高精度转动惯量测量仪分析与设计

高精度转动惯量测量仪分析与设计
高精度转动惯量测量仪分析与设计

精密测量仪器项目年终总结报告

精密测量仪器项目年终总结报告 一、精密测量仪器宏观环境分析 二、2018年度经营情况总结 三、存在的问题及改进措施 四、2019主要经营目标 五、重点工作安排 六、总结及展望

尊敬的xxx有限公司领导: 近年来,公司牢固树立“创新、协调、绿色、开放、共享”的发展理念,以提高发展质量和效益为中心,加快形成引领经济发展新常态的体制机制和发展方式,统筹推进企业可持续发展,全面推进开放内涵式发展,加快现代化、国际化进程,建设行业领先标杆。 初步统计,2018年xxx有限公司实现营业收入5242.02万元,同比增长26.63%。其中,主营业业务精密测量仪器生产及销售收入为4414.13万元,占营业总收入的84.21%。 一、精密测量仪器宏观环境分析 (一)中国制造2025 党的十九大报告明确指出:“我国经济已由高速增长阶段转向高质量发展阶段。”这是党中央对当前经济发展大势的科学判断,也是直面新时代主要矛盾,主动适应经济发展新常态的必须选择和紧迫任务。进入新常态,我市面临着发展速度下降、供需矛盾突出、增长动力不足等问题。从表面看是受金融危机影响导致内外整体需求不足,但从更深层次原因考究,则是经济发展已由“量的积累”转向“质的

提升”,质量矛盾开始上升到主导位置。当前,我市亟需通过高质量发展来保持经济持续健康和长期稳定发展。 (二)工业绿色发展规划 改造存量,优化增量,加快传统制造业绿色改造升级,鼓励使用绿色低碳能源,提高资源利用效率,淘汰落后设备工艺,从源头减少污染物产生。积极引领新兴产业高起点绿色发展,强化绿色设计,加快开发绿色产品,大力发展节能环保产业。全面推进,重点突破。着力解决重点行业、企业和区域发展中的资源环境问题,充分发挥试点示范的带动作用。积极推进新兴产业和中小企业的绿色发展,加快工业绿色发展整体水平提升。 (三)xxx十三五发展规划 从提出培育发展战略性新兴产业战略的背景来看,国务院是在应对国际金融危机、促进产业振兴和经济增长的同时,为抓住新一轮科技和产业革命机遇,着力提高经济长远发展中增量的水平,带动整个产业结构的优化升级和经济发展方式转变而实施的重大部署。因此,培育发展战略性新兴产业从一开始就肩负着着眼长远为调结构提供新的增长点和立足当前为经济增长提供新动力的双重历史使命。从这几年的发展实践来看,战略性新兴产业也确实发挥了这样的作用。在当

第二章高精度测量仪器及其应用

培训要点本章重点介绍精密测量仪器地基本原理及其应用,通过学习本章,能够掌握合像水平仪、自准直光学量仪、经纬仪地应用,以及机械装配和维修中常见地精度测量. 常用精密测量仪器地基本原理 合像水平仪 合像水平仪与普通水平仪相比较,它具有测量读数范围大地优点.当被测工件地平面度误差较大、或因放置地倾斜度较大而又很难调整时,若使用框式水平仪就会因其水准气泡已偏移到极限位置而无法测量,而使用合像水平仪时,饮水平位置可以重新调整,所以能比较方便地进行测量,而且精度较高.个人收集整理勿做商业用途 合像水平仪地水准器安装在杠杆上,转动调节旋钮可以调整其水平位置. 合像水平仪主要用于直线度、平面度地测量.我国产主要型号有,其刻度值为. 个人收集整理勿做商业用途 二.自准直光学量仪 自准直光学量仪是根据光学地自准直原理制造地测量仪器,有自准直仪、光学平直仪、测微准直望远镜及经纬仪等多种.个人收集整理勿做商业用途 .光学自准直原理 光学自准仪原理可以通过图加以说明,也就是说在物镜焦平面上地物体,通过物镜及物镜后面反射镜地作用,仍可在物镜焦平面上形成物体地实像.个人收集整理勿做商业用途 .自准直仪 自准直仪又称为自准直平行光管. 自准直仪可用于直线度、平面度、垂直度等误差地测量. .光学平直仪 光学平直仪是由平直仪本体和反射镜组成. 光学平直仪是一种精密光学测量仪器,通过转动目镜,可以同时测出工件水平方向和水平垂直地方向地直线性,还可测出滑板运动地直线性.用标准角度量块进行比较,还可以测量角度.光学平直仪可以用于对较大尺寸、高精度地工件和机床导轨进行测量和调整,尤其适用于各种导轨地测量,具有测量精度高、操作简便地优点.个人收集整理勿做商业用途 .测微准直望远镜 测微准直望远镜是根据光学地自准直原理制造地测量仪器,主要用来提供一条测量用地光学基准线. .自准直光学量仪地使用和调整方法 .经纬仪 ()经纬仪地结构和工作原理经纬仪地光学原理与测微准直望远镜地光学原理没有本质上地区别.它地特点是具有竖轴和横轴,可以使瞄准望远镜管在水平方向作°地方向转动,也可以在垂直面内作大角度地俯仰.其水平面和垂直面地转角大小分别由水平度盘和垂直度盘示出,并由测微尺细分,测角精度为″.个人收集整理勿做商业用途 经纬仪是一种高精度地测量仪器,主要用于机床精度检查,如坐标镗床地水平转台、万能转台、以及精神滚齿机和齿轮磨床地精度地测量,它常与自准直光学量仪组成光学系统来被一起使用.个人收集整理勿做商业用途 ()经纬仪地使用和调整方法 三、激光干涉仪 由于激光具有良好地方向性、单色性和能量集中、相干性强等优点,因而用激光作光源,以激光稳定地波长作基准,利用光波干涉计数地原理对大尺寸进行精密测量,已经得到广泛地应用.个人收集整理勿做商业用途 、单频激光干涉仪

