土壤中产酸菌的筛选及其对重金属生物有效性影响_杨卓

土壤中产酸菌的筛选及其对重金属生物有效性影响_杨卓
土壤中产酸菌的筛选及其对重金属生物有效性影响_杨卓

土壤中重金属有效性风险评估研究进展_李国琛

第5卷 第11期 食品安全质量检测学报 Vol. 5 No. 11 2014年11月 Journal of Food Safety and Quality Nov. , 2014 基金项目: 国家自然科学基金青年基金项目(81102765) Fund: Supported by National Natural Science Foundation Young Investigator Grant Program (81102765) *通讯作者: 王颜红, 研究员, 主要研究方向食品安全与环境质量检测与控制。E-mail: wangyh@https://www.360docs.net/doc/1c14851793.html, *Corresponding author: WANG Yan-Hong, Professor, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110116, China. E-mail: wangyh@https://www.360docs.net/doc/1c14851793.html, 土壤中重金属有效性风险评估研究进展 李国琛, 田 莉, 王颜红1*, 王世成, 李 波, 崔杰华, 张 红 (中国科学院沈阳应用生态研究所, 沈阳 110016) 摘 要: 重金属的有效性是进行重金属污染研究的关键内容, 也是进行危险性评估的重要基础。对土壤重金属的有效性进行风险评估是制定、修订食品安全标准和对食品安全实施监督管理的科学依据。由于重金属有效性受多种因素的影响, 且有效态重金属的转化机理十分复杂, 因此其分析方法和手段多种多样且具有很大的发展空间和研究意义。本文详细论述和总结了各种重金属有效性评估方法: 包括总量法、化学提取法、淋洗法等物理化学评估法, 植物指示法、微生物指示法等生物学评价法, 以及陆地生物配体模型等模型综合评价法。同时, 介绍了各种评估方法在重金属有效性评估中的应用, 评述各种方法的研究现状并比较了其各自在有效性评估中的优缺点, 探讨了其未来可能的发展趋势。 关键词: 重金属; 有效性; 风险评估; 土壤 Progresses on risk assessment methods of bioavailability of heavy metal in soils LI Guo-Chen, TIAN Li, WANG Yan-Hong *, WANG Shi-Cheng, LI Bo, CUI Jie-Hua, ZHANG Hong (State Key Laboratory of Forest and Soil Ecology , Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang 110116, China ) ABSTRACT: The effectiveness of the heavy metal is a key part of pollution research and an important basis of the risk assessment. Assessing the effectiveness of heavy metal in soils is also the scientific basis of revising food safety standards and the implementation of food safety supervision and management. Because of the com-plexity of the validity of heavy metals which is affected by many factors, there are more development space and research significance in analytic methods and means. In this paper, the application of kinds of methods used for assessing the effectiveness of the heavy metal was discussed in detail and summarized, including totalizing method, chemical extraction, leaching method, phytoindicating, microbe indicated method, and model method, etc . In the last, some important research fields were recommended. KEY WORDS: heavy metal; effectiveness; risk assessment; soil 1 引 言 随着我国工业化进程的加剧, 土壤重金属的污染问题日益突出。以镉污染为例, 我国镉污染的土壤面积已达 20万km 2, 占总耕地面积的1/6[1]。土壤重金属的含量会对农作物体内的重金属含量产生直接或间接的影响。2000年农业部环境监测系统对14个省会城市2110个样品的检测表明, 蔬菜中重金属镉等污染超标率高达23.5%; 南京郊

大学土壤微生物分离实验报告

从土壤中分离纯化培养微生物并作初步观察鉴定 【摘要】利用分离纯化微生物的基本操作技术对土壤中的微生物进行分离与纯化,根据细菌在选择培养基的存活情况,确定该菌种的固氮解磷解钾属性。 【关键词】细菌芽孢杆菌培养基、选择培养基的配制高压蒸汽灭菌 前言: 在自然条件下,微生物常常在各种生态系统中群居杂聚。群落是不同种类微物的混和体。为了生产和科研的需要,人们往往需要从自然界混杂的微生物群体中分离出具有特殊功能的纯种微生物;或重新分离被其他微生物污染或因自发突变而丧失原有优良性状的菌株;或通过诱变及遗传改造后选出优良性状的突变株及重组株。这种获得单一菌株纯培养的方法称为微生物的分离纯化技术。 分离纯化技术主要由采集样品、富集培养、纯种分离和性能测定等几个基本环节组成。 实验目的: 1、学习从土壤中分离、纯化微生物的原理与方法。 2、学习、掌握微生物的鉴定方法。 3、对提取的土样进行微生物选择培养、分离、纯化,根据菌落的存活状况来判断未知 菌的属性。 实验原理: 菌种来源:选择无机磷农药含量较高的土壤,有机磷农药化工厂 旁边的土壤和排污口区的污水. 培养基的选取:五组选择培养基,分别以辛硫磷、甲胺磷、敌敌畏、草甘膦及五种有机磷农药混合为微生物生长的唯一氮源磷源。 分离纯化微生物:稀释倒平板法、涂布平板法、稀释摇管法、平板划线分离法。 此次实验采取的是平板分离法,该方法操作简便,普遍用于微生物的分离与纯化,其基本原理主要包括两个方面:(一)选择适合于待分离微生物的生长条件或加入某种抑制剂造成只利于待分离微生物生长,而抑制其它微生物生长的环境,从而淘汰大部

