概率论问题MATLAB仿真求解程序

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、matlab基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); 【例01.02】填充,二维均匀随机数 hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数) for i=1:length(rs)

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、m atlab基本操作 1.画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数)

Matlab概率统计工具箱(3)

Matlab概率统计工具箱(3) 4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数ztest 格式h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) %显著性水平为alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的1-alpha置信区间,zval为统计量的值. 说明若h=0,表示在显著性水平alpha下,不能拒绝原假设; 若h=1,表示在显著性水平alpha下,可以拒绝原假设. 原假设:, 若tail=0,表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1,表示备择假设:(单边检验). 例4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015.某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)

0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常 解:总体μ和σ已知,该问题是当为已知时,在水平下,根据样本值判断μ=0.5还是.为此提出假设: 原假设: 备择假设: >> X=[0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512 ]; >> [h,sig,ci,zval]=ztest(X,0.5,0.015,0.05,0) 结果显示为 h = 1 sig = 0.0248 %样本观察值的概率 ci = 0.5014 0.5210 %置信区间,均值0.5在此区间之外 zval = 2.2444 %统计量的值 结果表明:h=1,说明在水平下,可拒绝原假设,即认为包装机工作不正常.

概率特性仿真实验与程序-Matlab仿真-随机数生成-负指数分布-k阶爱尔兰分布-超指数分布

概率特性仿真实验与程序-Matlab 仿真-随机数生成-负指数分布-k 阶 爱尔兰分布-超指数分布 使用Java 中的SecureRandom .nextDouble()生成一个0~1之间的随机浮点数,然后使用反函数法生成一个符合指数分布的随机变量(反函数求得为λ) 1ln(R x --=)。指数分布的 参数λ为getExpRandomValue 函数中的参数lambda 。生成一个指数分布的随机变量的代码如下,后面都将基于该函数生成一组负指数分布、K 阶爱尔兰分布、2阶超指数分布随机变量,然后将生成的随机数通过matlab 程序进行仿真,对随机数的分布特性进行验证。 生成一组参数为lambda (λ)的负指数分布的随机变量 通过下面的函数生成一组λ参数为lambda 的随机变量,其中size 表示随机变量的个数。通过该函数生成之后,可以将这些随机值保存在文件中,以备分析和验证,比如保存在exp.txt 文件中,供下面介绍的matlab 程序分析。 通过genExp (1000000, 0.2)生成1000000个参数为0.2的随机变量,然后保存到exp.txt 中,然后使用下面的matlab 程序对这些随机数的性质进行验证,如果这些随机数符合λ=0.2的负指数分布,则其均值应为1/λ,即1/0.2=5,其方差应为1/λ2=1/(0.2*0.2)=25。然后对这些随机数的概率分布进行统计分析,以长度为1的区间为统计单位,统计各区间内随机数出现的频数,求出在各区间的概率,绘制图形,与参数为λ的真实负指数分布曲线进行对比。下图为matlab 代码

如下图所示,均值为4.996423,约等于5,方差为24.96761,约等于25,与实际情况相符。此外,通过matlab统计的概率密度函数曲线与真实曲线基本重合(其中在0-1之间没有重合的原因是,实际情况是在0-1之间有无数个点,而matlab统计时以1为一个区间进行统计,只生成了一个统计项,而这无数个点的概率全部加到1点处,因此两条线没有重合,而且1点处的值远大于实际值,如果统计单位划分越细,0-1之间的拟合度更高),表明生成的随机数符合负指数分布。

matlab在统计数据的描述性分析的应用

统计数据的描述性分析 一、实验目的 熟悉在matlab中实现数据的统计描述方法,掌握基本统计命令:样本均值、样本中位数、样本标准差、样本方差、概率密度函数pdf、概率分布函数df、随机数生成rnd。 二、实验内容 1 、频数表和直方图 数据输入,将你班的任意科目考试成绩输入 >> data=[91 78 90 88 76 81 77 74]; >> [N,X]=hist(data,5) N = 3 1 1 0 3 X = 75.7000 79.1000 82.5000 85.9000 89.3000 >> hist(data,5)