实验4 用三线摆测定物体的转动惯量

实验4 用三线摆测定物体的转动惯量 [摘要] 转动惯量是表征刚体转动特性的物理量,是刚体转动惯性大小的量度,它与刚体质量的大小、转轴的位置和质量对于转轴的分布等有关。对于形状简单的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量。但对于形状复杂的刚体,用数学方法计算它的转动惯量就非常困难,有时甚至不可能,所以常用实验方法测定。因此,学会测定刚体转动惯量的方法,具有实用意义。测定刚体转动惯量的方法有多种,本实验采用三线扭摆法。 [实验目的、要求] 学会用三线扭摆法测定物体的转动惯量。 [实验原理] 1、定悬盘绕中心轮的转动惯量I。三线摆如 图一所示,有一均匀圆盘,在小于其周界的同心圆 周上作一内接等边三角形,然后从三角形的三个顶 点引出三条金属线,三条金属线同样对称地连接在 置于上部的一个水平小圆盘的下面,小圆盘可以绕 自身的垂直轴转动。当均匀圆盘(以下简称悬盘) 水平,三线等长时,轻轻转动上部小圆盘,由于悬 线的张力作用,悬盘即绕上下圆盘的中心连线轴 00‘周期地反复扭转运动。当悬盘离开平衡位置向 某一方向转动到最大角位移时,整个悬盘的位置也 随着升高h。若取平衡位置的位能为零,则悬盘升 高h时的动能等于零,而位能为: 式中m是悬盘的质量,g是重力加速度。转动的悬盘在达到最大角位移后将向相反的方向转动,当它通过平衡位置时,其位能和平衡动能为零,而转动动能为: 式中I。为悬盘的转动惯量,ω 为悬盘通过平衡位置时的角速度。如果略去摩擦力的影 响,根据机械能守衡定律,E 1=E 2 ,即 mgh(1)若悬盘转动角度很小,可以证明悬盘的角位移与时间的关系可写成: 式中θ是悬盘在时刻t的位移,θ 是悬盘的最大角位移即角振幅,T是周期。

高精度失真度测试仪

高精度失真度测试仪 摘要:设计并制作了一个高精度失真度测试仪,用于测量正弦波、方波以及三角波等等信号波的失真度。该测试仪硬件系统基于AT89S52单片机,控制包括过零比较整形电路,倍频锁相环,加法器,A/D信号采集和系统显示板五部分组成;软件基于离散型傅立叶变换,应用准同步技术的失真度测量方法。由于锁相环的作用,使得采样周期与信号周期严格同步,有效地克服了传统的基于DFT的失真度测量方法中非整周期采样引起的频谱泄漏对测量结果的影响,实验结果表明,该方法的采用使失真度测量的准确度提高了一个数量级,测量误差在百分之一以下。 关键字:倍频锁相环,A/D信号采集,离散型傅立叶变换

