纳米微粒的载药的研究

纳米微粒的载药的研究
纳米微粒的载药的研究

*Corresponding author.Tel.:+86-25-331-7807;fax:+86-25-331-7761.

E-mail address:czyang@https://www.360docs.net/doc/1214673033.html, (C.Yang).

0142-9612/02/$-see front matter r 2002Elsevier Science Ltd.All rights reserved.PII:S 0142-9612(02)00071-6

为了克服蛋白和多肽水溶性的问题丆做了很多的修饰改进工作丆其中PEG 修饰效果好丆但是也有一些不足之处。

微球的制备方法及不足之处

prepared by the ionic interaction between positively charged CS and negatively charged polymer-tripolypho-sphate(TPP),and the nanoparticles showed a great protein loading capacity and sustained release ability. In the present work,we report a new approach to prepare hydrophilic nanoparticles based on polymeriz-ing acrylic acid into chitosan template in aqueous solution[26].We think that this system has some interesting(1)The nanoparticles are obtained spontaneously under very mild conditions without the need of high temperature,organic solvent,surfactant and some other special experimental technology;(2)the nanoparticles have small particle size and positive surface charges,which may improve their stability in the presence of biological cations[27],and is favorable for some drugs due to the interaction with negatively charged biological membranes and site-speci?c targeting in vivo[28,29];(3)The nanoparticles have pH-depen-dent dissolution

2.Experimental

2.1.Materials

Chitosan(Nantong Shuanglin Biological Product Inc.)was re?ned twice by dissolving it in dilute acetic acid solution,?ltered,precipitated with aqueous NaOH, and?nally dried in vacuum at room temperature.The degree of deacetylation was about90%,and the weight average molecular weights of chitosan were40,80,100, 200and300kDa,respectively,determined by visco-metric methods[30].Potassium persulfate(K2S2O8)was recrystallized from distilled water.Acrylic acid(AA) (Shanghai Guanghua Chemical Company)was distilled under reduced pressure in nitrogen atmosphere.Silk peptide powder(SP)was kindly supplied by Nanjing Golden Balei Limited Company(People’s Republic of China)as a model drug.All other reagents were of analytical grade and used without further puri?cation.

2.2.Preparation of CS–PAA nanoparticles by polymerization

The CS–PAA nanoparticles were obtained by poly-merization of AA in CS solution.Chitosan was dissolved in50ml acrylic acid solution in the ratio of 1:1([aminoglucoside units]:[AA],except when otherwise stated)under magnetic stirring.The amount of AA was maintained constantly at3mmol in all experiments. Until the solution became clear,0.1mmol of K2S2O8was added to the solution with continued stirring.The pH value of the system was maintained at about4.0. Then,the polymerization was carried out at701C under a nitrogen stream and magnetic stirring.When the opalescent suspension appeared,the reaction system was cooled,and the opalescent suspension was?ltered with paper?lter to remove any polymer aggregation.Finally, the residual monomers were removed by dialysis in a buffer solution of pH=4.5for24h using a dialysis membrane bag with a molecular weight cut-off of 10kDa.

2.3.Preparation of CS–PAA nanoparticles by dropping method

CS–PAA nanoparticles were also prepared by mixing positively charged CS and negatively charged PAA with dropping method.(a)Adding CS solution into PAA solution.Brie?y,1ml0.02%CS solution(CS with a molecular weight being80kDa was dissolved in1%(w/ v)acetic acid solution)was added dropwise into5ml 0.02%PAA(M n=100kDa)aqueous solution under magnetic stirring,the opalescent suspension was formed.The obtained suspension was then?ltered by paper?lter,the?ltered suspension was incubated in a buffer solution of pH=4.5for24h using a dialysis membrane bag for characterization.(b)Adding PAA solution into CS solution.1ml0.02%PAA (M n=100kDa)solution was added dropwise into5ml 0.02%CS solution(CS with molecular weight80kDa was dissolved in1%(w/v)acetic acid solution)under magnetic stirring.The following procedure was as described in method a.

2.4.Preparation of drug loaded CS nanoparticles

The drug-loaded nanoparticles were prepared by dissolving50mg of SP in50ml CS–PAA nanoparticlate prepared by polymerization of AA in CS solution with the CS molecular weight80kDa and incubated for48h. Then,these nanoparticles were separated from the aqueous phase by ultracentrifugation(Ultra Pro TM80, Du Pont)with50,000rpm at41C for40min.Next,the gained SP loaded CS–PAA nanoparticles were washed by acetone three times,frozen by liquid nitrogen and lyophilized by free dryer system to obtain dried SP loaded CS–PAA nanoparticles.

2.5.FT-IR spectrum analysis

FT-IR spectra were measured by a Bruke IFS 66V vacuum-type spectrometer to determine the chemical interaction between CS and PAA.The CS–PAA nanoparticles were frozen by liquid nitrogen and lyophilized by free dryer system to obtain dried CS–PAA nanoparticles.These gained CS–PAA 23(2002)3193–3201

很多人做了工作来改进亲水性丆但是我们发现一种更为新颖的。

他们的优点在于丗123

CDA,TPP等丆我们用的是氨基酸

nanoparticles were mixed with KBr and pressed to a plate for measurement.

2.6.The yields of the CS–PAA nanoparticles and size exclusion chromatography(SEC)characterization

The nanoparticles were separated from the aqueous phase by ultracentrifugation(Ultra Pro TM80,Du Pont) with50,000rpm at41C for40min.The weight of the sediment nanoparticles was de?ned as the weight of the resultant nanoparticles.The nanoparticle yields were calculated by the following equation:

Nanoparticle yielde%T

?

Weight of nanoparticles

Weight of chitosan and monomer fed initially

?100:

In order to investigate the molecular weight of PAA in nanoparticles,SEC measurement was carried out on Shimadzu LC-10AD HPLC using Ultrahydrogel120 and500columns and a RID-10A detector.The deionized water was used as eluent and the?ow rate was0.5ml minà1.The SEC was calibrated with poly (ethylene oxide)standards.F or SEC measurement,CS–PAA nanoparticles were dissolved in diluted HCl aqueous solution,and then added NaOH into this system.When the pH value of the above solution was adjusted to9,the solution was separated by ultracen-trifugation at50,000rpm for40min.The supernatant was used for SEC measurement.

2.7.Transmission electron microscopy

Transmission electron microscopy(TEM)(JEOL TEM-100,Japan)was used to observe the morphology of the CS–PAA nanoparticles.Samples were placed onto copper grill covered with nitrocellulose.They were dried at room temperature,and then were examined using a TEM without being negative stained.

2.8.Particle size and zeta potential of CS–PAA nanoparticles

The mean size and size distribution of the CS–PAA nanoparticles were measured by dynamic light scattering (DLS)(Zetasize;3000HS,Malvern,UK)in buffer solution with different pH values.All DLS measurements were done with a wavelength of 633.0nm at251C with an angle detection of901.Each sample was repeatedly measured3times and the values reported are the mean diameter7SD for two replicate samples.

The zeta potential of the CS–PAA nanoparticles were measured on Zetasize3000HS.(Malvern,UK).The samples were diluted with10m m NaCl solution at a pH value of4.5(except when otherwise stated)in order to maintain a constant ionic strength.Each sample was repeatedly measured3times and the values reported are the mean value7SD for two replicate samples.

2.9.SP encapsulation ef?ciency of the nanoparticles

The SP-loaded CS–PAA nanoparticles were separated from the aqueous suspension medium by ultracentrifu-gation with50,000rpm at41C for40min.The amount of free SP in the clear supertant was measured by ?uorescence measurements on LS-50B,(Perkin Elmer) with excitation of274nm and emission of302.4nm.

SP encapsulation ef?ciency(AE)were calculated with the following equation:

AE?

Total amount SPàFree amount SP

Total amount SP

?100:

2.10.In vitro drug release from the nanoparticles Hundred mg SP-loaded CS–PAA nanoparticles were re-dispersed in10ml distilled water and placed in a dialysis membrane bag with a molecular cut-off of10kDa,tied and placed into300ml of water medium with various pH values on sink conditions. The entire system was kept at371C with continuous magnetic stirring.After a predetermined period,5ml of the medium was removed and the amount of SP was analyzed by?uorescence measurement. The released SP was determined by a calibration curve. In order to maintain the original volume,each time, 5ml of the medium was replaced with fresh water. The SP release experiments were repeated three times.

3.Results and discussion

3.1.Synthesis of CS–PAA nanoparticles

The CS–PAA nanoparticles were prepared by two methods in our study.One was polymerization of AA in CS solution.Another is mixture of positively charged CS and negatively charged PAA with dropping method. The polymerization of acrylic acid in the presence of chitosan is showed in Scheme1.F irst,CS was dissolved in AA solution,and then the polymerization of AA was initiated by K2S2O8.When the polymerization of AA reached a certain level,the inter-and intra-molecular linkages occurred between carboxyl groups from PAA and positively charged amino groups of CS.These linkages could make the macromolecular chains of CS rolling up,which was responsible for the formation of the gelation of the CS solution.In this system,at the early stage of the polymerization,there was no or little amount of PAA in the solution,thus the system showed the property as a clear solution.As the polymerization

Y.Hu et al./Biomaterials23(2002)3193–32013195

time extended,the amount of PAA in the solution increased,and the system changed initially from a clear solution to an opalescent emulsion,indicating the formation of CS–PAA nanoparticles.