2、基本统计量 1) 样本均值 语法: m=mean(x) 若x 为向量,返回结果m是x 中元素的均值; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的均值。 2) 样本中位数 语法: m=median(x) 若x 为向量,返回结果m是x 中元素的中位数; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的中位数3) 样本标准差 语法:y=std(x) 若x 为向量,返回结果y 是x 中元素的标准差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的标准差

std(x)运用n-1 进行标准化处理,n是样本的个数。 4) 样本方差 语法:y=var(x); y=var(x,1) 若x 为向量,返回结果y 是x 中元素的方差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的方差 var(x)运用n-1 进行标准化处理(满足无偏估计的要求),n 是样本的个数。var(x,1)运用n 进行标准化处理,生成关于样本均值的二阶矩。 5) 样本的极差(最大之和最小值之差) 语法:z= range(x) 返回结果z是数组x 的极差。 6) 样本的偏度 语法:s=skewness(x) 说明:偏度反映分布的对称性,s>0 称为右偏态,此时数据位于均值右边的比左边的多;s<0,情况相反;s 接近0 则可认为分布是对称的。 7) 样本的峰度 语法:k= kurtosis(x) 说明:正态分布峰度是3,若k 比3 大得多,表示分布有沉重的尾巴,即样本中含有较多远离均值的数据,峰度可以作衡量偏离正态分布的尺度之一。 >> mean(data) ,

第9章概率论与数理统计的MATLAB实现讲稿汇总

第9章 概率论与数理统计的MATLAB 实现 MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。利用MATLAB 统计工具箱,可以进行概率和数理统计分析,以及进行比较复杂的多元统计分析。 9.1 随机变量及其分布 利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布列(或密度函数)和分布函数。 9.1.1 常见离散型随机变量的分布列的计算 如果随机变量全部可能取到的不相同的值是有限个或可列无限多个,则称为离散型随机变量。 MATLAB 提供的计算常见离散型随机变量分布列的函数及调用格式: 函数调用格式(对应的分布) 分布列 y=binopdf(x,n,p)(二项分布) )() 1(),|(),,1,0(x I p p C p n x f n x n x x n --= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =x y=hygepdf(x,M,K,n)(超几何分布) n M x n k M x K C C C n K M x f --=),,|( y=poisspdf(x,lambda)(泊松分布) λ λλ-=e x x f x ! )|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) N N x f 1)|(= 9.1.2 常见连续型随机变量的密度函数计算 对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有 ? ∞ -=x dt t f x F )()( 则称X 为连续型随机变量,其中函数)(x f 称为X 的密度函数。 MA TLAB 提供的计算常见连续型随机变量分布密度函数的函数及调用格

MATLAB计算概率

一、实验名称 已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a0&&e<6 if e==1

p=erchong(a,b,c,d) end if e==2 p=wangge(a,b,c,d); end if e==3 p=fenbu(a,b,c,d); end if e==4 p=mente(a,b,c,d); end if e==5 [X,Y]=meshgrid(-3:0.2:3); Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2)); meshz(X,Y,Z); end e=input('请选择: \n'); end % ===============================用二重积分计算function p=erchong(a,b,c,d) syms x y; f0=1/(2*pi)*exp(-1/2*(x^2+y^2)); f1=int(f0,x,a,b); %对x积分 f1=int(f1,y,c,d); %对y积分 p=vpa(f1,9); % ================================等距网格法function p=wangge(a,b,c,d) syms x y ; n=100; r1=(b-a)/n; %求步长 r2=(d-c)/n; za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块 zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;end for i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点 for i=1:n y(i)=unifrnd(zc(i),zc(i+1));end s=0; for i=1:n for j=1:n s=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和end end p=s*r1*r2;

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计 、matlab 基本操作 1. 画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

matlab在概率统计中的应用实例

关于全国受旱灾土地总面积的数理分析 提出问题:下表是从1990年至2010年全国因干旱而受灾的土地总面积(单位:千公顷)数。(数据来源于全国统计局官网) 试解决一下问题: (1)计算所给样本的均值与标准差; (2)检验在显著水平为0.05的情况下,全国每年因干旱而受灾的土地总面积是否服从正态分布? (3)如果服从正态分布,用极大似然估计法对未知参数μ和σ作出估计; (4)若年受旱灾总面积大于35000千公顷即为重灾年,根据估计出的μ值和σ值,计算当年为重灾年的概率。 分析问题:这是一个样本均值和标准差的计算以及正态性检验和计算的一系列问题。对于此类问题可以应用数学软件MATLAB进行处理,应用MATLAB可以很容易的计算出均值及标准差,此外,采用Jarque-Beran检验即可知道其是否服从正态分布,并估计出总体的均值μ和标准差σ。 解决问题:下面计算样本的均值和标准差 MATLAB程序代码如下 clear

