因使得电池的实际容量不可能完全一致,通过一定的充放电制度检测,并将电池按容量分类的过程称为分容 17、快速充电:充电电流大于0.2C,小于0.8C则是快速充电。 18、慢速充电:充电电流在0.1C-0.2C之间时,我们称为慢速充电。 19、涓流充电:充电电流小于0.1C时,我们称为涓流充电。 20、超高速充电:充电电流大于0.8C时,我们称之为超高速充电。 21、恒流充电方式:恒流充电法是保持充电电流强度不变的充电。方法,恒流充电器通常使用慢速充电电流。 22、快速自动充电方式:通常所使用的是余弦法充电,也就是说并非用恒定的大电流充电,而是像余弦波那样电流强度随之变化,这样能缓解热量的积聚,从而将温度控制在一定围。

锂离子电池的工作原理、特点及分类

锂离子电池的工作原理、特点及分类 锂离子电池的构成主要有正极、负极、非水电解质和隔膜四个部分组成,两个能可逆脱嵌的锂离子化合物构成正负极。其工作原理图如1-1(b)所示,充电时锂离子从正极材料中脱出,通过隔膜经电解质溶液向负极迁移,同时电子在外电路从正极流向负极,锂离子在负极得到电子后被还原成金属锂,嵌入负极晶格中;而在放电时,负极的锂会失去电子成为锂离子,通过隔膜经电解质溶液向正极方向迁移并进入正极材料中储存。正负两极间不仅有锂离子在迁移,为保持电荷平衡,相同数量的电子经外电路也在正负两极之间传递,使正负两极发生氧化还原反应,并保持一定电位。 图1-1锂离子电池工作示意图 a. 金属锂二次电池; b. 锂离子二次电池 (图中枝晶照片直接由原位扫描电镜拍出) Fig.1-1 Schematic representation and operating principles of Li batteries a. Rechargeable Li-metal battery; b. Rechargeable Li-ion battery 以目前已经商业化的锂离子电池为例,正极采用LiCoO2材料,负极采用碳材料,宇部隔膜为电池隔膜,LiPF6的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)或碳酸二甲酯(DMC)溶液为电解液,充电过程中发生的正负两极的电极反应可表示为: CoO2+xLi++xe- 正极反应:LiCoO2 = Li (1-x) 负极反应:C+x Li++xe- = Li x C CoO2+Li x C 电池总反应:LiCoO2+C = Li (1-x) 锂离子二次电池主要有以下优点:

锂电池的工作原理

锂电池的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富

锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。

锂电池的工作原理和应用分析(定稿)

Southwest university of science and technology 本科毕业设计(论文)锂离子电池的工作原理和应用分析 学院名称理学院 专业名称光信息科学与技术 学生姓名杨大华 学号20072708 指导教师施鹏程讲师 二〇一一年六月

西南科技大学本科生毕业论文1锂离子电池的工作原理和应用分析 摘要:锂离子电池是一种新型的电池,在很多领域中得到了广泛应用。在各种新能源电池中,锂离子电池被认为是最有发展前途的新能源动力型电池之一。本论文通过介绍锂离子电池的原材料与工作原理,提高了对锂离子电池的结构特性和工作机制的认识。通过分析我国锂离子电池的研究动态,指出了我国在锂离子电池技术和产品上已经接近世界先进水平,并且向着更抗衰老,更低回收率,更耐受过充,更长寿命方向发展。最后针对国内动力型锂离子电池发展中存在的主要的六大问题,提出了七个相应的解决方法。 关键词:锂离子电池;新能源;工作原理;应用

西南科技大学本科生毕业论文2 The Work Principle and Application Analysis of the Lithium-ion Battery Abstract: Lithium ion battery is a new type of battery. It can be widely used in many fields. In all kinds of new energy battery, lithium ion battery is considered as one of the most promising new energy. To know more about the structure of lithium-ion battery characteristics and working mechanisms, this thesis describes the raw materials and working principle. Through analyzing of the lithium-ion battery researching trends, the technology and products of the lithium-ion batteryare in our country are closing to the world advanced level, and facing to a more anti-aging, more low recovery, more tolerance overcharge, longer life direction.Finally, according to six problems in the development of lithium ion batteries, put forward seven corresponding solutions. Keywords: Lithium-ion battery;New energy;Working principle;Apply 2