Ahn et al.[26]had reported that acrylic acid could have undergone template polymerization in CS solution.In our case,we thought that the CS–PAA nanoparticles were also prepared by template polymerization of acrylic acid in chitosan solution using chitosan as the template.As reported by F erguson,[31]in template polymerization,the presence of template during the polymerization procedure has kinetic and structural effects,which in?uences the molecular weight of the growing polymer chain.That is to say that the propagation will continue for longer on a higher molecular weight template than on a low molecular weight before termination occurs.In this experiment,we thought that the molecular weight of CS template also in?uenced the molecular weight of formed PAA.To study it,a series of CS–PAA nanoparticles was synthesized by polymerization of acrylic acid in the solution of chitosan with different molecular weights of 40,80,100,200and 300kDa.All the CS samples have a similar degree of deacetylation of about 90%.The aminoglucoside units of chitosan were equal to the units of AA fed initially.Table 1shows the results of these experiments.F rom Table 1,it is interestingly found that the molecular weight (M n )of PAA in the CS–PAA nanoparticles increased with the increase of the mole-cular weight of CS,while the yield of CS–PAA nanoparticles was maintained in the range 60–70%.Like in template polymerization,when the PAA reaches a critical molecular weight,the propagation of PAA chains is restricted by the CS template.Thus,it is

NH 2

NH 2NH 2NH 2CH 2CHCOOH

3NH 3NH 3NH 3OOCCHCH 2OOCCHCH2OOCCHCH2OOCCHCH2

NH 3NH 3NH 3NH 3OOC OOC OOC OOC

Polymerization

NH 3NH 3OOC

OOC

OOC

OOC NH 3NH 3CS

CS-PAA nanoparticles

Scheme 1.Preparation mechanism of CS–PAA nanoparticles.

Table 1

The relationship of the molecular weight of CS and PAA Sample no.

Molecular weight of CS,M w Polymerization time (h)Molecular

weight of PAA,M n Yield of PAA (%)Yield of

nanoparticles (%)140,00023678570.0280,000210878368.63100,000221387262.34200,000245267863.15

300,000

2

8026

71

60.0

Y.Hu et al./Biomaterials 23(2002)3193–3201

3196

reasonable to conclude that the polymerization of AA in CS solution is a template polymerization.

3.2.FT-IR analysis

To investigate the complex formation between PAA and chitosan,F T-IR studies were conducted. ig.1shows the T-IR spectra of PAA,CS and CS–PAA nanoparticles prepared by the polymerization of AA in CS solution.For CS–PAA nanoparticles, the intensities of amide band I at1662cmà1and amide band II at1586cmà1,which can be observed clearly in pure chitosan,decrease dramatically,and two new absorption bands at1731and1628cmà1, which can be assigned to the absorption peaks of the carboxyl groups of PAA(the absorption peak of carboxyl groups in pure PAA appears at1740cmà1), and the NH3+absorption of CS,respectively,are observed.The broad peaks appeared at2500and 1900cmà1also con?rmed the presence ofàNH3+in CS–PAA nanoparticles.F urthermore,the absorption peaks at1532and1414cmà1could be assigned to asymmetric and symmetric stretching vibrations of COOàanion groups.These results indicate that the carboxylic groups of PAA are dissociated into COOàgroups which complex with protonated amino groups of CS through electrostatic interaction to form the polyelectrolyte complex during the polymerization procedure.3.3.In?uence of the ratio of CS/AA on the mean diameter of nanoparticles

The particle size distributions of CS–PAA nanopar-ticles,prepared by polymerization of AA in CS solution with various CS/AA ratios([aminoglucoside uni-ts]:[AA]),were characterized by DLS at pH4.5.The results are displayed in Fig.2and Table2.It is shown that the diameter of each sample is smaller than300nm. Moreover,the diameter distribution of the nanoparticles is smallest when CS:AA=1:1.This result suggested that the ratio of CS to AA have an in?uence on the mean particle size.It also can be seen that CS–PAA nanoparticles could be obtained at a different ratio of CS to AA,and the preparation condition of CS–PAA nanoparticles was not very critical on the ratio of CS to AA compared to CS-DNA and CS-TPP systems[24,25].

F rom the results of zeta potential listed in Table2,it is found that the surfaces of CS–PAA nanoparticles have positive charges of about20–30mV.The positive-charged surface of CS–PAA nanoparticles is common to other CS nanoparticles reported by other authors because of the cationic characteristic of CS.However, it is interesting to?nd that as the ratio of CS/AA increases,the zeta potential also increases.It is reason-able that CS is a cationic polysaccharide,when the content of CS(aminoglucoside units)excesses than AA, some of the excessive CS will be absorbed onto the surface of CS–PAA nanoparticles,which will increase 1001000

5

10

15

20

25

V

o

l

u

m

e

%

Particle Diameter (nm)

Fig.2.Size distribution of CS–PAA nanoparticles with various CS/PAA ratios(wt/wt)at pH=4.5.

Wavelength(cm-1)

F ig.1.F T-IR spectra of CS,PAA,and CS–PAA.

Table2

Mean particle size and zeta potential of CS–PAA complex nanoparticles

Sample AA:CS(wt:wt)Mean diameter a(nm)Polydispersity Zeta potential(mV) I1:22507200.32570.046+27.373.5

II1:12067220.16570.009+25.373.2

III2:12937250.35270.032+23.172.8

a Mean diameter was characterized at pH=4.5.

Y.Hu et al./Biomaterials23(2002)3193–32013197

the surface charges of CS–PAA nanoparticles and resulting in the increase of zeta potential.

3.4.In?uence of pH value on the mean diameter and morphology of CS–PAA nanoparticles

In order to investigate the effect of pH values on CS–PAA nanoparticles prepared by polymerizing AA in CS solution,a series of experiments were carried out.The obtained CS–PAA nanoparticles,with CS molecular weight80kDa,were incubated in buffer solution with different pH values(pH=1,2,3,4.5,5.8,7.4,9).Results of these experiments showed that these nanoparticles were stable in distilled water and acidic media in a range of pH values from4.0to7.4but dissolved in a few minutes in0.1n HCl and aggregated quickly at pH values larger than9.Table3shows the result of the mean diameter of the CS–PAA nanoparticles under different pH values.F rom Table3,it can be seen that, the diameter of the nanoparticles increases with the increase of pH value from4.0to7.4.

Fig.3shows the TEM photographs of CS–PAA nanoparticles prepared by template polymerization. All these nanoparticles were incubated in buffers for 48h.The nanoparticles,which were in acetic buffer solution at a pH value of4.5(F ig.3(a)),exhibit solid and consistent spherical shapes,indicating that the CS–PAA nanoparticles have a matrix structure.However these nanoparticles in PBS at a pH of7.4shown in Fig.3(b)exhibit a compact core surrounded by a diffuse and fuzzy coat.These facts can be explained by the following.These CS–PAA nanoparticles were formed by ionic interaction between positively charged chitosan and negatively charged PAA.CS is a kind of weak alkali and PAA is a kind of weak acid.The p K a values of PAA

and CS are 4.75and 6.5[26],respectively.Under stronger acidic conditions,such as pH o4.0,most carboxylic groups of PAA are in the form ofàCOOH. The interaction between NH3+and COOàin the CS–PAA nanoparticles could be disrupted by the acid of small molecules,which leads to chain stretch of CS and PAA.So the CS–PAA nanoparticles would be dissolved quickly.When the pH value is in the range from4.5to 5.8,CS and PAA are partly ionized.The partly ionized CS and PAA can form compact polyelectrolytes complex by ionic interaction,which results in a matrix structure with solid and consistent spherical shapes. When pH values increased from4.5to7.4,as listed in Table3,the ionized degree of PAA increased,and the charge density of the PAA molecules signi?cantly increased.Thus,the electrostatic repulsive forces of inter-and intra-PAA molecules increased,resulting in the increase of swelling degree of PAA and the increase of the mean size of these CS–PAA nanoparticles.When these CS–PAA nanoparticles were incubated in PBS, (pH=7.4),the morphology of nanoparticles was chan-ged because of the difference of the solubility of CS and PAA.At this pH value,PAA was highly swollen while CS was insoluble,which results in the phase separation of nanoparticles,that is,CS was just physically coated on this nanoparticles.Thus these CS–PAA nanoparti-cles formed the core-shell-like structure as shown in F ig.3(b).On contrary,under extremely basic condition, the COOH groups from PAA were neutralized by OHà, and almost all amine groups from CS were in the form of NH2.Thus,the CS–PAA nanoparticles would be destroyed,resulting in an aggregation of CS due to its

Table3

The mean diameter of CS–PAA nanoparticles under various pH values pH Value Mean diameter(nm) 4.0175732

4.5206722

5.8400746

7.46257

106Fig.3.Electron transmission microphotography of CS–PAA nano-particles at(a)pH=4.5and(b)at pH=7.4.

Y.Hu et al./Biomaterials23(2002)3193–3201 3198

insolubility in basic solution.

These processes can be shown as follows:When pH o 4.0,

NH t3àCOO

à

H t

-

NH t3tCOOH CS-PAA nanoparticles Clear solution

:e1T

When pH>9.0,

NH t3àCOO

à

OH à

-

NH 2tCOO àtH 2O

CS-PAA nanoparticles

Aggregation

e2T

F rom Eqs.(1)and (2),it is evident that,to obtain stable nanoparticles,the system should be in suitable pH value.

rom these results,it could be seen that these nanoparticles are pH-sensitive,which would be good as carriers to load ocular drug because there are different pH values in the alimentary canal.

3.5.In?uence of different preparation procedures on the morphology of CS–PAA nanoparticles

The CS–PAA nanoparticles were also synthesized by dropping method.The in?uence of different preparation procedures on the CS–PAA nanoparticles was investi-gated.Fig.4(a)shows the TEM photograph of CS–PAA nanoparticles prepared by dropping PAA solution into CS aqueous solution.Fig.4(b)shows the nanoparticles obtained by dropping CS aqueous solution into PAA solution.Because many factors in?uence TEM photo-graph,such as the sample structure,staining condition,in this experiment,all of those nanoparticles are not negative stained with phosphotungstic acid solution.The difference between the TEM photographs of samples might be mainly conduced by the sample structure.