目录 1. 系统设计 (3) 1.1 设计要求 (3) 1.1.1 设计任务 (3) 1.1.2 技术要求 (3) 1.2 总体方案 (3) 1.2.1 总体设计思路 (3) 1.2.2 总体设计方案 (4) 1.3单元电路设计 (4) 1.3.1 过零比较整形 (4) 1.3.2 加法器 (4) 1.3.3 锁相环 (5) 1.3.4 数据采集 (7) 1.3.5 结果显示 (7) 2. 数据处理 (7) 2.1 准同步采样原理 (7) 2.2利用准同步技术实现失真度的高精度测量 (9) 2.2.1 失真度的定义 (9) 2.2.2 周期信号基波和谐波幅值的测量 (9) 2.2.3 基于准同步算法的失真度计算 (10) 3. 软件设计 (10) 3.1 开发软件及编程语言的简介 (10) 3.2 总体程序流程 (10) 4 系统测试 (12) 4.1 测试仪器与设备 (12) 4.2 指标测试 (12) 参考文献 (12) 附录:c51程序: (13)

FD-IM-II新型转动惯量测定仪说明书

FD-IM-II 新型转动惯量测定仪 说 明 书 上海复旦天欣科教仪器有限公司 中国上海

FD-IM-II 新型转动惯量测定仪 一、概述 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。正确测定物体的转动惯量,在工程技术中具有十分重要的意义。用三线摆法测定刚体的转动惯量是高校理工科物理实验教学大纲中的一个重要基本实验。为了使教学仪器和教学内容更好的反映现代科学技术,复旦大学物理实验教学中心与上海复旦天欣科教仪器有限公司共同研制并生产了新型转动惯量测定仪。该仪器采用激光光电传感器与计数计时仪相结合,测定悬盘的扭转摆动周期。通过实验使学生掌握物体转动惯量的物理概念及实验测量方法,了解物体转动惯量与哪些因素有关。本实验仪的计数计时仪具有记忆功能,从悬盘扭转摆动开始直到设定的次数为止,均可查阅相应次数所用的时间,特别适合实验者深入研究和分析悬盘振动中等周期振动及周期变化情况。仪器直观性强,测量准确度高。本仪器是传统实验采用现代化技术的典型实例,不仅保留了经典实验的内容和技能,又增加了现代测量技术和方法,可以激发学生学习兴趣,提高教学效果。 二、仪器用途 1、学习用三线摆法测定物体的转动惯量。 2、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。 3、验证转动惯量的平行轴定理。 三、仪器的技术指标 1、摆线长度>500mm 2、启动盘质量>悬盘质量 3、仪器体积:①实验平台:300mm×240mm×740mm ②计数计时仪:200mm×158mm×65mm 4、总重量:13.6Kg 5、计数计时仪量程精度:0.001S 6、预置次数≤66次

三线摆测刚体转动惯量实验报告(带数据)

曲阜师大学实验报告 实验日期:2020.5.24 实验时间:8:30-12:00 :方小柒学号:********** 年级:19级专业:化学类 实验题目:三线摆测刚体转动惯量 一、实验目的: 1.学会用三线摆法测定物体转动惯量原理和方法。 2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。 二、实验仪器: 三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪 三、实验原理: 转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。 三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。 三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。 三摆线示意图 当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量: 下盘:J =

下盘+圆环:J1= 圆环:J= J1- J0= (条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合) 因此,通过长度、质量和时间的测量,便可求出刚体绕某 轴的转动惯量。 四、实验容: 1.了解三线摆原理以及有关三线摆实验器材的知识。 2.用三线摆测量圆环的转动惯量,并验证平行轴定理 (1)测定仪器常数H、R、r 恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。 (2)测量下圆盘的转动惯量 线摆上方的小圆盘,使其绕自身转动一个角度,借助线的力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测量下圆盘转动惯量的方法。 (3)测量圆环的转动惯量 盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和、外直径。利用公式求出圆环的转动惯量。 (4)验证平行轴定理 将质量和形状尺寸相同的两金属圆柱体对称地放在下圆盘上。测量圆柱体质心到中心转轴的距离。计算圆柱体的转动惯量。 五、实验步骤: Ⅰ、流程简述:一、测三线摆空盘的转动惯量: 1.调节仪器:使用水平仪,调整上盘和下盘使它们保持水平。 2.分别测出上盘、下盘的半径r, R,以及两盘之间的高度H。 3.启动振动和测量周期:用秒表测出10次全振动所需的时间,重复5次,计算出平均周期。 4.利用测得周期,带入计算。 5.与圆盘的理论值比较,J 0=m R2/2,求出相对误差。 二、测圆环的转动惯量: 1.把圆环放在下盘中,注意使环的质心恰好在转动轴上,重复以上步骤,测出载有圆环的转动周期,根据公式计算转动惯量。 2.用游标卡尺分别测出圆环的、外半径R和R外,计算理论结果J理论=(R2+ R 外 2)m/2。 3.将实验值和理论值相比较,给出相对误差。 Ⅱ、线上操作:

用三线摆测量转动惯量

用三线摆测转动惯量 转动惯量是刚体转动惯性的量度,它与刚体的质量分布和转轴的位置有关。对于形状简单的均匀刚体,测出其外形尺寸和质量,就可以计算其转动惯量。对于形状复杂、质量分布不均匀的刚体,通常利用转动实验来测定其转动惯量。为了便于与理论计算值比较,实验中的被测刚体均采用形状规则的刚体。 一、实验目的 1. 加深对转动惯量概念和平行轴定理等的理解; 2. 了解用三线摆测转动惯量的原理和方法; 3. 掌握周期等量的测量方法 二、实验仪器 DHTC-1A 三线摆实验仪、DHTC-3B 多功能计时器、水准仪、卷尺、游标卡尺、物理天平及待测物体等。 三、实验原理 一、三线摆介绍 图1是三线摆示意图。上、下圆盘 均处于水平,悬挂在横梁上。横梁由立 柱和底座(图中未画出)支承着。三根 对称分布的等长悬线将两圆盘相连。拨 动转动杆就可以使上圆盘小幅度转动, 从而带动下圆盘绕中心轴OO '作扭摆 运动。当下圆盘的摆角θ很小,并且忽 略空气摩擦阻力和悬线扭力的影响时, 根据能量守恒定律或者刚体转动定律都 可以推出下圆盘绕中心轴OO '的转动 惯量0J 为 (1) 式中,m 0为下圆盘的质量;r 和R 分别为上下悬点离各自圆盘中心的距离;H 0为平衡时上下圆盘间的垂直距离;T 0为下圆盘的摆动周期,g 为重力加速度。阿克苏地区的重力加速度为9.8015ms -2。 将质量为m 的待测刚体放在下圆盘上,并使它的质心位于中心轴OO '上。 图1 三线摆示意图 2 00200T H 4gRr m J π=

测出此时的摆动周期T 和上下圆盘间的垂直距离H ,则待测刚体和下圆盘对中心轴的总转动惯量J 1为 2 201T H 4gRr )m m (J π+= (2) 待测刚体对中心轴的转动惯量J 与J 0和J 1的关系为 J= J 1-J 0 (3) 利用三线摆可以验证平行轴定理。平行轴定理指出:如果一刚体对通过质心的某一转轴的转动惯量为J c ,则这刚体对平行于该轴、且相距为d 的另一转轴的转动惯量J x 为 J x =J c +md 2 (4) 式中,m 为刚体的质量。 实验时,将二个同样大小的圆柱体放置在对称 分布于半径为R 1的圆周上的二个孔上,如图2所 示。测出二个圆柱体对中心轴OO '的转动惯量J x 。 如果测得的J x 值与由(4)式右边计算得的结果比 较时的相对误差在测量误差允许的范围内(≤5%), 则平行轴定理得到验证。 四、实验任务 1、用三线摆测定下圆盘对中心轴OO '的转动惯量和圆柱体对其质心轴的 转动惯量。要求测得的圆柱体的转动惯量值与理论计算值(21mr 2 1 J = ,r 1为圆 柱体半径)之间的相对误差不大于5%。 2、用三线摆验证平行轴定理。 五、实验注意事项 1、测量前,根据水准泡的指示,先调整三线摆底座台面的水平,再调整三线摆下圆盘的水平。测量时,摆角θ尽可能小些,以满足小角度近似。防止三线摆在摆动时发生晃动,以免影响测量结果。 2、测量周期时应合理选取摆动次数。对三线摆,测得R 、r 、m 0和H 0后,由(1)式推出J 0的相对误差公式,使误差公式中的2?T 0/ T 0项对?J 0/J 0的影响比其它误差项的影响小作为依据来确定摆动次数。估算时,?m 0取0.02g ,时间测量误差?t 取0.03s ,?R 、?r 和?H 0可根据实际情况确定。 图2 二孔对称分布