X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259]; [h,stats]=cdfplot(X) 运行程序后,输出如下 h =152.0022 stats = min: 12137 max: 40541 mean: 2.4436e+004 median: 23455 std: 8.1234e+003 从输出结果可看出,样本的最小值为12137,最大值为40541,

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

MATLAB 概率分布函数

统计工具箱函数 Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf贝塔分布的概率密度函数 binopdf二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数exppdf指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf伽玛分布的概率密度函数 geopdf几何分布的概率密度函数 hygepdf超几何分布的概率密度函数 normpdf正态(高斯)分布的概率密度函数lognpdf对数正态分布的概率密度函数 nbinpdf负二项分布的概率密度函数 ncfpdf非中心f分布的概率密度函数 nctpdf非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf泊松分布的概率密度函数 raylpdf雷利分布的概率密度函数 tpdf学生氏t分布的概率密度函数 unidpdf离散均匀分布的概率密度函数 unifpdf连续均匀分布的概率密度函数 weibpdf威布尔分布的概率密度函数 Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf贝塔分布的累加函数 binocdf二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf指数分布的累加函数 fcdf f分布的累加函数 gamcdf伽玛分布的累加函数 geocdf几何分布的累加函数 hygecdf超几何分布的累加函数 logncdf对数正态分布的累加函数 nbincdf负二项分布的累加函数 ncfcdf非中心f分布的累加函数 nctcdf非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf正态(高斯)分布的累加函数poisscdf泊松分布的累加函数 raylcdf雷利分布的累加函数 tcdf学生氏t分布的累加函数 unidcdf离散均匀分布的累加函数 unifcdf连续均匀分布的累加函数

Matlab概率论与数理统计

Matlab 概率 论与数理统 计 、matlab 基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

axis([-20 80 -20 80 ]);

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

概率统计计算及MATLAB实现.doc

《概率统计计算及其MATLAB实现》共分为六章和一个附录,前两章主要介绍概率论和随机变量的基本知识,第三章至第五章是数理统计内容,第六章是随机过程计算及其仿真,最后,附录部分对MATLAB的基本知识进行了简介。主要内容涉及概率及其计算、变量分布及其相关计算、数字特征和中心极限定理、描述统计、参数估计和假设检验、方差分析和回归分析、泊松过程、马氏链、布朗运动、风险模型等的计算和模拟。另外还涉及MATLAB矩阵的运算和操作、微积分运算、代数方程(组)求解、画图和程序流程控制等内容。 目录 1 概率计算及变量分布 1.1 概率定义及其计算 1.2 随机变量及其分布 1.3 随机变量函数及其分布 1.4有关古典概率实际问题的MATLAB模拟 习题1 2常见分布及数字特征 2.1 常见的离散型分布 2.2 常见的连续型分布 2.3 随机变量的数字特征 2.4 有关常见分布的MATLAB模拟 习题2 3样本描述及抽样分布 3.1 数据的整理和显示 3.2 数据预处理及其他描述分析 3.3抽样分布 习题3 4参数估计与假设检验 4.1 参数估计 4.2正态总体参数的假设检验 4.3 其他常用的假设检验 4.4几个常用的非参数假设检验 习题4 5方差分析与回归分析 5.1 单因素方差分析 5.2 双因素方差分析 5.3 线性回归分析 5.4 逐步回归与其他几个回归 习题5

6随机过程计算与仿真 6.1 随机过程的基本概念 6.2 泊松过程的计算与仿真6.3 马氏链的计算与仿真 6.4布朗运动计算与仿真 6.5 风险模型的计算与仿真习题6 附录MATLAB简介 1 矩阵与相关运算 2微积分与代数方程基本求解3 画图与编程