CS–PAA nanoparticles shown in Fig.4(a)have a circular shape consisting of a dark shell and a light core.Fig.4(b)exhibits CS–PAA nanoparticles with a dark,solid and consistent structure.These results indicated that different preparation procedures have signi?cant in?uence on CS–PAA nanoparticles morphology.In the case of dropping PAA into CS solution,a PAA core was initially generated and a complex coacervate membrane is formed on the surface of PAA core.Thus,the nanoparticles with core-shell structure were formed.The formed CS–PAA complex membrane is so dense that it prevents the CS molecular solution from diffusing into the core to further complex with PAA.When these CS–PAA nanoparticles were dried to the TEM char-acterization,the water,which swelled the PAA cores,was removed off and formed some cavities in the cores.In this region,electron beams could easily pass through the CS–PAA nanoparticles,which resulted in a light region in the TEM photograph.For the CS–PAA complex membrane,which is very dense,it prevents

majority of the electron beams passing through it.As a result,the region of CS–PAA complex membrane is dark.Similar structures were also observed by TEM from polystyrene-block-poly(acrylic acid)dissolved in water [32].When dropping CS into PAA solution,CS–PAA nanoparticles with a CS core and a CS–PAA membrane are formed.Because CS does not swell in acidic condition,there are no cavities formed in CS–PAA nanoparticles when they are dried for TEM characterization,thus a dark,solid structure was observed.In addition,similar results were also observed in the chitosan-alginate beads [33].

Table 4lists the results of mean sizes and zeta potentials of CS–PAA nanoparticles obtained by different preparation procedures described above.As shown in Table 4,the preparation procedures have an effect on the CS–PAA nanoparticles size.CS–PAA nanoparticles obtained by template polymerization has the smallest mean diameter.In the case of dropping PAA into CS solution,PAA solution cannot be dispersed homogeneously,and polyelectrolyte complex can be formed instantly,which makes the nanoparticles to have a large size and a broad size distribution.The same happens when CS drops into PAA solution.In the

Fig.4.Morphology of CS–PAA nanoparticles prepared by different procedure at pH 4.5:(a)CS dropping into PAA solution;(b)PAA dropping into CS solution.

Y.Hu et al./Biomaterials 23(2002)3193–32013199

case of template polymerization,since the CS and PAA are homogeneously dispersed in the solution,the smallest and uniform size nanoparticles can be obtained.Interestingly,when CS was dropped into PAA solution,the CS–PAA nanoparticles have negative zeta potential,which is quite different from samples 2and 3.This might be due to the fact that there is excessive PAA in the solution,and that the PAA is negatively charged.Some of the negatively charged PAA molecules were adsorbed onto the surface of CS–PAA nanoparticles,which resulted in the negative zeta potential.

These results indicate that the surface structure and the surface charge of these nanoparticles can be adjusted by different preparation processes.3.6.SP release

In order to investigate the feasibility of using CS–PAA nanoparticles as hydrophilic drug carriers SP as a model peptide was loaded by CS–PAA nanoparticles prepared by template polymerization.Fig.5shows the release pro?les of SP from CS–PAA nanoparticles with an encapsulation ef?ciency of 82%(7.96%,Wt/Wt)for various time intervals in various pH values release media at 371C.An initial burst release followed by a slow release of SP occurred in pH values of 4.5and 7.4.Moreover,these nanoparticles provided a continuous release of the entrapped peptide for up to 10days.On the other hand,at pH values of 2.0and 3.0,the SP release rate was very fast and about 90%of the loaded SP was released from CS–PAA nanoparticles within 25h.It is obvious from the results that the release of the SP depends on pH values of the release medium.The release pro?le at a pH of 4.5has the slowest release rate,and at a pH of 2.0,the CS–PAA nanoparticles almost do not have any sustained release property.This can be explained by the fact that the release of the SP depends greatly on the swelling of the nanoparticles.At a pH of 4.5,there is very limited swelling,and the SP entrapped in the nanoparticles cannot be released easily.However,at a pH of 7.4,the nanoparticles are swollen to a great extent,resulting in a fairly fast release of SP compared

with the nanoparticles at pH of 4.5.This result is also in good agreement with the effect of the pH values on nanoparticles morphology as mentioned above.At strong acidic condition,for example,pH value o 4.0,the nanoparticles will dissolve quickly,which leads to the very fast release effect.These results suggest the possibility to adjust the drug release rate of the CS–PAA nanoparticles by changing the pH values.

4.Conclusion

The CS–PAA nanoparticles can be prepared by polymerizing acrylic acid into chitosan template.The remarkable advantage of this system is that it is solely made of hydrophilic polymers:chitosan and poly(acrylic acid),which are non-toxic,and biodegradable.All these CS–PAA nanoparticles are obtained under mild condi-tions without any organic solvents and surfactants.These nanoparticles are stable under acidic and neutral conditions ranging from 4to 8,and aggregate at pH>9.F urthermore,different preparation procedures have a great in?uence on these CS–PAA nanoparticles.The preliminary results of model drug (silk peptide)loading and release experiments indicate that this system seems to be a very promising vehicle for the administration of hydrophilic drugs,proteins and peptides.F urthermore,

due to their pH-sensitive behavior,these CS–PAA nanoparticles are appropriate carriers for the delivery of drugs in the gastric cavity.

Acknowledgements

The authors are thankful to Natural Science Founda-tion of Jiangsu Province,China for the partial ?nancial support of this study.

50

100

150

200

250

300

350

20406080100S P r e l e a s e d (%)

Time (hours)

Fig.5.Release pro?les of SP from CS–PAA nanoparticles at various pH values at 371C (n ?3).

Table 4

Zeta potential of CS–PAA PEC nanoparticles obtained by different procedure

Sample Mean size a (nm)Zeta potential (mv)1436778à22.273.6235874647.272.83

206722

25.373.2

CS dropping into PAA solution.PAA dropping into CS solution.Free radical polymerization.a

Mean size was characterized at pH=4.5.

Y.Hu et al./Biomaterials 23(2002)3193–3201

3200ph 敏感性的应用,自己文章以后用的着

References

[1]Couvreur P,Grislain L,Lenaerts V,Brasseur ,Guiot P,

Biernachi A.Biodegradable polymeric nanoparticles and drug carries for antitumor agent.In:Guoit P,Couvreur P,editors.Polymeric nanoparticles and microspheres.Boca Raton FL:CRC Press,1986.p.27–93.

[2]Legrand P,et al.Polymeric nanocapsules as drug delivery system.

STP Pharm Sci 1999;9:411–8.

[3]Gref R,Minamitake Y,Peracchia MT,Trubetskoy V,Torchilin

V,Langer R.Biodegradable long-circulating polymeric nano-spheres.Science 1994;263:1600–3.

[4]Guzman M,Aberturas MR,Rodriguez-Puyol M,Molpeceres J.

Effect of nanoparticles on digitoxin uptake and pharmacological activity in rat glomerular mesangial cell cultures.Drug Delivery 2000;7(4):215–22.

[5]Lamprecht A,Ubrich N,Perez MH,Lehr CM,Hoffman M,

Maincent P.In?uences of process parameters on nanoparticle preparation performed by a double emulsion pressure homo-genization technique.Int J Pharm 2000;196(2):177–82.

[6]Wehrle P,Magenheim B,Benita S.The in?uence of process

parameters on the PLA nanoparticles size distribution evaluated by means of factorial design.J Pharm Biopharm 1995;41:19–26.[7]Ge HX,Hu Y,Yang SC,Jiang XQ,Yang CZ.Preparation,

Characterization,and drug release behaviors of drug-loaded e -caprolactone/l -lactide copolymer nanoparticles.J Appl Polym Sci 2000;75:874–82.

[8]Wang N,Wu XS,Li JK.A heterogeneously structured composite

based on poly(lactic-co-glycolic acid)microspheres and poly(vinyl alcohol)hydrogel nanoparticles for long-term protein drug delivery.Pharm Res 1999;16(9):1430–5.

[9]Chacon M,Molpeceres J,Berges L,Guzman M,Aberturas MR.

Stability and freeze-drying of cyclosporine loaded poly(d ,l lactide-glycolide)carriers.Eur J Pharm Sci 1999;8(2):99–107.

[10]Ryu JG,Jeong YI,Kim IS,Lee JH,Nah JW,Kim SH.

Clonazepam release from core-shell type nanoparticles of poly (epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-capro-lactone)triblock copolymers.Int J Pharm 2000;200(2):231–42.[11]De Jaeghere F ,Allemann E,Leroux JC,Stevels W,F eijen J,

Doelker E,Gurny R.F ormulation and lyoprotection of poly(lactic acid-co-ethylene oxide)nanoparticles:in?uence on physical stability and in vitro cell uptake.Pharm Res 1999;16(6):859–66.

[12]Heald CR,Stolnik S,De Matteis C,Garnett MC,Illum L,Davis

SS,Leermakers F AM.Self-consistent ?eld modeling of poly(lactic acid)-poly(ethylene glycol)particles.Colloids Surf A:Physico-chem Eng Aspects 2001;179(1):79–91.

[13]Muzzarelli R,Baldassarre V,Conti F ,et al.Biological activity of

chitosan:ultrastructural study.Biomaterials 1988;9:247–52.

[14]Hirano S,Seino H,Akiyama Y,Nonaka I.Chitosan:a

biocompatible material for oral and intravenous administration.In:Gebelein CG,Dunn RL,editors.Progress in biomedical polymers.New York:Plenum Press,1990.p.283–90.

[15]Muzzarelli RAA.Biochemical signi?cance at exogenous chitins

and chitosans in animals and patients.Biomaterials 1993;20:7–16.[16]Lorenzo-Lamosa ML,Remunan-Lopez C,Vila-Jato JL,Alonso

MJ.Design of microencapsulated chitosan microspheres for colonic drug delivery.J Control Rel 1998;52:109–18.