分不需要的微生物。(二)微生物在固体培养基上生长形成的单个菌落可以是由一个细胞繁殖而成的集合体,因此可通过挑取单菌落而获得一种纯培养。获得单菌落的方法可通过稀释涂布平板法或平板划线法等技术来完成。 微生物的观察可以用显微镜观察其细胞形态,也可以用肉眼观察其菌落形态。前者是微生物的显微镜观察技术,后者是微生物的肉眼观察技术。 1. 实验器材、试剂与实验方法: 1.1器材: 试管、三角瓶、烧杯、量筒、玻璃棒、天平、牛角匙、pH试纸、棉花、牛皮纸、记号笔、线绳、纱布、培养皿、自动立式压力蒸汽灭菌器、烘箱、玻璃珠、移液枪、枪头、称量纸、药匙、试管架、接种环、酒精灯、超净工作台, 粉碎机,接种环,移液枪配枪头。 1.2试剂: 牛肉膏、蛋白胨、琼脂、可溶性淀粉、葡萄糖、1mol/L NaOH、1mol/LHCl、NaCl、95%乙醇、75%酒精,草甘膦,甲甘磷,敌敌畏,辛硫磷。 1.3土样、样品: 取自二十三冶草莓园的土壤,建设北路的大棚蔬菜菜地土壤,化工厂污水口。 1.4 实验方法 1.4.1配制培养基: (一)配制牛肉膏蛋白胨琼脂培养基200ml(用2个100ml三角瓶和2支试管分装)牛肉膏蛋白胨培养基是一种应用最广泛和最普遍的细菌基础培养基。 配方如下:牛肉膏 0.6g 蛋白胨 2g NaCl 1g 琼脂 3~4g 水 200ml pH 7.4-7.6 1、称药品按实际用量计算后,按配方称取各种药品放入大烧杯中。牛肉膏和蛋白 胨可分别放在小烧杯或表面皿中称量,用热水溶解后倒入大烧杯。蛋白胨极易吸潮,故称量时要迅速。 2、加热溶解在烧杯中加入少于所需的水量,然后放在石棉网上,小火加热,并用 玻璃棒搅拌,待药品完全溶解后再补充水分至所需量。若配制固体培养基,则将称好的琼脂放入已溶解的药品中,再加热融化,在此过程中,需不断搅拌,以防琼脂糊底或溢出,最后补充所失水分。 3、调pH 用pH试纸或酸碱度计检测培养基的pH值,若pH偏酸,可滴加1mol/L NaoH, 边加边搅拌,并随时检测,直至达到所需pH范围。若偏碱,则用1mol/l HCL进行调节。 pH调节通常放在加琼脂之前。注意pH值不要调过头,以免回调而影响培养基内各离子的

土壤重金属生物有效性

土壤重金属生物有效性 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

题目:土壤中重金属生物有效性 学院: 专业: 学号: 姓名: 2017年1月5日 土壤中重金属生物有效性 摘要:人类的生产和生活使很多重金属进入环境,伴随着环境污染的加剧,土壤中重金属的含量也在增加。土壤中的重金属通过食物链被运输并在生物体内富集。重金属对植物和动物的危害不再仅仅与重金属的总量有关。土壤中可用的重金属含量逐渐引起人们的注意。土壤中可利用的重金属受到很多因素的影响,例如土壤物理化学性质,重金属形态,根际环境,重金属相互作用等因素。现在有许多方法来评价土壤中重金属的可利用性,但不同方法的结果不具有很好的可比性,需要进一步的研究。 关键词:重金属;生物有效性;土壤;评价方法 Bioavailability of Heavy Metals in Soils ABSTRACT: Human activities make a lot of heavy metals into the environment, with the intensification of pollution, the content of heavy metals in the soil is also increasing. Heavy metals in the soil are transported and enriched by the food chain. The harm of heavy metals to plants and animals is no longer just concerned with the total amount of heavy metals. The available content of heavy metals in the soil gradually attracts people's attention. The available heavy metals in soils were affected by soil physical and chemical properties, heavy metal form, rhizosphere environment, and heavy metal interaction. There are many methods to evaluate the availability of heavy metals in soils, but the results of different methods are not comparable. Therefore, it needs to be further studied. KEY WORDS: heavy metals; bioavailability; soil; evaluation method 土壤的重金属污染是一个相对严重的问题。随着工业化和城市化的发展,人类活动范围扩大且频繁,在生产生活中产生了含有重金属的污水、废气或固体废弃物,如含重金属农药和化肥的使用、金矿开采、汽车尾气的排放、金属冶炼排放的废渣和污泥的堆积等过程[1]。由于土壤重金属污染具有隐蔽性和积累性等特点,在积累的初期没有明显的污染现象,但是一旦重金属的毒害作用比较明显的表现出来后,就很难清除彻底。通过食物链,重金属能够积累到人或动物体内,大部分的重金属都是都是人体不需要的且对人体会产生危害,并且积累在人体的不同部位损害人体健康,例如,镉容易积累在人体的肾脏部位,对肾脏有毒害作用,儿童体内血铅含量高会导致