Matlab笔记——数值计算—概率篇017

17. 数值计算—概率篇 一、计算组合数、排列数 !n——factorial(n)或prod(1:n) k C——nchoosek(n,k) n k A——factorial(n)/factorial(n-k) n 二、生成随机数 1. rand(m,n) ——生成m×n的服从[0,1]上均匀分布的随机数; 用a + (b-a).*rand(m,n)生成m×n的服从[a,b]上均匀分布的随机数。 2. 二项分布与正态分布随机数 binornd(N,P,m,n)——生成m×n的服从二项分布B(N,P)的随机数; normrnd(MU,SIGMA,m,n) ——生成m×n的服从正态分布N(MU,SIGMA2)的随机数; 3. 通用格式: 分布缩写+rnd(分布参数, m,n) 或random(‘分布名或缩写’, 分布参数, m,n) 可以用来生成m×n该分布的随机数。各种分布名见下图:

4. 使用randsample和randsrc函数生成指定离散分布随机数 X=randsample(N, k, replace, w)

N相当于[1:N], 也可以是具有确定值的向量;k表示生成k个随机数;replace=’true’表示可重复,或’false’表示不可重复(默认);w是权重向量。 X= randsrc(m,n,[x; p]) 生成m×n的随机矩阵,服从取值为向量x, 对应概率为向量p的离散分布。 例1 设离散型随机变量X服从如下分布: 生成服从3×5的该分布的随机数。 代码: xvalue = [-2 -1 0 1 2]; xp = [0.05 0.2 0.5 0.2 0.05]; % 调用randsample函数生成100个服从指定离散分布的随机数 x = randsample(xvalue, 15, true, xp); reshape(x,[3 5]) % 调用randsrc函数生成10*10的服从指定离散分布的随机数矩阵 y = randsrc(3,5,[xvalue;xp]) 运行结果:ans = 0 0 1 0 0 0 0 0 -1 -1 1 1 0 0 1 y = -1 -1 1 1 -1 -1 0 0 2 0 -1 0 -1 0 0

matlab数学实验

《管理数学实验》实验报告 班级姓名 实验1:MATLAB的数值运算 【实验目的】 (1)掌握MATLAB变量的使用 (2)掌握MATLAB数组的创建, (3)掌握MA TLAB数组和矩阵的运算。 (4)熟悉MATLAB多项式的运用 【实验原理】 矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。 【实验步骤】 (1)使用冒号生成法和定数线性采样法生成一维数组。 (2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。 (3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。 (4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。 【实验内容】 (1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。 0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50) (2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。 reshape(A,2,9) ans = Columns 1 through 7 1 3 5 7 9 11 13 2 4 6 8 10 12 14 Columns 8 through 9 15 17 16 18 reshape(A,2,3,3) ans(:,:,1) = 1 3 5 2 4 6 ans(:,:,2) = 7 9 11 8 10 12 ans(:,:,3) = 13 15 17 14 16 18

概率-matlab上机实验

数学实验-概率 学院:理学院 班级:xxxx 姓名:xxxx 学号:xxxx 指导教师:xxxxx

实验名称:概率 试验目的: 1)通过对mathematica软件的练习与运用,进一步熟悉和掌握mathematica软件的用法与功能。 2)通过试验过程与结果将随机实验可视化,直观理解概率论中的一些基本概念,并初步体验随机模拟方法。 实验步骤: 1)打开数学应用软件——Mathematica ,单击new打开Mathematica 编辑窗口; 2)根据各种问题编写程序文件; 3)运行程序文件并调试; 4)观察运行结果(数值或图形); 5)根据观察到的结果写出实验报告,并析谈学习心和体会。 实验内容:1)概率的统计定义 2)古典概型 3)几种重要分布 1)二项分布 2)泊松分布 4)概率问题的应用 (一)概率的统计定义