[17]Hari PR,Chandy T,Sharma CP.Chitosan/calcium-alginate

beads for oral delivery of insulin.J Appl Polym Sci 1996;59:1795–801.

[18]Gupta KC,Ravi Kumar MNV.Drug release behavior of beads

and microgranules of chitosan.Biomaterials 2000;21:1115–9.[19]Lim ST,Martin GP,Berry DJ,Brown MB.Preparation and

evaluation of the in vitro drug release properties and mucoadhe-sion of novel microspheres of hyaluronic acid and chitosan.J Control Rel 2000;66:281–92.

[20]Onishi H,Shimoda J,Machida Y.Chitosan-drug conjugate

microsheres:preparation and drug release properties of micro-spheres composed of the conjugate of 20-or 30-(4-carboxy-butyryl)-5-?uorouridine with chitosan.Drug Dev Ind Pharm 1996;22(5):457–63.

[21]F wu-Long M,Chih-Yang K,Shin-Shing S,Sung-Tao L,Shon-Foun C.The study of gelation kinetics and chain relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release.Biomater-ials 2000;41:389–96.

[22]Tokumitsu H,Ichikawa H,F ukumori Y.Chitosan-gadopentetic

acid complex nanoparticles for gadolinium neutron-capture therapy of cancer:preparation by novel emulsion-droplet coalescence technique and characterization.Pharm Res 1999;16(12):1830–5.

[23]He P,Davis SS,Illum L.Chitosan microspheres prepared by spry

drying.Int J Pharm 1999;187:53–65.

[24]Mao HQ,Roy K,Troung-Le VL,Janes KA,Lin KY,Wang Y,

Thomas August J,Leong KW.Chitosan-DNA nanoparticles as gene carriers:synthesis,characterization and transfection ef?-ciency.J Control Rel 2001;70:399–421.

[25]Calvo P,Remunan-Lopez C,Vila-Jato JL,Alonso MJ.Novel

Hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.J Appl Polym Sci 1997;63:125–32.

[26]Ahn JS,Choi HK,Cho CS.A novel mucoadhesive polymer

prepared by template polymerization of acrylic acid in the presence of chitosan.Biomaterials 2001;22:923–8.

[27]Calvo P,Remunan-Lopez C,Vila-Jato JL,Alonso MJ.Develop-ment of positively charged colloidal drug carriers:chitosan-coated polyester nanoparticles and submicro emulsions.Colloid Polym Sci 1997;275:46–53.

[28]Meisner D,Pringle J,Mezei M.Liposomal ophthalmic drug

delivery:III pharmacodynamic and biodisposition studies of atropine.Int J Pharm 1989;55(2–3):105–13.

[29]Meisner D,Pringle J,Mezei M.Liposomal pulmonary drug

delivery:I in vivo disposition of atropine base in solution and liposomal form following endotracheal instillation to the rabbit lung.J Microencapsulation 1989;6(3):379–87.

[30]Qurashi T,Blair HS,Allen SJ.Studies on modi?ed chitosan

membranes.I.Preparation and characterization.J Appl Polym Sci 1992;46:255–61.

[31]erguson J,Al-Alawi S,Granmayeh R.Template molecular

weight effects on the polymerization of acrylic acid.Eur Polym J 1983;19(6):475–80.

[32]Zhang LF ,Eisenberg A.Multiple morphologies of ‘‘Crew-Cut’’

aggregates of polystyrene-b-poly(acrylic acid)block copolymers.Science 1995;268:1728–31.

[33]Olav Gaser d,Andrea Sannes,Gudmund Skjak-Br K.Micro-capsules of alginate-chitosan.II.A study of capsule stability and permeability.Biomaterials 1999;20:773–83.

Y.Hu et al./Biomaterials 23(2002)3193–32013201

纳米载药囊的研究进展

摘要 纳米囊作为一种新型的纳米级药物载体系统,具有小粒子特征,可以穿越生物膜屏障和网状内皮组织系统到达人体特定部位。本文对纳a米载药囊研究进展进行了综述,对于纳米囊制备方法、载药种类、囊材选取以及生物学评价等进行了着重介绍,并对未来进行了展望。随着近年来对于纳米载药囊的进一步研究和科学技术的发展,将纳米载药囊的发展推向了新的阶段。 关键词:纳米囊制备方法载药生物学评价

Abstract Nanocapsule is a kind of Nanoparticles drug delivery system , it can pass through biological membrane barrier and meshy endodermis system to reach certain parts of body. The progress of researches on drug-loaded nanoparticles was summarized in this review. The major emphasis was laid on the preparation of nanoparticles, type of drug-loaded, selection of nanoparticles and biocompatibility evaluation. Additionally, we made a perspective of the development in this field. With further research of drug-loaded nanoparticles and development of science and technology, it will push the application of drug-loaded nanoparticles in new field. Key words: Nanocapsule Preparation Drug-loaded Biocompatibility evaluation

新型纳米载药体系研究

2015年教育部推荐项目公示材料(自然奖、自然奖-直报 类) 1、项目名称:新型纳米载药体系研究 2、推荐奖种:高等学校自然科学奖 3、推荐单位:东南大学 4、项目简介:纳米载药体系的研究和应用,不仅能显著提高疾病治疗效果和提高人类的健康水平,还能显著降低医疗成本,也是各国政府大力推进的新技术。但目前纳米载药领域也还有着很多的问题没有解决,发现和研究高效低毒的纳米载药体系并加以应用,是材料、药物和医学界共同努力和追求的目标。基于此,本项目团队着重研究基于氧化石墨烯、牛血清白蛋白和壳聚糖纳米粒子的纳米载药系统的构建和潜在应用研究,取得了如下主要创新成果: 1、基于氧化石墨烯的新型纳米载药体系的研究:化疗是目前治疗癌症最有效的方法之一。但化疗的效果往往不够理想,主要原因在于化疗给药的靶向性差,毒副作用严重,而且长期使用容易产生耐药性。针对以上问题,我们通过化学修饰新型二维纳米材料氧化石墨烯,首次实现了抗癌药物阿霉素和喜树碱的可控联合载药和生物靶向递送,其在体外实验中表现出比单一载药更高的抗肿瘤效应,利用聚乙烯亚胺功能化石墨烯,联合递送具有靶向肿瘤抗凋亡蛋白

Bcl-2的siRNA及阿霉素显著增强抗肿瘤效果。与此同时,通过系统比较和计算机模拟,发现将氧化石墨烯还原制备的还原氧化石墨烯可更高效率吸附单链核酸,并可将本来难以进入细胞的单链核酸有效递送至细胞内。 2、基于牛血清白蛋白的多功能纳米药物递送体系的研究:围绕药物靶向递送,我们也通过化学改性血清白蛋白这一体内常见蛋白质,构建了聚乙二醇化的血清白蛋白纳米粒子,该粒子对水不溶性药物具有较强的吸附能力,并可显著增强不溶性药物的溶解度,可用于构建靶向递送系统。改性后的牛血清白蛋白可溶于DMSO等有机溶剂,从而可利用这种改性的血清白蛋白直接修饰油溶性的无机纳米粒子,改善其水溶性,构建多功能纳米载药体系。 3、基于壳聚糖的纳米药物递送体系的研究:我们采用离子凝胶法制备了基于壳聚糖的微纳米颗粒,通过同轴静电纺丝制备“核-壳”结构的表面多孔的PLLA纤维支架,并携带药物实现功能化,阐明了药物释放规律及机理;采用“graft to”的方法,结合两性离子材料磺酸甜菜碱甲基丙烯酸甲酯(SBMA)的优良的抗蛋白质吸附性能和多巴胺(DOPA)衍生物邻苯二酚(catechnol)的粘附功能,对PLLA血管支架表面改性,大大改善了其生物相容性(见代表性论文6-7);与此同时,为改善纳米药物递送系统存在的凝血等诸多问题,本研

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展 目的:为设计用于联合给药逆转肿瘤多药耐药的新型纳米药物载体提供参考。方法:以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献,对纳米药物载体介导的联合给药在逆转肿瘤多药耐药中的优势及联合给药的类型进行综述。结果与结论:共检索到相关文献282篇,其中有效文献47篇。药物经纳米载体包载后具有增加药物在肿瘤部位的蓄积、延长药物在体内的循环时间、促进药物在肿瘤部位的靶向递送、控制联合给药药物比例、增强逆转多药耐药的协同作用等优势。纳米载体可以介导不同类型药物的联合给药用于逆转肿瘤多药耐药。联合递送的药物组合类型包括化疗药与化疗药、化疗药与多药耐药逆转剂、化疗药与小干扰RNA、化疗药与单克隆抗体、天然产物与天然产物等。其中,采用化疗药与其他药联合给药是最常见的联合给药类型。纳米药物载体介导的联合给药是逆转肿瘤多药耐药的非常具有潜力的给药形式,但目前均未进入临床阶段。为使纳米药物载体介导的联合给药更好地应用于临床,在处方工艺和临床效果评价等方面尚需大量的研究工作。 关键词纳米药物载体;联合给药;肿瘤多药耐药;综述 肿瘤多药耐药(MDR)是指肿瘤细胞在对一种化疗药产生耐药的情况下同时对一系列不同结构和不同机制的化疗药产生耐药的现象,MDR是临床上导致化疗失败的重要原因[1]。MDR发生机制复杂,包括细胞内因以及肿瘤微环境改变等,MDR发生机制的复杂性为克服肿瘤耐药带来挑战[2-3]。目前有研究报道的逆转MDR的策略很多,包括应用新型药物递送系统递送化疗药、采用MDR 逆转剂与传统化疗药联合给药等[4-6]。与临床单一药物治疗比较,联合给药对耐药肿瘤具有更好的疗效,目前临床上往往采用联合给药的策略治疗耐药肿瘤或降低耐药肿瘤的发生率[7]。采用纳米药物载体共载需联合给药的药物可进一步增强对耐药肿瘤的增殖抑制作用,为逆转肿瘤MDR提供了很好的药物递送平台[8-9]。 采用药物递送系统联合递送化疗药与MDR逆转剂是近年来一种非常有前景的逆转MDR的策略[6]。有研究报道的可以用于联合递送药物的常用纳米药物载体包括脂质体、纳米粒、胶束、脂质体、纳米乳和纳米凝胶[7]。纳米载体可以通过高通透性和滞留(EPR)效应、延长体内循环时间、靶向给药等增强逆转MDR的效果。笔者以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献。结果,共检索到相关文献282篇,其中有效文献47篇。现对纳米药物载体介导的联合给药在逆转肿瘤MDR中的优势及联合给药的类型进行综述,以期为设计新型纳米药物载体联合给药用于逆转肿瘤MDR提供参考。 1 纳米药物载体介导的联合给药的优势