高精度测绘仪器检校台W420说明书

高精度测绘仪器检校台说明书 W420-3型 常州大地测绘科技有限公司

大地高精度测绘仪器检校台是检校各类进口、国产经纬仪、水准仪、平板仪、电子经纬仪及全站仪的主要设备,是测绘销售部门、仪器修理行业、大专院校工民建专业及计量室不可缺少的主要检测设备。 检校台加工精密、精度稳定、光学件质量高、保证了测绘仪器的测量精度,如照准差、指标差、i角、视距、度盘偏心差及光学对点等都能达到国家规定的各项技术指标。光管的照明采用了最新的冷光源,不但提高了照明灯泡的使用寿命,而且照明亮度也可以调节,根据测量人员的视力情况可随时调整亮度,调高了工作的舒适度。 检校台体积小,安装方便,可以移动,深受到广大用户的喜爱。 W420-3型桌面式检校台,采用仰角光管、水平光管和俯角光管三种光管,水平角光管也是准直光管,装有10″水平气泡,提高了检测经纬仪的横轴与竖轴的垂直度(即i角的精确度),准直光管带有微动装置,提高了调校及安装的工作效率。 一、主要技术指标及特点: 平行光管精度稳定、光学件质量高、加工精密,保证了测绘仪器的测量精度,如照准差、指标差、i角、视距、度盘偏心差及光学对点等都能达到国家规定的各项技术指标。 二、基本操作 1.升降台的使用 检测仪器固定在升降台上,通过把手旋转螺母使丝杠做竖直运动,达到调整位置的高度。调整好后用螺钉锁紧。

图一 2.平行光管的调整 出厂前检校台已经调整好,基本不用客户调整。若使用过程中存在不理想状态,可以通过水平调整螺钉和垂直调整螺钉进行微调。 水平方向调整好后,用锁紧螺钉锁紧。 3.机座的调整 检校台安放好后,可以通过调整螺钉找到水平。 4.水泡装置的作用

高精度LCR测量仪说明

高精度LCR测量仪V1.0说明 一、概述: 很多电子制作需要知道元件的参数。由于元件没有标称技术参数。比如,需要知道谐振器件、检波器件、天线、耳机、变压器等器件的电抗特性。其中,高频参数可以使用Q表解决问题,而低频参数Q表难以测定。为了解决这个问题,只有LCR测量仪能够胜任。 2设计目标: 1、能够准确测量电抗器的L、C、R,精度优于0.5%,如果进行人工逐档校准,精度优于0.3% 2、取材容易,电路简洁,易于制作,成本应适当控制。使之具有更强的业余DIY价值及研究价值,并通过设计、DIY学习到LCR电桥的相关细节、原理。 2本LCR表的基本特性 AD转换器的字数:约1000字,采用了过采样技术,有效分辨力约为2000字 测量方法:准桥式测定,测量原理类似于比例法测电阻。 主要测量范围:1欧至0.5兆欧,精度0.5%(理论),阻抗实测比对,均未超过0.3% 有效测量范围:2毫欧至10兆欧,最小分辨力1毫欧 串联残余误差:2毫欧,低阻测量时此误差不可忽略 并联残余误差:50M欧,高阻测量时此误差不可忽略 Q值误差:±0.003(Q<0.5),Q/300(Q>2,相对误差,简易算法),其它按0.5%左右估算D值误差:±0.003(D<0.5),D/300(D>2,相对误差,简易算法),其它按0.5%左右估算注意:Q = 1/D 测试信号幅度:峰值200mV(100Hz),180mV(1kHz),140mV(7.8kHz) 电感:0.02uH分辨力,测量范围0.1uH至500H,超出500H未测试(因为我没有更大的电感器)。 电容:分辨力与夹具有关。夹具好的话,分辨0.1pF或0.05pF,不屏蔽只能分辨到0.2pF,甚至只有1pF。上限测量,没有测试,只测过10000uF电容,手上没有更大的电容。 实测误差,比上述精度指标好许多。 本表基准源:分别为4个基准电阻,一个时间基准。电阻基准就是电桥的4个下臂电阻,要求精度达到0.1%,对1%精度的金属膜电阻筛选即可。时间基准用32MHz石英晶振得到,精度可以满足电桥要求的。如果电阻达不到要求,可以使用软件校准。 频率精度:实际频率为99.18Hz、999.45Hz、7812.5Hz,简写为(100Hz、1kHz、7.8kHz)。由于DDS的频率分辨力有限,所以不采用整数频率。频率精度约为0.02%(由石英晶振决定)。