我们以抛掷骰子为例,按古典概率的定义,我们要假设各面出现的机会是等可能的,这就要假设: (1)骰子的质料绝对均匀; (2)骰子是绝对的正方体: (3)掷骰子时离地面有充分的高度。 但在实际问题中是不可能达到这些要求的,假设我们要计算在一次抛掷中出现一点这样一个事件 的概率为多少,这时,已无法仅通过一种理论的考虑来确定,但我们可以通过试验的方法来得到事件 概率:设反复地将骰子抛掷大量的次数,例如n 次,若在n 次抛 掷中一点共发生了 次,则称 是 这个事件在这n 次试验中的频率,概率的统计定义就是将 作为事件 的概率P( ) 的估计。 这个概念的直观背景是:当一个事件发生的可能性大(小)时,如果在同样条件下反复重复这个实验时,则该事件发生的频繁程度就大(小)。同时,我们在数学上可以证明:对几何任何一组试验,当n 趋向无穷时,频率 趋向同一个数。 <练习一> 模拟掷一颗均匀的骰子,可用产生1-6的随机整数来模拟实验结果 1) 作n=200组实验,统计出现各点的次数,计算相应频率并与概率值1/6比较; 2) 模拟n=1000,2000,3000组掷骰子试验,观察出现3点的频率随试验次数n 变化的情形,从中体会频率和概率的关系。 1/m n 1A 1A 1/m n 1/m n 1A 1A 1A 1m

matlab概率统计函数

matlab概率统计函数 函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数 logncdf 对数正态分布的累加函数 nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数

Matlab概率函数大全

Matlab概率函数大全 统计工具箱函数 表Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数 logncdf 对数正态分布的累加函数 nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数

基于MATLAB的概率统计数值实验

基于MATLAB的概率统计数值实验 三、数理统计 1. Matlab统计工具箱中常见的统计命令 2. 直方图和箱线图实验 3. 抽样分布实验 4. 参数估计和假设检验实验 1

Matlab统计工具箱中常见的统计命令 1、基本统计量 对于随机变量x,计算其基本统计量的命令如下: ●均值:mean(x) 标准差:std(x) ●中位数:median(x) 方差:var(x) ●偏度:skewness(x) 峰度:kurtosis(x) 2、频数直方图的描绘 ●A、给出数组data的频数表的命令为:[N,X]=hist(data,k) ●此命令将区间[min(data),max(data)]分为k个小区间(缺省为10),返回数组 data落在每一个小区间的频数N和每一个小区间的中点X。 ●B、描绘数组data的频数直方图的命令为:hist(data,k) 2

3、参数估计 ●A、对于正态总体,点估计和区间估计可同时由以下命令获得: ●[muhat,sigmahat,muci,sigmaci]=normfit(x,alpha) ●此命令在显著性水平alpha下估计x的参数(alpha缺省值为5%),返回值 muhat是均值的点估计值,sigmahat是标准差的点估计值,muci是均值的区 间估计,sigmaci是标准差的区间估计。 ●B、对其他分布总体,两种处理办法:一是取容量充分大的样本,按中 心极限定理,它近似服从正态分布,仍可用上面估计公式计算;二是使用特定分布总体的估计命令,常用的命令如: ●[muhat,muci]=expfit(x,alpha) ●[lambdahat, lambdaci]=poissfit(x,alpha) ●[phat, pci]=weibfit(x,alpha)3

MATLAB概率统计函数

第1章概率统计 本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。 1.1 随机数的产生 产生随机数时初始种子数的设定方法 s = RandStream('mcg16807','Seed',0) RandStream.setDefaultStream(s) 另一种形式 seed = 0; randn('state', seed); rand ('state', seed); 1.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N, P) % N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N, P, [m]) % m指定随机数的个数,产生m×m 维的随机数矩阵R。 R = binornd(N, P, [m, n]) % m, n分别表示R的行数和列数R = binornd(N, P, [m, n, k]) % m, n, k分别表示R的行数和列数和层数 其中的[]可以省略。 例1-1 >> R=binornd(10,0.5) R = 3 >> R=binornd(10,0.5,1,6) R = 8 1 3 7 6 4 >> R=binornd(10,0.5,[1,10]) R = 6 8 4 6 7 5 3 5 6 2 >> R=binornd(10,0.5,[2,3]) R = 7 5 8 6 5 6 >>n = 10:10:60; >>r1 = binornd(n,1./n) r1 = 2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 = 0 1 2 1 3 1 1.1.2 正态分布的随机数据的产生 命令参数为μ、σ的正态分布的随机数据 函数 normrnd 格式 R = normrnd(MU,SIGMA) % 返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。 2

相关文档
最新文档