纳米药物研究进展

纳米药物研究进展 徐州医学院药学院(徐州 221000) 李岩 (068612077) [摘要]纳米科学与技术是近年来迅速发展起来的前沿科技领域 ,并已在各学科的研究中产生了巨大的影响。目前 ,纳米科学与技术在医药领域的应用也取得了令人瞩目的成绩 ,有力地推动了医药科技的发展 ;其在医学和药学方面为疾病的诊断与治疗开辟了一个崭新的领域。本文就纳米药物的概念和特点、制备方法和应用等作一综述 ,对相关技术和方法进行评价和展望,并简要介绍我国近年来纳米中药的研究与进展。 [关键词] 纳米药物研究进展 1 引言 纳米技术自21世纪80年代被提出之后 ,在材料、冶金、化学化工、医药、卫生、环境及其交叉领域表现出空前的应用潜力。纳米药物则是医药研究领域的新热点。美国、日本、德国等发达国家都斥巨资进行研究 ,有的已制成药物并申请专利 ,且开始了药物的临床实验。 纳米药物是以纳米级高分子毫微粒(N P)或微球(N S)、微囊(N C)为载体 ,与药物以一定方式结合在一起后制成的药物。与常规药物相比,纳米药物具有颗粒小、比表面积大、表面反应活性高、活性中心多、催化效率高、吸附能力强等特点 ,因此它有许多常规药物所不具有的优点:缓释药物,改变药物在体内的半衰期,延长药物的作用时间;制成导向药物后作为“生物导弹”达到靶向输药至特定器官的目的;在保证药效的前提下,减少药用量,减轻或消除毒副作用;提高药物的稳定性,有利于存储;改变膜运转机制,增加药物对生物膜的透过性,有利于药物透皮吸收及细胞内药效的发挥;增加药物溶解度。正是如此,本文对纳米药物的研究进展方面进行了叙述。 2 纳米药物的种类及制备方法 2. 1 纳米脂质体 (nanoliposome) 脂质体(脂质小囊)是近年研究较多的一种剂型 ,它制备简单 ,应用方便 ,可多用途给药 ,是一种具 有同生物膜性质类似的磷脂双分子层结构载体。脂质 体作为药物载体有其独特的优势 ,包括可保护药物 免受降解、达到靶向部位和减少毒副作用。但是它也 存在许多缺陷 ,如包封率低、脂质体膜易破裂、药物 易渗漏、重复性差、体内不稳定和释药快等。纳米脂 质体的制备方法主要有超声分散法、逆相蒸发法等 , 张磊等[1]用逆相蒸发-超声法制备了胰岛素纳米脂质 体 ,平均粒径为83.3nm ,包封率78.5% 。 2. 2 固体脂质纳米粒(solid lipid nanoparticles,SLN) SLN是以多种类脂材料如脂肪酸、脂肪醇及磷脂等为载体 ,将药物包裹于类脂材料中制成固体颗粒。 SLN具有一定的缓释作用 ,主要适合于难溶性药物 的包裹 ,被用作静脉注射或局部给药达到靶向定位和控释作用的载体 ,能避免药物的降解和泄漏。SLN 主要适用于亲脂性药物 ,用于亲水性药物时存在包封率较低的缺陷。 2. 3 纳米囊和纳米球 主要由聚乳酸、聚丙交酯- 乙交酯、壳聚糖和明胶等能够生物降解的高分子材料制备 ,可用于包裹亲水性或疏水性药物。不同材料的性能适合于不同的给药途径 ,如静脉注射的靶向作用、肌内或皮下注射的缓控释作用 ,口服给药的纳米囊和纳米球也可用非降解性材料 ,如乙基纤维素、丙烯酸树脂等[2]。此类载体的制备方法主要有沉淀法、乳化-溶剂挥发法等[3]。 2. 4 聚合物胶束 这是近几年正在发展的一类新型的纳米载体 ,它同时具有亲水性基团及疏水性基团 ,在水中溶解后自发形成高分子胶束 ,并完成对药物的增溶和包裹。它具有亲水性外壳及疏水性内核 ,适合于携带不同性质的药物 ,且可使药物能逃避单核巨噬细胞的吞噬 ,即具有“隐形”性[4]。

载药纳米微粒制备技术

载药纳米微粒制备技术 赵硕常津*卢剑原续波 (天津大学材料科学与工程学院天津 300072) 摘要载药纳米微粒作为近年来新型的药物投递载体超微小的粒径作为包载疫苗蛋白和基因等大分子药物的 载体增强疗效由于其超微小的粒径 可以有效地穿越组织间隙从而更有效地对药物 实行靶向和控制释放并对其中的影响因 素同时对于载药纳米微粒的发展做出展望 nanoparticles?÷òa°üà¨?é?×?¢?òoí?é?×?¢?ò?é?×ò?????ì??μí3×÷?aD?Díμ?ò???í?μYoí????êí·??μí3 ó?à′??±???ò??é?×?¢á£μ?2?á??÷òa·??aììè???·?×óoío?3é??·?×óá?′óààμ°°×?êoó???÷òaóD???¥àà???£°·ààò??° ???-?á?¥ààμèo£???áPLA PGA PCL °ü1ü?ú?é?×??ì??D?aD?2?á??úì? 赵 硕 男硕士生 *联系人 E-mail:jinchang4@hotmail.com 国家科委基础研究快速反应支持项目(200151) 2002-04-18收稿

内随着其本身的水解随人体循环不断从体内排出 由于载药纳米微粒具有比一般粒子更小的体积纳米粒子进入体内RES ???ü′?????°?????BBB ??éùò???ó?á? í?ê±óDà?óúò???μ??ü2?oí??ê? ê1??3é?aò???oüóD?°í?μ?ò???D??áDí (1)吸附或连接于粒子表面的药物与粒子脱离 (3)粒子本身不断被融蚀(4)扩散与分解同时发生作用 当微粒中药物扩散的速度大于其融蚀分解的速度时相反释放机理主 要为分解称谓 而不是载体中包载的药物随着药物的逐步释放接下来的纳米微粒中药物释放一般遵循一级动力学[1~4] ??×?μ°°×?ê?aò?μ÷?ú?á??ò??é?× ?¢á£?μí3μ?μ?á??ü1?·oμ?1?×¢ò×êü???a áíía?12???ò??? 尽管有很多载药纳米微粒制备技术的报道 药物用途以及整个治疗需要持续的时间(1)药物的稳定性和活性在整个制备过程中和最终载体系统产品中不能受到负面影响 药物包封率要高(4)制得的纳米粒子应是自由流动的粉状固体 1 溶剂挥发与抽提技术[8] 溶剂挥发与抽提技术又称液中干燥法传统的油/水(O/W)单乳制备方法是首 先将高分子溶于一种不溶于水的挥发性溶剂中(例如二氯甲烷) ?ù?úêêμ±μ????èoí?á°èì??t???óè?á?D????à?D ??èéòo?ú3£?1??×?óé?ó·¢?òó?????3éìáμ?·?·¨ê1èü?á?ó·¢ 1ì?ˉμ?á£×ó?éò?í¨1y?′μóà?D?μè·?·¨μ?μ?·?×′2ú?· 3£ó?μ?èé?ˉ?áóD??òò??′?土 温Poloxamer-188明胶等 实验中也经常选用两种或两种以上的乳化剂搭配使用一般来说 提高乳化剂的浓度 纳米粒子的制备过程中例如搅拌速度对于乳液液滴大

纳米粒子在药物载体中的应用

纳米粒子在药物载体中的应用

纳米粒子在药物载体的研究进展 摘要::纳米粒子作为一种新型的药物载体, 由于它的超微小体积, 能穿过组织间隙并被细胞吸收, 通过人体最细的毛细血管, 还可透过血脑屏障, 显现出极大的潜力并被广泛研究, 具有广阔的发展前景。本文从不同分类的纳米粒子着手,综述其在药物载体中的应用. 关键词:纳米粒子、药物载体、控制释放 纳米粒子( nanoparticle) 也叫超微粒子,尺寸在1—1 000 nm 之间,通常由天然或合成高分子材料制成,目前无机材料也研究得比较多。主要通过静电吸附、共价连接将药物结合在其表面,或者直接将药物分子包裹在其中,然后通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入细胞内,实现安全有效的靶向药物输送和基因治疗。纳米控释系统作为独特的药物新剂型得到越来越广泛的关注。本文通过从不同类别的纳米粒子着手综述对其在药物载体中的应用。 1、有机纳米粒 纳米粒使用的载体材料目前多为天然或者合成的可降解的高分子化合物。天然高分子及其衍生物可分为蛋白类(白蛋白、明胶和植物蛋白)和多糖类(纤维素和淀粉及其衍生物、海藻酸盐、壳聚糖等)。合成高分子主要有聚乳酸、聚己类酯等。 1.1天然化合物 1.1.1环糊精 环糊精是一种来自于淀粉的环状材料,其结构是葡萄糖单体通过1,4α连接的环状分子。在水相中,通过分子内氢键作用形成稳定的桶状结构,外围是亲水性表层而易溶于水溶液中,内部是疏水性的空腔,可以有效地包含疏水性的小分子,而形成主客体作用(环糊精称为主体,包含的小分子称为客体,这种通过疏水性作用的结合成为主客体作用)。李媛[1]等采用α-环糊精(α-CD)穿入两端带有可光交联基团的改性PEG链形成包含复合物,通过疏水性端基的自组装形成纳米粒子,并将抗肿瘤药物阿霉素负载到纳米粒子中,结果显示超分子纳米粒子具有很好的生物相容性和药物缓释作用,载药纳米粒子对肿瘤细胞具有很好的杀伤效果。 张先正等制备了由α-环糊精及其经马来酸酐改性的衍生物与聚(ε-己内酯)(PCL)通过主客体包合作用形成的超分子纳米胶束,并研究了这种胶束的药