锂离子电池原理、常见不良项目及成因、涂布方法汇总

锂离子电池原理、常见不良项目及成因、涂布方法汇总2011-08-12 15:38:29| 分类:默认分类| 标签:|字号大中小订阅 本文引用自典锋《ZT 锂离子电池原理、常见不良项目及成因、涂布方法汇总》 锂离子电池原理、常见不良项目及成因、涂布方法汇总 一般而言,锂离子电池有三部分构成:1.锂离子电芯;2.保护电路(PCM);3.外壳即胶壳。 分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA998,8088,NOKIA的大部分机型 1.外置电池 外置电池的封装形式有超声波焊接和卡扣两种: 1.1超声波焊接 外壳 这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有:MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该 是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了. 超声波焊塑机焊接 有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂 情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲. 1.2卡扣式 卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66. 2.内置电池 内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起) 超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等. 包标的电池就很多了,如前两年很浒的MOTO998 ,8088了. 锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极 电芯的构造 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V

锂离子电池原理及混料配料工艺流程

工 艺 流 程 一、 原理 1.正极构造 LiFePO 4(磷酸铁锂)+导电剂+粘合剂(PVDF)+集流体(铝箔) 2.负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 3.工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e 从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiFePO 4→Li 1-x FePO 4+Xli ++Xe(电子) 负极上发生的反应为 6C+XLi ++Xe →Li x C 6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二 工艺流程

1、正极极片制备 1.1原料的烘干 (1)磷酸铁锂:真空烘烤。 (2)导电剂:常压烘烤。 (3)粘合剂:常压烘烤。 1.2浆料搅拌 a) 将NMP倒入真空搅拌机中, PVDF加入其中; b) 正极干料平均分四次加入。 c) 真空下高速搅拌,时间为3-5小时; d) 出料准备涂布。 1.3 涂布 a) 在精密的涂布机上面把浆料均匀地涂覆在铝箔表面,涂布厚度可以根据不同的要求进行调整。 2、负极极片制备 2.1 原料不需要烘干。 2.2 浆料制备 a) 纯净水倒入真空搅拌机中。 B) 加CMC,搅拌,完全溶解; c) 加入SBR和去离子水,搅拌60分钟; d) 负极干料分四次平均顺序加入搅拌机中。 e) 高速真空搅拌3-5小时; f) 出料准备涂布 2.3 涂布 a) 在精密的涂布机上面把浆料均匀地涂覆在铜箔表面,涂布厚度可以根据不同的要求进行调整。 3、极片辊压 涂布后的极片在轧辊机上面辊压一次,达到工艺要求的厚度。

锂电池结构与原理

锂电池结构与原理 The manuscript was revised on the evening of 2021

锂原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。 ⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括、SnO2、锡复合氧化物SnBxPyOz(x=~,y=~,z=(2+3x+5y)/2)等。

2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、(insulator)、安全阀(safetyvent)、密封圈(gasket)、(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池()和聚合物锂离子电池()两类。其中,液态锂离子电池是指 Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物LoO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力之一,并将在人造卫星、航空航天和储能方面得到应用。

锂电池结构与原理

锂电池原理与结构 1、锂离子电池得结构与工作原理:所谓锂离子电池就是指分别用二个能可逆地嵌入与脱嵌锂离子得化合物作为正负极构成得二次电池。人们将这种靠锂离子在正负极之间得转移来完成电池充放电工作得,独特机理得锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定得嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极得材料则选择电位尽可能接近锂电位得可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等与金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0、4~0、6,y=0、6~0、4,z=(2+3x+5y)/2)等。

2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池得详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)与聚合物锂离子电池(PLB)两类。其中,液态锂离子电池就是指Li +嵌入化合物为正、负极得二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,就是21世纪发展得理想能源。 2、锂离子电池发展简史 锂电池与锂离子电池就是20世纪开发成功得新型高能电池。这种电池得负极就是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事与民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有得性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发得大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车得主要动力电源之一,并将在人造卫星、航空航天与储能方面得到应用。 4、电池得基本性能 (1)电池得开路电压

相关文档
最新文档