土壤重金属治理方法

土壤重金属治理方法 摘要:土壤重金属污染问题是环境和土壤科学研究者关注的热点问题。根据历年来学者们对湖南省土壤重金属污染的相关研究报道,综述了土壤中重金属的污染现状、主要污染来源、分布和重金属治理的主要方法及相关性研究。并就存在的问题和今后的研究重点进行了分析研究。 关键词:重金属;土壤;污染 1引言 近20年来,长沙的土地利用、土地覆盖格局发生了前所未有的快速变化,给城市土壤带来了严重的环境污染问题。湖南省是有色金属大省,全省受重金属污染土地面积高达13 %。魏本杰等对湘江流域某冶炼厂周边土壤重金属污染情况研究表明,重金属污染物主要积累在土壤耕作层(0~30),下层土壤污染较轻[1]。 在各种污染因素中,重金属污染范围广、持续时间长,又不易在生物循环和能量交换中分解,受到有关专家们的广泛关注。湖南土壤重金属的早期污染可追溯至湖南工业初期的作坊,如电镀、化工、印染、皮革、搪瓷、制药、冶炼、仪表厂等,这些作坊对土壤环境造成潜在的重金属污染。随着改革开放与经济发展,这些企业的生产规模不断扩大,二三十年来的积累效应,显著增加了重金属在土壤中的含量。随着湖南各城市的都市化迅速发展,郊区乡镇工业兴起,加快了工业“三废”的排放、城市生活垃圾以及汽车尾气等,这些已经逐渐取代农药和污水灌溉,成为现在湖南土壤重金属污染的主要来源。本文主要阐述了土壤中重金属的污染现状和主要污染来源以及总结了相关土壤重金属处理方法。 2 重金属污染的治理和修复 按照重金属在土壤中的赋存形态不同和土壤的性质不同。重金属污染土壤的修复和治理方法可分为三大类:土壤农化调控法、工程物理化学法及生物修复法。 2.1 工程物理化学法 工程物理化学法是指通过机械法、物理化学法等手段治理土壤重金属污染的方法,在土壤重金属污染初期应用该方法效果较好。主要包括:客土法、淋洗沉淀法等。 2.1.1 客土法 客土法是以非污染土壤将污染土壤覆盖或以非污染土壤置换污染土壤,使污染土壤得到恢复的方法。此法治理效果显著,但是需要大量的人力与财力,同时恢复土壤结构和肥力所需时间较长,而且不能断绝二次污染的可能,仅适合小面积污染的治理。 2.1.2 淋洗沉淀法 淋洗沉淀法是用清水或酸性溶液冲洗被污染过的土壤,使重金属溶解或增加重金属的溶解性,然后经过络合或沉淀作用使重金属富集而去除的过程。清水冲洗可以降低土壤中重金属的浓度,在一定程度上减轻其危害性;另一方面,可以增强重金属在土壤中的溶解度,再冲洗,从而减轻重金属污染。 除此之外,热处理法、电动化学法、污染物固化也属于物理化学法。它们各有优缺点,应根据实际情况选用适当方法。 2.2 农业化学调控法 农业化学调控法指通过调节土壤pH、有机质、CEC、土壤水分等因索。从而改变土壤重金属的水溶性,降低或升高其生物有效性,消减重金属污染危害或净化土壤的方法。 2.2.1 土壤pH值调节 土壤液的pH值能显著影响重金属在土壤中的溶解度。当pH小于5 时,土壤中重金属的活性提高,生物有效性增大,尤其是部分碳酸盐结合态将变成水溶态。此时若用碱性物质中和,提高其pH,将大大增强土壤对重金属的吸附。据研究表明,施用石灰、矿渣等碱性

四类微生物筛选试验

吉林化工学院 生物工程专业 四类微生物的分离、培养及鉴定 摘要:学习和掌握细菌、放线菌、霉菌、酵母菌常用培养基的配制方法,学习和掌握细菌、放线菌、霉菌、酵母菌常用培养基的配制方法。通过观察和比较分离出来的细菌以及放线菌、酵母菌及霉菌的菌落特征,掌握初步鉴别上述微生物的方法。本实验通过从土壤中分离细菌、放线菌、霉菌[1]以及在面曲中提取酵母菌四类微生物,在各自的培养基分别培养最后在显微镜下观察、鉴定。得出这四类微生物菌落特征不同。 关键字:微生物、分离、培养、鉴定 前言:微生物发酵工业中,要使微生物良好地生长或累积代谢产物,就需要应用微生物纯种培养技术。微生物纯种培养技术的发展表现为:从固体培养法为主发展到液体培养法为主;从浅层培养法为主发展到深层发酵法;从静止培养法发展到通气搅拌培养法;从单罐培养发展到连续培养以及多级连续培养;从利用分散的微生物细胞发展到固定化细胞;从利用自然菌种到利用变异菌株以至“工程菌”等等。分离技术是人类揭开微生物世界奥秘的重要手段,要知晓在自然条件下处于混生状态的某一种微生物的特点以及它对人类是有益或是有害之谜,就必须采用在无菌技术基础上的纯种分离方法。利用固体培养基来分离和纯化微生物。显微镜来鉴别微生物。 1.实验仪器与试剂