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

纳米农药的研究进展

纳米农药的研究进展 日期:2010-08-10 来源:2010 字体大小:大中小 农药对农业生产有着重要意义,同时也是我国国民经中不可缺少的一个产业。我国农药的生产和使用量都很大,从1990年开始,农药总产量已占世界第2位,仅次于美国。1996年,我国生产的农药品种已多达181种。一般而言,农药分为化学农药和生物农药,我国目前生产的农药大多为化学农药,而化学农药的毒性较大,可致使人畜直接中毒,并且对环境的污染也日趋严重。有关资料表明,我国受农药污染的土壤面积已达1 600 hm2,主要农产品的农药残留量超标率高达16%-18%,且由于长期使用某些化学农药,病虫害产生了抗药性。据统计,20世纪50年代以来,抗药害虫已从10种增加到目前的417种。而生物农药虽毒性小,但防治效果受多种条件的制约,其杀虫防病的能力往往不如化学农药,且成本偏高,因此还难以大规模的推广使用。针对这些问题,研制出一系列防治效果好、用药量少、使用成本低、环境污染小、对人畜危害小的新型农药已被提到议事日程。纳米科学技术是20世纪80年代末、90年代初期诞生并正在崛起的新兴科技,纳米科技是以1-100 nm分子大小的物质或结构为研究对象的学科,通过直接操作和安排原子、分子来创制新的物质。由于纳米材料具有小尺寸效应、表面界面效应、量子尺寸效应和量子隧道效应等基本特性,因此,显现出许多传统材料不具备的奇异特性。纳米材料在机械性能、磁、光、电、热等方面与普通材料有很大不同,具有辐射、吸收、催化、吸附等新特性,正因为如此,纳米科技越来越受到世界各国政府和科学家的高度重视。美国、日本和欧盟都分别将纳米技术列为21世纪最先研究的科技。将纳米技术与农药的研制相结合,即形成了一个新兴的纳米农药研究领域。纳米农药的出现,不仅大大降低了用药量,提高了药效,在使用经济性上也得到突破。真正体现了使用浓度低、杀虫防病广谱、病虫害不易产生抗性、对人畜低毒、农药残留少、对环境污染小等诸多优点。为此,我们在查阅了国内外相关文献的基础上,对近年来纳米科学技术在农药方面的研究现状和应用情况进行了初步概述,以期对纳米技术在农药研究领域上的应用有一个总体认识,为相关领域的研究拓展思路。 1纳米农药的种类 1.1农药微乳剂 1943年,Hoar和Schulman首次报道,水与大量表面活性剂和助表面活性剂混合能自发分散在油中(W/O型)。分散相质点为球形,半径通常为10-100 nm范围,是热力学稳定体系。如果将药物有效成分作为分散相加工成微乳液,习惯上称微乳剂。农药微乳剂与普通乳剂相比,除了具有良好的稳定性外,还具有如下特性:(1)具有增溶和渗透作用。当农药加工成

纳米生物医用材料

生物医用材料作为功能材料的一种,早在距今约7000年前就有使用记录。目前生物医用材料需求巨大且对各方面性能要求越来越高。20世纪30年代以来,生物医用材料随着工业的发展得到长足进步。近年来,随着纳米技术的重大突破,纳米生物医用材料应运而生。纳米生物医用材料因其独特的力学性能、可靠地生物相容性、良好的降解性能、高度的靶向性等等优点成为生物医用材料中的新星。专家预计,在20世纪人类未能彻底攻克的主要疾病,如心脏病、艾滋病、中风、糖尿病等,都有望在21世纪纳米生物和医学的成功应用中得到解决[1]。本文主要针对纳米生物医用材料的概念、分类、进展、应用、发展趋势等方面进行评述,并在最后作出结论。 生物医用材料;功能材料;纳米生物医用材料;性能;医学 生物医用材料是用于和生物系统结合治疗或替换生物机体中的组织器官或增进其功能的材料[2]。纳米生物医用材料则由现代化的纳米技术和生物材料交叉、融合的全新高科技领域,其应用前景也必定会带来生物医学界的新一代革新。颗粒在1~100nm范围内的材料被称为纳米材料,纳米生物医用材料体现在纳米级药物(可以有很强的靶向性,能制作“生物导弹”药物,增强疗效)、纳米表面特性置换物(对人工脏器进行表面或者整体纳米处理改性,减小毒副作用,延长使用寿命和安全性)、纳米级微小检测仪器(纳米级颗粒可有效进入体内细小组织,大大提高疾病的诊断率)等方面。目前,生物医用材料应用很广泛,大到器官移植,小到牙齿修复和手术缝合线等。纳米生物医用材料的研究还很有限,离广泛应用于临床还有相当大距离。很多技术上的难题难以解决。即便如此,其如此多的优越性让各国政要大商以及科研机构和个人异常狂热。 纳米生物医用材料是一个多学科交叉前景十分广阔的领域,它所具有的独特结构使它显示出独特的性能如量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,故而显示出许多特有的性质诸如磁引导靶向性、生化相容性、耐持久磨损等等。这些优异性能符合了人们期望安全有效经济地使用脏器替代品和药物增效(这给传统中药很大的发展空间)的愿望。纳米生物医用材料按照组成一般可分类为纳米无机生物医用材料、纳米高分子医用材料、纳米生物医用复合材料等。 一、纳米无机生物医用材料 纳米生物医用无机材料可分为纳米生物陶瓷材料、纳米生物碳材料、纳米生物玻璃陶瓷、纳米生物复合无机材料等几类,其中应用最广泛的是纳米生物医用陶瓷材料与纳米生物碳材料等。纳米陶瓷的问世,将会使陶瓷材料的强度、硬度、韧性和超塑性都大为提高。 生物陶瓷(如磷酸钙、生物玻璃、氧化铝等)是一类重要的生物医用材料,在临床上已有广泛的应用,主要用于制造人工骨、骨螺钉、人工齿、牙种植体以及骨的髓内固定材料等。纳米陶瓷的制备,将会使陶瓷材料的强度、硬度、韧性和超塑性都大为提高,一些材料学家指出:纳米陶瓷是解决陶瓷脆性的战略途径,纳米陶瓷材料将会比传统陶瓷有更广泛的应用和发展前景。 由于量子尺寸效应和具有极大的比表面积及不同的抗菌机制,无机纳米抗菌剂(如纳米TiO2,ZnO,SiO2。的银系纳米复合粉)具有传统无机抗菌剂(TiO2、ZnO、沸石、磷灰石等多孔性物质以及银、铜、金等金属及其离子化合物)所无法比拟的优良抗菌效果,其综合抗菌效果也优于有机类和天然类抗菌剂,对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌、芽枝菌和曲霉等具有很强的杀伤能力。这种抗菌剂不仅抗菌能力强、范围广,而且具有极高的安全性,是~种长效抗菌剂,可用作伤口敷料订[3]。Ag可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如金黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用[4]。另外,如HAP纳米颗粒在体外细胞培养实验中发现,其对正常细胞活性无影响。作用机理解释为HAP纳米微晶对癌细胞DNA合成

纳米粒载药系统的制备及其性能的研究

纳米粒载药系统的制备及其性能的研究 生物制药1201 颜飞飞U201212613 摘要:载药纳米微粒是纳米技术与现代医药学结合的产物, 是一种新型的药物输送载体。它缓释药物、延长药物作用时间, 透过生物屏障靶向输送药物, 建立新的给药途径等等, 在药物控释方面显示出其他输送体系无法比拟的优势。近年来载药纳米微粒在临床各个领域的应用基础研究势头强劲, 并取得了可喜的成绩。本文综述了载药纳米微粒在临床各领域应用的研究成果, 并对其发展应用前景进行展望。 一.纳米载药系统的特点 1.提高药物的靶向性和缓释性载药纳米粒可作为异物而被巨噬细胞 吞噬,到达网状内皮系统分布集中的肝、脾等靶部位和连接有配基、抗体、酶底物所在的靶部位。到达靶部位的载药纳米粒,可由载体材料的种类或配比不同而具有不同的释药速率。通过调整载体材料种类或配比,可控制药物的释放速率,从而制备出具有靶向性和缓释特性的载药纳米粒。如肿瘤血管对纳米粒有较高的通透性,因此可用纳米载体携带药物靶向作用于肿瘤组织。 2.改变药物的给药途径纳米载药系统可以改变药物的给药途径,使药物的给药途径和给药方式多样化。利用聚合物纳米颗粒作为药物载体包裹药物,可以保护肽类、蛋白质或反义核酸等药物不被酶解或水解,使药物可以口服,并可减少用药剂量和次数。 3.增加药物的吸收,提高药物的生物利用度,延长药物作用的时间纳米粒高度分散,表面积巨大,这有利于增加药物与吸收部位生物膜接