JKY-ZS转动惯量实验仪实验操作指导书

JKY-ZS (塔轮式)转动惯量实验仪实验及操作指导书 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 一、实验目的 1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。 3、学会使用智能计时计数器测量时间。 二、实验原理 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: M I β= (1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯 量I 。 设以某初始角速度转动的空实验台转动惯量为I 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 11M I μβ-= (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= Rβ2。细线施加给实验台的力矩为M T =T R= m (g -Rβ2) R ,此时有: 212()m g R R M I μββ--= (3) 将(2)、(3)两式联立消去M μ后,可得: 2121() mR g R I βββ-= - (4) 同理,若在实验台上加上被测物体后系统的转动惯量为I 2,加砝码前后的角加速度分别为β3与β4,则有: 4243 () mR g R I βββ-= - (5) 由转动惯量的迭加原理可知,被测试件的转动惯量I 为: 21I I I =- (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。 2、β的测量 实验中采用智能计时计数器计录遮挡次数和相应的时间。固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮档次数k 和相应的时间t 。若从第一次挡光(k =0,t=0)开始计次,计时,且初始角速度为ω0,则对于匀变速运动中测量得到的任意两组数据(k m ,t m )、(k n ,t n ),相应的角位移θm 、θn 分别为: 2 021 m m m m t t k βωπθ+== (7) 2 02 1n n n n t t k βωπθ+== (8) 从(7)、(8)两式中消去ω0,可得: () 2() n m m n m n n m k t k t t t t t πβ-= - (9) 由(9)式即可计算角加速度β。 3、平行轴定理 理论分析表明,质量为m 的物体围绕通过质心O 的转轴转动时的转动惯量I 0最小。当转轴平行移动距离d 后,绕新转轴转动的转动惯量为:

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测物体的转动惯量 7.预习思考题回答 (1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平? 答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。 (2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之? 答:有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。 (3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。 理论上,22010002 [()]04x gRr I I I m m T m T H π=-= +-> 所以2 2 000()0m m T m T +->= 〉0/T T > 1<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。 (4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响? 答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。 8.数据记录及处理 表 1 待测刚体的有关尺寸数据的记录及简单计算 g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 g m 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm

三线摆测转动惯量数据处理

三线摆测转动惯量 1. 实验数据记录: 3 r a = =4.451cm 3 R = =9.336cm H 0= 44.20cm 下盘质量m 0=1022g 待测圆环质量m=370g 圆柱体质量m ’=138g 表1 累积法测周期 表2 长度测量 2.数据处理: 3 2 2 223 2 000 2 2 2 102210 9.80119.33610 4.45110 1.3906 4.61310 44 3.141644.2010 m gRr I T kg m H π-----??????= = ?=?????3 2 2 2 232 0112 2 2 ()(1022370)10 9.80119.33610 4.45110 1.3756 6.1471044 3.141644.2010 m m gRr I T kg m H π-----++??????= = ?=?????3 2 10 1.53410 I I I kg m -=-=?? 322224 32 12 37010 ()(7.475 5.010)10 1.498102 2 m I R R kg m ---?= += ?+?=??理论 3 3 (1.534 1.498)10 100%100% 2.4%1.49810 I I E I ----?= ?= ?=?理论理论

5 223 002 2 32 (2')(10222138)9.80119.336 4.45110 1.3442 4.61310 44 3.141644.20 8.61010x x m m gRr I T I H kg m π---++?????= -= ?-???=?? 2 23 24 3 24 4 2 11'''13810 5.54510 13810 1.48210 4.3910 2 2 x x I m x m R kg m -----=+ =???+ ????=?? 1 1 '8.610 4.39 2 2 100%100% 1.9%' 4.39 x x x x I I E I -?-= ?=?= 1. 三线摆测量物体转动惯量实验中,测量量较多,为了保证测量精度,请学生对于长度量能用游标卡尺测量的就要用游标卡尺测量,比如悬孔间距、圆环内外直径、小圆柱直径、放置小圆柱体两小孔间距等; 2. 在记录圆盘、圆环、圆柱体质量时,要补0保留到小数点后1位,比如圆环上的钢印数字为370,那么在记录圆环的质量时就记为370.0g ,以免减少有效数字。