1.1主要仪器 显微镜、天平、高压蒸汽灭菌锅、移液管、试管、烧杯、量筒、锥形瓶、培养皿、pH 试纸、棉花、纱布、牛皮纸、线绳、报纸等 1.2主要试剂 牛肉膏、蛋白胨、葡萄糖、可溶性淀粉、琼脂、黄豆芽、NaCl、KNO3、K2HPO4、MgSO4、FeSO4、KH2PO4、MgSO4?7H2O、NaOH溶液(1mol/L)。 2.实验步骤 2.1培养基的配制 2.1.1肉膏蛋白胨培养基的配制

土壤中重金属生物有效性与植物效应研究_高军锋

第27卷第3期2008年 6月 四 川 环 境 S I C H U A NE N V I R O N M E N T V o l .27,N o .3J u n e 2008 ·综 述· 收稿日期:2008-03-28 作者简介:高军锋(1974-),男,甘肃宁县人,1997年毕业于兰州交 通大学给水排水专业,本科。国家注册监理工程师,主 要从事环境、安全监理工作。 土壤中重金属生物有效性与植物效应研究 高军锋1 ,毛玉红 2 (1.兰州交通大学监理公司,兰州 730070;2.兰州交通大学环境与市政工程学院,兰州 730070) 摘要:植物效应为重金属的生物有效性评价提供了链接,本文就污染土壤中重金属生物有效性问题,探讨了植物效应 和生物有效性的关联关系。阐述各种植物效应在重金属生物有效性评价、监测及应用领域的研究进展,探讨了目前存在的某些不足。根据重金属的生物有效性评价结论,可针对不同土壤污染类型采用不同的植物应对措施,如可以尝试应用避性排斥型植物在生物有效性低的污染土壤上生产出非污染的农产品,为进行安全农业生产提出了一条新的思路。 关 键 词:生物有效性;植物效应;指示植物;排斥型植物;超累积植物 中图分类号:X 53 文献标识码:A 文章编号:1001-3644(2008)03-0110-03 R e s e a r c h A d v a n c e s o n t h e B i o a v a i l a b i l i t y a n d P l a n t E f f e c t o f H e a v y Me t a l s i nS o i l G A OJ u n -f e n g 1 ,M A OY u -h o n g 2 (1.S u p e r v i s i o nC o m p a n y o f L a n z h o u J i a o t o n gU n i v e r s i t y ,L a n z h o u 730070,C h i n a ; 2.S c h o o l o f E n v i r o n m e n t a l &M u n i c i p a l E n g i n e e r i n g ,L a n z h o uJ i a o t o n gU n i v e r s i t y ,L a n z h o u 730070,C h i n a ) A b s t r a c t :T h e r e a r e l i n k s b e t w e e nt h ee f f e c t o f p l a n t a n dt h ee v a l u a t i o nf o r b i o a v a i l a b i l i t y o f h e a v y m e t a l s .I nt h i s p a p e r t h e p r o b l e mo f b i o a v a i l a b i l i t y o f h e a v y m e t a l s i n p o l l u t e d s o i l i s r e v i e w e d a n dt h e c o r r e l a t i o n b e t w e e n t h e e f f e c t s o f p l a n t a n d b i o a v a i l a b i l i t y a r e e x p l a i n e d .A t t h es a m e t i m e ,t h e a p p l i c a t i o n s o f p l a n t e f f e c t s o nt h e m e a s u r i n ga n dm o n i t o r i n g m e t h o do f b i o a v a i l a b i l i t y a r e i n t r o d u c e d i n d e t a i l a n ds o m e e x i s t i n g d i s a d v a n t a g e s a r e d i s c u s s e d .C o n s e q u e n t l y ,m e a s u r e s w i t h d i f f e r e n t p l a n t s c a n b e t a k e nt o d e a l w i t hd i f f e r e n t t y p e s o f h e a v y m e t a l p o l l u t e ds o i l b a s eo nb i o a v a i l a b i l i t y .A s a ne x a m p l e ,n o n -p o l l u t i n g a g r i c u l t u r a l p r o d u c t s c a nb e p r o d u c e d b y p l a n t i n gh e a v y m e t a l e x c l u d e r s i nt h el o wb i o a v a i l a b i l i t ys o i l ,w h i c hp r o p o s e sa n e ww a yf o r t h es a f e t yo f a g r i c u l t u r a l p r o d u c t i o n . K e y w o r d s :B i o a v a i l a b i l i t y ;t h e e f f e c t o f p l a n t ;i n d i c a t o r p l a n t ;e x c l u s i o np l a n t ;h y p e r a c c u m u l a t o r 重金属在土壤中的积累可增加土壤对生态环境的危害,危害大小与其在土壤中的型态分布及生物有效性关系较大。同时重金属生物有效性的高低直接影响到植物的外在效应表现,因而植物对重金属的富集、回避、敏感指示等效应,为分析土壤中重金属的生物有效性提供了相关性链接。 1 重金属生物有效性 用重金属在土壤中的总量来预测其在环境中的 行为和对生态环境的影响是不确切的,因为总量难以反映重金属的生物有效性和移动性 [1] 。 对于土壤中重金属的生物有效性,一般采用植株中的重金属含量、重金属的根际效应或可食部分的重金属含量来衡量生物有效性 [2~7] 。根据生物对 重金属不同形态的吸收难易程度,可将其分为三类:可利用态、潜在可利用态和不可利用态 [8] 。 土壤中重金属生物有效性不仅受环境的影响,也受生物体自身的影响,涉及到物理、化学及生物等各个方面,影响因素很多,主要有土壤性质、重金属的复合污染和根际环境等。土壤的物理组成和化学性质直接影响重金属的存在形态,其中p H 、有机质是影响较大的因素 [9] ;多种重金属之间可 DOI :10.14034/j .cn ki .schj .2008.03.023