触面积,纳米粒的特殊表面性能使其在小肠中的滞留时间大大延长,药物负载于纳米载体上可形成较高的局部浓度,明显增加和提高药物的吸收与生物利用度。而对于眼部疾病的治疗,一般滴眼剂药物代谢快、需反复多次给药,且增加并发症发生的几率,而纳米载药系统的长效作用有效地解决这一难题。 4.增加生物膜的通透性与一般药物的跨膜转运机制不同,纳米粒可以通过内吞等机制进入细胞,因此载药纳米粒可以增加药物对生物膜的透过性,有利于药物透皮吸收与细胞内药效发挥,使其通过某些生理屏障( 如血脑屏障) ,到达重要的靶位点,从而治疗某些特殊部位的病变。 5.提高药物的稳定性药物经过载体的包裹形成了较为封闭的环境,可以增强药物对外界因素的稳定性。而且纳米载药系统还可以增加药物的生物稳定性,使药物在到达作用部位前保持其结构的完整性,从而提高药物的生物活性。 6.降低药物的毒副作用载药纳米粒的靶向性在增加局部药物浓度的同时降低了全身其他部位的药物浓度,其缓释性还可以减小血药浓度的波动,其高生物利用度又可以减少给药剂量,从而大大降低了药物的全身性毒副作用 二.纳米载药的制备 1.制备方法 乳化聚合法: 适用于液体聚合物单体,常见的如氰基丙烯酸烷基酯( ACA) 和甲基丙烯酸甲酯( MMA) 类,分别在OH-和γ -射线催

纳米药物载体抗肿瘤多药耐药机制的研究进展_赵金香

●综 述● 纳米药物载体抗肿瘤多药耐药机制的研究进展 赵金香1,李耀华2* (1平凉医学高等专科学校,甘肃 平凉,740000;2甘肃省中医学院,甘肃 兰州,730000) 摘要:肿瘤细胞对化疗药物产生多药耐药(multidrug resistance,MDR)是临床化疗失败的一个重要原因,而纳米技术的发展为肿瘤药物的靶向输送提供了新的研究机遇。纳米载体可以通过避免和降低MDR肿瘤细胞的药物外排泵,靶向肿瘤干细胞(cancer stem cells,CSC)克服其复发性,阻断肿瘤细胞的互调及其作用的微环境,以及改变免疫反应等增强细胞对化疗药物的敏感性。本文综述了肿瘤多药耐药的机制,纳米药物载体抗肿瘤多药耐药的机制研究的新进展。 关键词:肿瘤多药耐药;纳米技术;肿瘤干细胞;肿瘤微环境 中图分类号:R730 文献标识码:A 文章编号:2095-1264(2015)03-0174-05 d oi:10.3969/j.issn.2095-1264.2015.035 Research Progress of the Mechanisms of Nanotechnology in the Treatment of Multidrug Resistant Tumors ZHAO Jinxiang1, LI Yaohua2* (1Pingliang Medical College, Pingliang, Gansu, 740000, China; 2Gansu University Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China) Abstract: Multidrug resistance (MDR) is a main reason for the failure of tumor chemotherapy, the development of nanotechnology sheds light on targeted delivery of antitumor drugs. Nanocarriers can not only enhance the sensitivity of tumor cells to chemothera-peutic drugs but also downregulate the invasion and metastasis of tumor. The mechanisms of nanocarriers' anti-tumor effect involve in targeting cancer stem cells to overcome MDR and prevent recurrence, preventing the cross talk between cancer cells and their micro-environment, and modifying the immune response to improve the treatment of MDR cancers. In this review, new research progresses of the mechanisms of multidrug resistance and anti-tumor effects of nanotechnology are reviewed. Key words: Multidrug resistance; Nanotechnology; Cancer stem cells; Tumor microenvironment 前言 2014年的《全球癌症报告》表明,近两年全球癌症的患病和死亡病例都在不断增加,近一半新增癌症病例出现在亚洲,其中大部分在中国,中国新增癌症病例高居世界第一。化疗仍然是治疗癌症的主要手段,但化疗药物的非特异性及肿瘤的多药耐药(MDR)易导致肿瘤复发,MDR已成为肿瘤化疗的最大瓶颈。因此,逆转肿瘤细胞的MDR、提高肿瘤细胞对化疗药物的敏感性对肿瘤的治疗具有重大意义。开发新材料和新药物用于靶向治疗肿瘤及肿瘤多药耐药是目前亟待解决的问题[1]。 随着新兴纳米生物技术的发展,纳米技术已经被应用于影像诊断和治疗、综合化疗、放疗和基因治疗等多个学科,为肿瘤药物的靶向输送提供了新的研究机遇[2]。目前研发的纳米载药微粒包括聚合物胶束[3,4]、脂质体[5]、树状聚合物[6]、纳米乳、纳米金[7,8]或其他金属纳米颗粒[1,9]等。这些纳米载药微粒具有如下优点:①粒径小,粒径分布窄,表面修饰后可以进行靶向特异性定位,达到药物靶向输送的目的;②缓释药物,延长药物作用时间;③保护药物分子,提高其稳定性;④结合外加能量如光、声、磁场等可进行显像和治疗相结合实现肿瘤的诊断和治疗[1,10,11]。基于这些优点,越来越多的研究 作者简介:赵金香,女,讲师,研究方向:肿瘤内科,E-mail:zhaojinxiang0716@https://www.360docs.net/doc/1214673033.html,。*通讯作者:李耀华,男,主治医师,研究方向:内科学,E-mail:yaohuali1980@https://www.360docs.net/doc/1214673033.html,。

新型纳米载药系统应用于恶性肿瘤治疗

新型纳米载药系统应用于恶性肿瘤治疗 近日,国际著名学术期刊ACSnano和Biomaterials相继报道了中科院理化技术研究所研制的新型纳米载药系统在恶性肿瘤治疗及其生物安全性评价方面取得的新突破。 化疗药物在杀伤肿瘤细胞的同时,也将正常细胞一同杀灭,是一种“玉石俱焚”的癌症治疗方法。纳米药物载体可以增强药物的抗肿瘤效果,并且降低药物引起的毒副作用,大大减轻病人痛苦,延长生存期,为肿瘤治疗带来新的机遇。无机纳米材料是生物医学领域的后起之秀,具有独特的理化性质、特殊的结构及高稳定性,可以克服有机纳米材料的功能单一、可控性差等硬伤,在药物输送、医学成像等方面显示出巨大的应用前景。不过,对于将来的临床转化,无机纳米材料的生物安全性一直是人们担忧的问题。如果不能有效代谢出体外,会在体内不断蓄积而产生毒性,甚至产生血管堵塞等严重后果。纳米介孔二氧化硅做为生物相容性优异的无机纳米材料的卓越代表,被公认是一种极具潜力的药物传递载体,已经被广泛用于磁性纳米颗粒、量子点等功能材料的包覆,以降低毒性、提高稳定性,开发在体内具有良好稳定性,高效低毒、产量高。可代谢的介孔二氧化硅药物载体材料用于恶性肿瘤的治疗一直是该领域研究的难点,一旦这种药物载体材料开发成功,将为癌症病人恢复健康,走向新生带来曙光。 理化技术研究所纳米可控制备与应用研究室创新研制出高产量、可精确控制颗粒尺寸、外壳厚度、内部空腔大小,具有中空和介孔结构的“夹心二氧化硅”后,根据肿瘤治疗的需求,一直潜心研究,设计可与药物相配伍的新型药物载体材料夹心二氧化硅。该夹心二氧化硅装载多烯紫杉醇的载药量远高于国际上同类纳米药物载体。夹心二氧化硅装载多烯紫杉醇治疗肝癌的抑瘤率提高到72%,显著高于多烯紫杉醇静脉注射剂多西他赛57%的抑瘤率。同时,研究发现,夹心二氧化硅装载多烯紫杉醇能显著降低多西他赛的肝脏毒副作用。 此外,研究人员对夹心介孔二氧化硅经静脉给药的急性和长期毒性作用进行了系统评价后发现,夹心二氧化硅对小鼠的致死性毒性极低,LD50大于1000mg/kg,远高于国际同类报道数据(<300mg/kg)。夹心二氧化硅的靶器官主要为肝脏和脾脏,并可以逐渐从这些器官代谢出去。这一结果有效证明了夹心二氧化硅的生物安全性,为其在生物医学领域的应用扫平了障碍。 这种新型夹心二氧化硅纳米载药系统治疗恶性肿瘤安全高效,为无机纳米药物载体的设计和生物安全性研究提供了新的思路,有望为恶性肿瘤的治疗带来新的生机。相关工作已获得国家发明专利授权。 该研究得到国家科技部“863”项目和国家自然科学基金的大力支持。 应用纳米技术去除饮用水微污染物 以中科院合肥物质研究院智能所为首席单位的科技部国家重大研究计划项目“应用纳米技术去除饮用水中微污染物的基础研究”日前取得成果。这套包括新型纳米材料及配套处理程序的技术对控制饮用水源砷、氟等污染具有重要意义。 据了解,在常规饮用水处理方式下,部分重金属等微污染物会有明显残留,长期饮用会对人体造成伤害。所以,饮用水中微污染物的处理是饮用水安全领域最富有挑战性的前沿课题。负责此项研究的中科院合肥物质研究院智能所刘锦淮研究员介绍,富有活力的纳米材料具备常规材料无法比拟的高吸附效率等优势,为解决这些关键问题提供了新的机遇。 刘锦淮及其合作团队设计合成了一系列同时具有微米级材料的易处理性和纳米级材料高效率、高活性等优点的三维微纳分级结构材料,包括花状镁铝双氢氧化物、花状氧化镁、类棉花糖状氧化铜、铁基金属有机骨架等,对于砷、氟等微污染物具有快速吸附动力和超大吸附容量。同时,科研人员还配套设计了有别于常规自来水处理的应用程序。 目前,这项技术已在我国部分农村地区现场使用,为改善当地农民饮用水质做出了突出贡献。这也是我国第一次在饮用水处理上使用纳米材料及其处理程序。 741 技术与市场纳米技术第20卷第1期2013年