精密尺寸测量仪器知识介绍

精密尺寸测量仪器知识介绍 一、精密尺寸测量仪器概念 所谓的精密测量就是以微米为计量单位的测量技术,它是随着高标准的工业设计对加工制造行业提出越来越高的技术要求而形成的。所谓的尺 寸就是以几何元素点、直线、线段、圆、圆弧、角、面、球体等为基本要 素的几何关系。所以精密尺寸测量仪器就是以满足精益求精的设计及加工 制造的要求而形成的计量分析管控这种几何关系的仪器。 二、精密尺寸测量仪器分类 精密尺寸测量仪器种类很多,但大致可以分成接触式精以测量仪器和非接触式精密测量仪器。接触式精密测量仪器以三坐标为主,并衍生出一 维高度计和二维高度计。非接触式精密测量仪器早期以投影测量仪为代表,但是随着计算机软件技术和高像素光感传感器的飞速发展,投影测量仪逐 渐被淘汰,从而形成新的代表仪器——二次元影像测量仪。 三、仪器原理 1、三坐标测量机原理 三坐标测量机是由三个互相垂直的运动轴X,Y,Z建立起的一个直角坐标系,测头的一切运动都在这个坐标系中进行,测头的运动轨迹由测球中心来表示。测量时,把被测零件放在工作台上,测头与零件表面接触,三坐标测量机的检测系统可以随时给出测球中心点在坐标系中的精确位置。当测球沿着工件的几何型面移动时,就可以得出被测几何面上各点的坐标值。将这些数据送入计算机,通过相应的软件进行处理,就可以精确地计算出被测工件的几何尺寸,现状和位置公差等。

三坐标结构图测量侧头结构图 2、二次元影像测量仪原理 二次元影像仪通过的CCD光学传感器将光信号转化为数字信号记录影像 和光栅尺记录位移参数,再利用视频采集处理器和数据采集处理器将数字型号 传输至电脑,之后经过影像测量仪软件在电脑上由操作人员逆向绘图并测量。影像仪之所以被称之为二次元是因为它实际绘制测量出来的只是当时产品放 在仪器工作台上的俯视图,只能完成x和y方向上的二维尺寸测量或z方向 上的高度测量。 二次元影像测量仪结构图工作台结构图

转动惯量实验报告

实验项目:测量形状不规则物体的转动惯量 (一)实验目的及要求: 发散思维设计两种不同的方法去求物体的转动惯量。 结合理论知识,加深转动惯量在刚体运动中所起作用的理解。 (二)仪器器材: 密度均匀薄木板、三线摆、DH4601转动惯量测试仪、实验机架、水平仪、游标卡尺、米尺、细线、圆柱体、天平、大头针、剪刀、钳子、透明胶。 (三)理论值计算: 2d J r m =? 2i i J r m =?∑ 计算得J= 。 方案一:三线摆法1 一、实验原理: 1.重心——物体各部分所受重力的合力的作用点。在物体内各部分所受重力可看作平行力的情况下,重心是一个定点。一般物体可用悬挂法求的重心。 质心——物体的质量中心,是研究物体机械运动的一个重要参考点。当作用力通过该点时,物体只作平动而不发生转动;否则在发生移动的同时物体将绕该点转动。在研究质心的运动时,可将物体的质量看作集中于质心。对于密度平均的物体,其质心与重心重合。 根据平衡力定理:重力和拉力平衡,大小相等,在一条直线上测两次就可以得到两条直线两条不平行的直线交于一个点就是重心,亦即质心。 2. 左图是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。 三个对称分布的等长悬线将两圆盘相连。上圆 盘固定,下圆盘可绕中心轴O ’O 作扭摆运动。 下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。根据能量守 恒定律或刚体的转动定律均可以导出物体绕 中心轴O ’O 的转动惯量。 I 0=T 02(M 0gRr )/(4π2H 0)……① 其中M0为下盘的质量:r 、R 分别为上下悬点 离各自圆盘中心的距离;H0为平衡时上下盘间的垂直距离;To 为下盘作简谐运动的周期,g 为重力加速度(在广州地区g=9.788m/s 2)。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与OO ’轴重合。测