典型矿冶周边地区土壤重金属污染及有效性含量

生态环境 2004, 13(4): 553-555 https://www.360docs.net/doc/1c14851793.html, Ecology and Environment E-mail: editor@https://www.360docs.net/doc/1c14851793.html, 基金项目:国家杰出青年基金项目(40225002);中南大学科学研究基金资助项目(76071) 作者简介:郭朝晖(1971-),男,博士,讲师,主要从事污染环境的控制化学与修复技术研究。E-mail: zhguo@https://www.360docs.net/doc/1c14851793.html, *通讯联系人,ygzhu@https://www.360docs.net/doc/1c14851793.html, 收稿日期:2004-06-13 典型矿冶周边地区土壤重金属污染及有效性含量 郭朝晖1, 2*,朱永官2 1. 中南大学环境工程系,湖南 长沙 410083; 2. 中国科学院生态环境研究中心,北京 100085 摘要:对湖南长沙、株洲、衡阳、郴州等地区的典型矿冶污染土壤进行了采样分析与有效性含量提取,结果表明,土壤中重金属污染严重,矿区土壤主要污染元素为Pb 、Zn 、As 、Cr 、Cu ,而冶炼业周边污染土壤中主要是Zn 、Pb 、Cr 、As 、Cu 、Cd ,其污染程度均远远高于国家环境质量二级标准;Pb 、Cd 和Zn 污染主要来源于采矿、冶炼活动而As 污染可能还与农业生产有关。不同浸提液对土壤中Pb 、Zn 、Cd 、As 、Cu 有效性质量分数的提取能力(设其符号为u )依次为u (NH 4NO 3)>u (HCl)>u (CaCl 2);而对有效性Cr ,HCl 提取量为最高;盐基离子,尤其是NH 4+、NO 3-效应和酸效应(H +)大大促进了土壤中重金属离子的环境危害行为。 关键词:土壤污染;典型矿冶周边地区;有效性重金属 中图分类号:X144 文献标识码:A 文章编号:1672-2175(2004)04-0553-03 随着采矿和冶炼业的迅速发展,矿冶周边地区土壤重金属污染已成为环境污染热点问题之一[1]。我国铅锌矿蕴藏丰富,随其累年开采,矿渣、选矿、冶炼及电镀等工业废水不断排放到周围环境中,造成周边土壤中Pb 、Cd 等重金属污染严重,受重金属不同程度污染的农田面积就达90.6×104 hm 2 [2]。湖南是我国有色金属之乡,由有色金属矿山引起的铅、镉、汞、砷等重金属污染面积达2.8万km 2,占全省总面积的13%。部分地区土壤中铅、镉、汞、砷高出正常值数倍至数百倍,有的地方甚至出现了地方病。然而,对矿冶周边地区土壤中重金属污染及其有效性含量的研究不多,对这些污染土壤中重金属的生态行为也了解较少,因此,开展湖 南典型矿冶周边地区土壤中重金属污染状况研究,并用不同浸提液提取土壤中重金属有效性含量,探讨其潜在的生物有效性与环境危害性,为矿冶周边地区重金属污染土壤的可持续利用和生态修复服务具有重要意义。 1 材料与方法 1.1 土样 土壤样品主要从湖南省的长沙、株洲、衡阳和郴州四个地区收集得到。每个土壤样品大约2 kg ,为每块约50 m 2采样区的混合样品。土壤样品为移去有机物的0~20 cm 的表层土壤。土壤收集后自然风干,过1 mm 筛,备用。土壤样品基本理化性质如表1。 所收集土壤均采自湖南地区,属湿润富铁土:长沙土壤由第四纪红土发育而成;株洲土壤由板页岩和紫砂岩发育而成;衡阳土壤由紫砂岩发育而成;郴州土壤由砂岩发育而成。所有土壤均属可变电荷土壤,阳离子交换量低,而交换性铝含量高,土壤呈酸性(表1)。所有采样点水文气候特征基本相似:年均气温为15.5~25 ℃,年均积温(>10 ℃)为5000~9500 ℃,年均降水量为1250~1500 mm ,降水主要集中在夏天,且降水pH 值为4.50~3.50。 1.2 土壤中有效性重金属含量的提取 分别采用0.10 mol/L HCl 、0.10 mol/L CaCl 2和1.0 mol/L NH 4NO 3溶液分别提取土壤中有效性重金属含量(表2):连续振荡后的浸提离心液用无灰定量滤纸过滤,然后滴加1~2滴14 mol/L HNO 3使其酸化并保存在4 ℃条件下,待测。实验中,每个土样重复3次,同时做空白进行对照。 1.3 分析与测试 土壤基本理化性质根据常规方法进行测定[3]:土壤pH 采用水/土质量比为2.5∶1;有机质含量采用重铬酸钾容量法;阳离子交换量采用1 mol/L NH 4OAc 提取-凯氏定氮法;土壤体积质量采用环刀法 (100 cm 3);交换性酸度采用1 mol/L KCl 淋洗法;酸中和容量采用0.1 mol/L H 2SO 4滴定法;土壤中重金属全量采用HF-HNO 3-HClO 4法,为保证数据的有效性,同时采用标准污染土壤样品(GBW08303)进行全过程 采样地区 长沙(n =7) 株洲(n =5) 衡阳(n =3) 郴州(n =7) pH 值(水土比2.5∶1) 4.78±0.41 4.67±0.32 4.15±0.29 4.57±0.58 土壤体积质量/(g ?cm -3) 1.21±0.06 1.26±0.11 1.35±0.05 1.18±0.14 有机质/(g ?kg -1) 22.13±0.21 23.56±0.34 19.02±0.15 21.03±0.28 阳离子交换量/(cmol ?kg -1) 11.03±0.14 14.32±0.21 9.32±0.15 12.05±0.26 交换性酸度/(cmol ?kg -1) 4.45±0.25 6.32±0.18 4.78± 0.31 5.23±0.24 -1 HCl, 0.10 10 g ∶50 ml 25 ℃, 1.5 h [3] CaCl 2, 0.10 5 g ∶50 ml 25 ℃, 2 h [4] NH 4NO 3, 1.0 2 g ∶50 ml 25 ℃, 2 h [5]