载药纳米颗粒的发展前景

几种新型无机纳米药物载体的研 究进展 学院: 专业: 学号: 姓名: 日期:

摘要:无机纳米药物载体系统作为新型的药物投递和控制释放系统受到国内外学者的广泛关注,本文主要介绍磁性纳米粒、载药纳米羟基磷灰石、量子点几种新型无机载药纳米粒子的典型制备工艺及存在的问题,并展望了这几种载药纳米粒子的发展前景。 关键词:磁性纳米粒载药纳米羟基磷灰石量子点 前言: 常见的纳米药物载体主要包括无机纳米药物载体和有机高分子纳米药物载体.其中,高分子纳米粒子作为药物载体研究得比较早,目前已有少量基于高分子纳米载体的药物得到欧美一些国家药监部门批准用于临床治疗[1].这是因为高分子纳米粒子生物相容性好,毒性小,药物可通过物理包覆或者化学键合的方式结合到高分子纳米粒子中,其释放后高分子载体可通过降解排出体外[2].常见的无机纳米药物载体包括磁性纳米粒子、介孔二氧化硅、纳米碳材料、量子点等这些无机纳米药物载体,在实现靶向性给药、控释和缓释药物以及癌症靶向治疗等方面表现出良好的应用前景.[3]与高分子纳米粒子相比,无机纳米粒子不仅尺寸、形貌可控性好比表面积大,而且独特的光、电、磁性质赋予其具有潜在的成像显影、靶向输送和协同药物治疗等功能,使其更适于在细胞内进行药物输送[4]. 本文主要介绍Fe 3O 4 磁性纳米粒、载药纳米羟基磷灰石、量子点几种新型载 药纳米粒子的典型制备工艺及存在的问题,并展望了这几种载药纳米粒子的发展前景。 1.Fe3O4磁性纳米粒 生物医学领域使用磁性纳米粒子主要就是由于其具有特殊的磁性能,通常是以磁性纳米粒子(如铁、铁氧化物、镍、钴等)为核、有机物或无机物为壳,通过表面修饰包覆或组装等作用形成的具有独特功能的复合粒子。纳米磁靶向药物载体作为一种新型药物载体,能在特定的导向机制下,将药物高效的运输到靶器官,使药物在局部发挥作用,大大地降低了药物对全身的毒副作用[5]。 磁性纳米粒子因其良好的超顺磁性可使其在外磁场的作用下方便地进行磁

靶向抗肿瘤纳米药物研究进展

靶向抗肿瘤纳米药物研究进展 论文摘要:靶向抗肿瘤药物特有的性质解决了传统的抗肿瘤药物的缺陷,使得抗肿瘤药物的进展到了一个新的阶段 关键词:靶向抗肿瘤纳米 肿瘤是当今严重威胁人类健康的三大疾病之一,而目前在临床肿瘤治疗和诊断中广泛应用的药物还多数为非选择性药物,体内分布广泛,尤其在一些正常组织和器官中也常有较多分布,常规治疗剂量即可对正常组织器官产生显著的毒副作用,导致患者不能耐受,降低药物疗效。靶向制剂是以药物能在靶区浓集为主要特点的一大类制剂的总称, 属于第四代给药系统( drug delivery systerm, DDS) 。靶向制剂给药后最突出的特点是利用药物载体系统将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓集,超出传统制剂的数倍乃至数百倍,治疗效果明显提高。减少药物对非靶向部位的毒副作用,降低药物治疗剂量并减少给药次数,从而提高药物疗效,这种治疗方法即被称为肿瘤靶向治疗。现今在肿瘤靶向治疗领域,靶向抗肿瘤纳米药物研究正日益受到人们的普遍关注和重视,现就其近年来的研究进展综述如下。 1 靶向纳米药物的定义 美国国家卫生研究院(NIH)定义:在疾病治疗、诊断、监控以及生物系统控制等方面应用纳米技术研制的药物称为纳米药物,其表面经过生物或理化修饰后可具有靶向性,即成为靶向纳米药物。 2 靶向纳米药物的特点 基于纳米药物所特有的性质,决定了其在药物和基因运输方面具有以下几个优点:①可缓释药物,提高血药浓度,延长药物作用时间;②可减少药物降解,提高药物稳定性;③可保护核苷酸,防止其被核酸酶降解;④可提高核苷酸转染效率;⑤可建立新的给药途径。而靶向纳米药物除这些固有优点以外,还具有:①可达到靶向输送的目的; ②可在保证药物作用的前提下,减少给药剂量,进一步减少或避免药物的毒副作用等优点。生物靶向纳米药物和磁性靶向纳米药物是目前靶向纳米药物研究的两大热点,并且都已具备了良好的研究基础。 3 靶向纳米药物的分类

纳米药物研究进展

纳米药物研究进展 徐州医学院药学院(徐州221000)李岩(068612077) [摘要]纳米科学与技术是近年来迅速发展起来的前沿科技领域,并已在各学科的研究中产生了巨大的影响。目前,纳米科学与技术在医药领域的应用也取得了令人瞩目的成绩,有力地推动了医药科技的发展;其在医学和药学方面为疾病的诊断与治疗开辟了一个崭新的领域。本文就纳米药物的概念和特点、制备方法和应用等作一综述,对相关技术和方法进行评价和展望,并简要介绍我国近年来纳米中药的研究与进展。 [关键词]纳米药物研究进展 1引言 纳米技术自21世纪80年代被提出之后,在材料、冶金、化学化工、医药、卫生、环境及其交叉领域表现出空前的应用潜力。纳米药物则是医药研究领域的新热点。美国、日本、德国等发达国家都斥巨资进行研究,有的已制成药物并申请专利,且开始了药物的临床实验。 纳米药物是以纳米级高分子毫微粒(N P)或微球(N S)、微囊(N C)为载体,与药物以一定方式结合在一起后制成的药物。与常规药物相比,纳米药物具有颗粒小、比表面积大、表面反应活性高、活性中心多、催化效率高、吸附能力强等特点,因此它有许多常规药物所不具有的优点:缓释药物,改变药物在体内的半衰期,延长药物的作用时间;制成导向药物后作为“生物导弹”达到靶向输药至特定器官的目的;在保证药效的前提下,减少药用量,减轻或消除毒副作用;提高药物的稳定性,有利于存储;改变膜运转机制,增加药物对生物膜的透过性,有利于药物透皮吸收及细胞内药效的发挥;增加药物溶解度。正是如此,本文对纳米药物的研究进展方面进行了叙述。 2纳米药物的种类及制备方法 2.1纳米脂质体(nanoliposome) 脂质体(脂质小囊)是近年研究较多的一种剂型,它制备简单,应用方便,可多用途给药,是一种具有同生物膜性质类似的磷脂双分子层结构载体。脂质体作为药物载体有其独特的优势,包括可保护药物免受降解、达到靶向部位和减少毒副作用。但是它也存在许多缺陷,如包封率低、脂质体膜易破裂、药物易渗漏、重复性差、体内不稳定和释药快等。纳米脂质体的制备方法主要有超声分散法、逆相蒸发法等,张磊等[1]用逆相蒸发-超声法制备了胰岛素纳米脂质体,平均粒径为83.3nm,包封率78.5%。 2.2固体脂质纳米粒(solid lipid nanoparticles,SLN)

生物纳米药物的现状和发展

纳米药物的现状和发展 一、背景 纳米药物指以纳米微粒作为载体系统,与药效粒子以一定的方式结合在一起后制成的药物,其粒径可能超过100 nm但通常小于500 nm。自20世纪90年代初期这一概念被首次提出起,它就一直是发达国家研究的热点领域之一。纳米药物的粒径使它具有特殊的表面效应和小尺寸效应等,与常规药物相比,它颗粒小、表面反应活性高、活性中心多、催化效率高、吸附能力强[1],由此导致的以下优点正是其一直受到青睐和寄予极大期望的原因。 1.改善药物稳定性 一些药物为蛋白质或多肽大分子,口服会被消化系统破坏。传统采用注射等方法给药,而如将维他命12或叶酸修饰过的纳米粒再与药物结合,不仅能避免口服时药物在肠道中发生蛋白水解,还能使药物在体内循环时间增加,从而大大增加了药物的吸收度[1]。 2.提高药物的作用效率 将一般的小分子药物装载在纳米粒子上后,药物的总表面积大大增加,药物的溶出速率随之提高,与给药部位接触面积增大,提高了单位面积药物浓度。同时由于载药纳米粒较好的黏附性及小粒径,药物与吸收部位的接触时间延长,增加了药物在吸收部位上皮组织黏液层中的浓度,并延长了药物的半衰期,因此提高了药物的生物利用度。载药纳米粒子还可以改变膜运转机制,增加药物对生物膜的通透性,药物有可能通过简单扩散或渗透形式进入生物膜 ,使溶解度增加[3] 。 3.靶向作用 靶向作用主要有三类:被动靶向、主动靶向和物理化学靶向。 被动靶向指人体自然将纳米药物驱赶到其需要作用的部位,如载药纳米粒进入体内后作为异物而被巨噬细胞吞噬,到达网状内皮系统(RES) 分布集中的肝、脾、肺、骨髓、淋巴等靶部位。 主动靶向指利用抗原、抗体或配体-受体结合使药物到达靶部位。 物理化学靶向使用的方法包括热导向、磁导向、pH导向等。有些靶组织的透过性对热敏感,给药同时结合热疗即可使纳米药物粒子更好地作用于组织[3]。 4.提高控释效果 普通制剂有“峰谷现象”,而纳米药物的特殊结构使得药物可以恒速释放作用于器官或组织,从而使体内药物浓度保持平稳,减少给药次数,提高药效和安全度。一般是通过调节纳米粒子表面的性质,如亲水性、电荷等来调整其在体内服役时间长短

相关文档
最新文档