三线摆测物体转动惯量

二线摆测物体转动惯量 本实验是大学物理实验中的基本实验之一,刚体转动惯量是理论力学中一个基本物理量。转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。正确测定物体的转动惯量,在工程技术中有着十分重要的意义。其在工业制造及产品设计中有着重要意义。 测刚体转动惯量的方法很多,如三线摆、扭摆等方法。为了使教学仪器和教学内容更好地反映现代科学技术,采用了IM —1新型转动惯量测定仪,该仪器采用现代新发展地集成霍尔开关传感器, 结合多功能数字式智能毫秒仪,测定悬盘地扭转周期。通过实验使学生掌握霍尔传感器地特性及在自动测量和自动控制中的作用,多功能数字式智能毫秒仪具有记忆功能,从悬盘扭转摆动开始直到设定的次数为止,均可查阅相应次数所用的时间,特别适合试验者深入研究。仪器直观性强,测量准确度高。学生动手内容多,传感器、电源等均有保护装置,不易损坏,是传统实验采用现代技术的典型实例。 下面重点介绍三线摆测刚体转动惯量的方法。通过本实验,可以加深对该物理量的理解,掌握一些基本的实验方法及一些基本的仪器设计思路。以及如何解决一些实验问题。同时通过该实验。掌握作图法处理数据,了解霍尔开关在物理实验中的一些应用。 [教学要求] 1.理解转动惯量的物理意义。 2?掌握三线摆测量转动惯量的测量方法。 3?了解转动惯量的多种测量方法。 4?加深霍尔开关在力学实验中的应用,启发学生对实验方法、手段、仪器改革的思考。 5?区别霍尔开关与霍尔元件。 6.掌握数据处理的方法之一——作图法。 7?理解理论计算与实验测量。 [教学重点] 1?掌握转动惯量的多种测量方法,理解其物理意义。 2.掌握完整的实验过程。 3?加深霍尔开关对力学实验方法与手段更新的影响,区别其它传感器在力学中的应用。

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

电阻电感电容测量仪高精度

电赛设计报告 题目:电阻、电容、电感测量仪指导教师:陈军波 年级:2010 学院:生物医学工程 专业:生物医学工程 学生姓名: 2012年4月9日

简易电阻、电容和电感测试仪 一、任务 设计并制作一台数字显示的电阻、电容和电感参数测试仪。 二、要求 1.基本要求 (1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)测量精度:±5%(三年级),±10(二年级)。 (3)具有四位数字显示功能。 2.发挥部分 (1)扩大电阻、电容或电感的其中任何一种的测量范围:测量上限或者下限扩展10倍(二年级)。 扩大电阻、电容或电感的每一种的测量范围:测量上限或者下限扩展10倍(三年级)。 (2)提高测量精度,电阻、电容或者电感其中一种的测量精度提高到1%(三年级),5%(二年级)。 (3)测量量程自动转换。 三、评分意见

一、系统方案论证 1 平衡电桥法测量原理 桥电路由未知阻抗z ,已知标准电阻S R 和具有总电阻P R 的电阻性电位计 组成,电桥各元素分别是Z 、s R 、()P R x -1、P xR 。其中x 代表电位计变换的位置。电桥由正弦交流电源0u 供电,频率为d U ο 0ω为桥路输出电压。 当改变电位计x 的位置时,就可得到半平衡电桥。真正的半平衡状态是d U ο 与一个特定的桥路电压相差900。可用相敏检测仪检测出来。这种方案的优点是测量的精度很高,同时可以测量电容和电阻的大小,但其电路电路复杂,调节起来麻烦,实现起来较为困难。 2.伏安法:最经典的方法,它的测量原理来源于阻抗的定义。即若已知流经 被测阻抗的电流相量并测得被测阻抗两端的电压,则通过比率便可得到被测阻抗的相量。显然,要实现这种方法,仪器必须能进行相量测量及除法运算.,而且需要精确的信号发生电路,整个电路的复杂程度就大大的提高了,软件的设计和 芯片的获得也是问题,所以放弃了此方案。 2.谐振法 谐振法:利用RC 和LC 震荡的原理,把L 和C 的数值转换成单片机容易测量的数字频率信号,再利用频率和R 和C 或L 和C 的关系,利用单片机算出C 和L 的数值。此方法软件容易设计,芯片容易得到,测量结果容易调试,所以采用此方法。 频率测量

《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1)调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长度,直至下盘水平。 (2)测量空盘绕中心轴OO?转动的运动周期T0:设定计时次数,方法为按“置数”键后,再按“下调”或“上调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运动时发生晃动。注意扭摆的转角控制在5o左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间,从而摆动周期为总时间除以摆动次数。进行下一次测量时,测试仪先按“返回”键。 (3)测出待测圆环与下盘共同转动的周期T1:将待测圆环置于下盘上,注意使两者中心重合,按同样的方法测出它们一起运动的周期T 1。 (4)测出上下圆盘三悬点之间的距离a和b,然后算出悬点到中心的距离r和R(等边三角形外接圆半径) (5)其它物理量的测量:用米尺测出两圆盘之间的垂直距离H0和放置两小圆柱体小孔间距2x;用游标卡尺测出待测圆环的内、外直径2R1、2R2。 (6)用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录

相关文档
最新文档