土壤中重金属

实验题目土壤中重金属含量测定与污染评价 一、实验目的与要求 1、了解土壤的组成,了解土壤中重金属Cu对生物的危害及其迁移影响因素。 2、了解Cu, Pb, Cr, Cd, Zn ,Tl污染的GB标准。 3、掌握土壤消解及其前处理技术和原子吸收分析土壤中金属元素的方法。 4、掌握土壤中Cu的污染评价方法。掌握土壤中其它重金属的污染评价方法。 二、实验方案 1、实验原理 用盐酸-硝酸-氢氟酸-高氯酸混合酸体系消解土壤样品,使待测元素全部进入试液,同时所有的Cu都被氧化。在消解液中加入氯化铵溶液(消除共存金属离子的干扰)后定容,喷入原子吸收分光光度计原子化器的富燃性空气-乙炔火焰中进行原子化,产生的铜基态原子蒸汽对铜和铅空心阴极灯发射的特征波长进行选择性吸收,测定其吸光度,用标准曲线法定量。 2、实验试剂。 大学城各采样点土壤、盐酸GR、硝酸GR、氢氟酸GR、高氯酸GR、蒸馏水、(1+5)HNO 3 2、实验仪器: 原子吸收分光光度计、铜空心阴极灯、烧杯50ml(聚四氟乙烯)、移液管(1,2,5,10mL),滴管、50ml比色管,量筒及实验室常用仪器等。 3、实验步骤(土壤样品已经制备好,直接用就可以了)。 (1)土壤样品的消解。分别称取0.5g左右的三种土壤样品与50mL聚四氟乙烯烧杯中,用移液管量取2mL的水湿润,加入10mL的盐酸,在电热板上加热到溶液接近干燥,然后加入10 mL硝酸,继续加热到溶解物近干,用滴管加入5mL 氟化氢并加热分解去除硅化物,接近近干后加入5mL高氯酸加热至消解物不再冒白烟时,取下冷却。 (2)冷却完毕后,将残留物洗至50mL比色管,后加入2mL浓硝酸,并定容至标线,摇匀,静置. (3)由于溶液比较浑浊,干过滤后所得清液,用原子吸收分光光度计测其Cu的浓度。(Cu标准曲线的配制:实验室已配置好,直接测就好) (4)样品测定 ①(开机过程):开风机----压缩机----电脑----气瓶----电源主机; ②通过电脑打开桌面上的WFX210控制软件,进入方法编辑-创建新的方法; ③修改参数(仪器条件,测量条件,工作曲线参数,火焰条件) 仪器条件和参数

土壤微生物的分离与鉴定.

土壤微生物的分离与鉴定 组员:巩鹏鹏、高艳双、顾斐、曹凌雪、白相林、杨金玉 实验时间:2006年12月11号——2007年1月15号 关键词:土壤微生物,分离鉴定,生理生化, 实验摘要: 土壤是微生物的良好生境,土壤中有多种类群的微生物,它们对自然界物质的转化和循环起着极为重要的作用,对农业生产和环境保护有着不可忽视的影响。根际微生物与植物的关系特别密切,不同的土壤和植物对根际微生物产生显著影响,而不同的根际微生物由于其生理活性和代谢产物的不同,也将对土壤肥力和植物营养产生积极或消极的作用。土壤微生物不仅对土壤的肥力和土壤营养元素的转化起着重要作用,而且对于进入土壤中的农药及其他有机污染物的自净、有毒金属及其化合物在土壤环境中的迁移转化等都起着极为重要的作用。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的土层中菌数最多,随土层加深,菌数减少。 土壤中微生物以细菌数量最多,为几百万个/克土至几亿个/克土,有各种生理类群,营养类型多属异养型,鉴别染色多为革兰氏阳性。放线菌含量为几万个/克土至几百万个/克土,但其生物量不比细菌低,因为菌丝体积较大。土壤中真菌含量为几千个/克土至几十万个/克土,而其生物量常比细菌的大。酸性土壤中真菌较多。藻类在土壤中的含量不及微生物总数的1%,生长在潮湿土壤的表层。原生动物在富含有机质的土壤中较多。 通过土壤微生物的分离与计数及划线纯化,涂布分离长出的单菌落,须经划线纯化,再转斜面培养后保藏备用。涂布分离细菌的平板,温箱培养2d~3d后,于室温下放置3d或2d,使菌落性状表现较充分,然后挑取各单菌落的部分培养物,在预先制备好的平板上划线纯化。达到分离纯化认识土壤中微生物的目的,并掌握各种相关实验操作技术。实验原理: (一) 对土壤中微生物的分离筛选及鉴定 从混杂的微生物群体中获得只含有某一种或某一株微生物的过程成为微生物的分离与纯化,常用的方法有简易的细胞挑取法和平板分离法。 其中平板分离法操作简单,普遍用于微生物的分离与纯化,奇迹般原理包括两个方面: (1)逊则适合于待分离微生物的生长条件如营养,酸碱度,温度或氧等要求或加入某种 抑制剂造成只有利于该种微生物生长,而抑制其它微生物生长的环境,从而淘汰一些不需要的微生物。

土壤重金属有效态分析

D.3 形态分析样品的处理方法 D.3.1有效态的溶浸法 D.3.1.1 DTPA浸提 DTPA(二乙三胺五乙酸)浸提液可测定有效态Cu、Zn、Fe等。浸提液的配制:其成分为0.005mol/L DTPA-0.01mol/L CaCl2-0.1mol/L TEA(三乙醇胺)。称取 1.967gDTPA溶于14.92gTEA和少量水中;再将1.47gCaCl2·2H2O溶于水,一并转入1000mL容量瓶中,加水至约950mL,用6mol/L HCl调节pH至7.30(每升浸提液约需加6mol/L HCl 8.5mL),最后用水定容。贮存于塑料瓶中,几个月内不会变质。浸提手续:称取25.00g风干过20目筛的土样放入150mL硬质玻璃三角瓶中,加入50.0ml DTPA浸提剂,在25℃用水平振荡机振荡提取2h,干滤纸过滤,滤液用于分析。DTPA浸提剂适用于石灰性土壤和中性土壤。 D.3.1.2 0.1mol/L HCl浸提 称取10.00g风干过20目筛的土样放入150mL硬质玻璃三角瓶中,加入50.0mL1mol/L HCl 浸提液,用水平振荡器振荡1.5h,干滤纸过滤,滤液用于分析。酸性土壤适合用0.1mol/L HCl浸提。 D.3.1.3 水浸提 土壤中有效硼常用沸水浸提,操作步骤:准确称取10.00g风干过20目筛的土样于250mL 或300mL石英锥形瓶中,加入20.0mL无硼水。连接回流冷却器后煮沸5min,立即停止加热并用冷却水冷却。冷却后加入4滴0.5mol/L CaCl2溶液,移入离心管中,离心分离出清液备测。 关于有效态金属元素的浸提方法较多,例如:有效态Mn用1mol/L乙酸铵-对苯二酚溶液浸提。有效态Mo用草酸-草酸铵、(24.9g草酸铵与12.6g草酸溶解于1000mL水中)溶液浸提,固液比为1﹕10。硅用pH4.0的乙酸-乙酸钠缓冲溶液、0.02mol/L H2SO4、0.025%或1%的柠檬酸溶液浸提。酸性土壤中有效硫用H3PO4-HAc溶液浸提,中性或石灰性土壤中有效硫用0.5mol/L NaHCO3溶液(pH8.5)浸提。用1mol/L NH4Ac浸提土壤中有效钙、镁、钾、钠以及用0.03mol/L NH4F-0.025mol/L HCl或0.5mol/L NaHCO3浸提土壤中有效态磷等等。 D.3.2碳酸盐结合态、铁-锰氧化结合态等形态的提取 D.3.2.1可交换态 浸提方法是在1g试样中加入8ml MgCl2溶液(1mol/L MgCl2,pH7.0)或者乙酸钠溶液(1mol/L NaAc,pH8.2),室温下振荡1h。 D.3.2.2碳酸盐结合态

土壤重金属生物有效性

题目:土壤中重金属生物有效性 学院: 专业: 学号: 姓名: 2017年1月5日 土壤中重金属生物有效性

摘要:人类的生产和生活使很多重金属进入环境,伴随着环境污染的加剧,土壤中重金属的含量也在增加。土壤中的重金属通过食物链被运输并在生物体内富集。重金属对植物和动物的危害不再仅仅与重金属的总量有关。土壤中可用的重金属含量逐渐引起人们的注意。土壤中可利用的重金属受到很多因素的影响,例如土壤物理化学性质,重金属形态,根际环境,重金属相互作用等因素。现在有许多方法来评价土壤中重金属的可利用性,但不同方法的结果不具有很好的可比性,需要进一步的研究。 关键词:重金属;生物有效性;土壤;评价方法 Bioavailability of Heavy Metals in Soils ABSTRACT: Human activities make a lot of heavy metals into the environment, with the intensification of pollution, the content of heavy metals in the soil is also increasing. Heavy metals in the soil are transported and enriched by the food chain. The harm of heavy metals to plants and animals is no longer just concerned with the total amount of heavy metals. The available content of heavy metals in the soil gradually attracts people's attention. The available heavy metals in soils were affected by soil physical and chemical properties, heavy metal form, rhizosphere environment, and heavy metal interaction. There are many methods to evaluate the availability of heavy metals in soils, but the results of different methods are not comparable. Therefore, it needs to be further studied. KEY WORDS: heavy metals; bioavailability; soil; evaluation method 土壤的重金属污染是一个相对严重的问题。随着工业化和城市化的发展,人类活动范围扩大且频繁,在生产生活中产生了含有重金属的污水、废气或固体废弃物,如含重金属农药和化肥的使用、金矿开采、汽车尾气的排放、金属冶炼排放的废渣和污泥的堆积等过程[1]。由于土壤重金属污染具有隐蔽性和积累性等特点,在积累的初期没有明显的污染现象,但是一旦重金属的毒害作用比较明显的表现出来后,就很难清除彻底。通过食物链,重金属能够积累到人或动物体内,

土壤微生物的分离纯化与鉴定

——土壤微生物的分离纯化与鉴定

目录 摘要 (3) 关键词 (3) 前言 (3) 实验目的 (3) 实验原理 (4) 一、经典分类鉴定方法 (4) 二、现代分类鉴定方法 (5) 实验仪器及材料 (6) 实验步骤 (7) A.细菌的筛选,分离纯化及鉴定 (7) 1. 细菌的筛选 (7) 2.细菌的分离纯化 (8) 3. 细菌的基本形态及运动性鉴定 (8) 4. 细菌的生理生化试验 (11) 5. 土壤中分解果胶细菌种类和数目的测定及纯化细菌菌属鉴定 (12) B.霉菌的筛选,分离纯化及鉴定 (12) 1. 霉菌的筛选 (12) 2.霉菌的分离纯化 (13) 3. 小室培养法鉴定霉菌 (13) 实验结果 (14) A.细菌部分 (14) B.霉菌部分 (21)

摘要 利用分离纯化微生物的基本操作技术以及选择培养基对土壤中的微生物进行分离与纯化,得到能够产生果胶水解酶的细菌以及能够分解几丁质的霉菌。根据菌落形态观察,革兰氏染色结果,芽孢有无及位置,运动性以及一系列的生理生化试验的结果,对照种属特征初步鉴定分离纯化的微生物所属的类群。 关键词 土壤微生物、细菌、果胶、霉菌、几丁质、划线分离、纯培养 前言 在自然条件下,微生物常常在各种生态系统中群居杂聚。群落是不同种类微物的混和体。为了生产和科研的需要,人们往往需要从自然界混杂的微生物群体中分离出具有特殊功能的纯种微生物;或重新分离被其他微生物污染或因自发突变而丧失原有优良性状的菌株;或通过诱变及遗传改造后选出优良性状的突变株及重组株。这种获得单一菌株纯培养的方法称为微生物的分离纯化技术。纯培养是指一株菌种或一个培养物中所有的细胞或孢子都是由一个细胞分裂、繁殖而产生的后代。 分离纯化技术主要由采集样品、富集培养、纯种分离和性能测定等几个基本环节组成。 实验目的 1.学习利用选择培养基从土壤中分离能够产生特殊水解酶的细菌以及霉菌的 方法; 2.学习运用划线分离法纯化分得的细菌以及真菌的方法; 3.学习测定土壤中细菌数目,种类的方法; 4.根据菌落形态,染色结果,运动性以及生理生化试验鉴定未知细菌;小室 培养法观察鉴定未知真菌。

相关文档
最新文档