NTFS文件系统结构分析

NTFS文件系统结构分析
NTFS文件系统结构分析

NTFS文件系统结构分析

在NTFS文件系统中,文件存取是按簇进行分配,一个簇必需是物理扇区的整数倍,而且总

是2的整数次方。NTFS文件系统并不去关心什么是扇区,也不会去关心扇区到底有多大(如是不是512字节),而簇大小在使用格式化程序时则会由格式化程序根据卷大小自动的进行

分配。

文件通过主文件表(MFT)来确定其在磁盘上的存储位置。主文件表是一个对应的数据库,

由一系列的文件记录组成--卷中每一个文件都有一个文件记录(对于大型文件还可能有多个记录与之相对应)。主文件表本身也有它自己的文件记录。

NTFS卷上的每个文件都有一个64位(bit)称为文件引用号(File Reference Number,也称文件索引号)的唯一标识。文件引用号由两部分组成:一是文件号,二是文件顺序号。文

件号为48位,对应于该文件在MFT中的位置。文件顺序号随着每次文件记录的重用而增加,

这是为NTFS进行内部一致性检查而设计的。

NTFS使用逻辑簇号(Logical Cluster Number,LCN)和虚拟簇号(Virtual Cluster Number,VCN)来进行簇的定位。LCN是对整个卷中所有的簇从头到尾所进行的简单编号。卷因子乘

以LCN,NTFS就能够得到卷上的物理字节偏移量,从而得到物理磁盘地址。VCN则是对属于特定文件的簇从头到尾进行编号,以便于引用文件中的数据。VCN可以映射成LCN,而不必

要求在物理上连续。

NTFS的目录只是一个简单的文件名和文件引用号的索引,如果目录的属性列表小于一个记

录的长度,那么该目录的所有信息都存储在主文件表的记录中,对于大于记录的目录则使用

B+树进行管理。

主文件表中的基本文件记录中有一个指针指向一个存储非常驻索引缓冲--包括该目录下所有下一级子目录和文件的外部簇,而B+树结构便于大型目录中文件和子目录的快速查找。

主文件表中的基本文件记录中有一个指针指向一个存储非常驻索引缓冲--包括该目录下所有下一级子目录和文件的外部簇,而B+树结构便于大型目录中文件和子目录的快速查找。

在NTFS中,所有存储在卷上的数据都包含在文件中,包括用来定位和获取文件的数据结构,

引导程序和记录这个卷的记录(NTFS元数据)的位图,这体现了NTFS的原则:磁盘上的任何事物都为文件。在文件中存储一切使得文件系统很容易定位和维护数据,而在NTFS中,卷中所有存放的数据均在一个叫做MFT的文件记录数组中,称为主文件表(Master File Table),MFT是由高级格式化产生的。而MFT则由文件记录(File Record)数组构成。File Record的大小一般是固定的,不管簇的大小是多少,均为1KB,这个概念相当于Linux中的inode(i节点)。File Record在MFT文件记录数组中物理上是连续的,且从0开始编号。MFT仅供系统本身组织、架构文件系统使用,这在NTFS中称为元数据(metadata)。其中最基本的前16个记录是操作系统使用的非常重要的元数据文件。这些NTFS主文件表的重要的元数据文件都是以$(美元符号)开始的名字,所以是隐藏文件,在Windows 2000中不能使用dir命令(甚至加上/ah参数)像普通文件一样列出这些元数据文件。实际上File System Driver(ntfs.sys)维护了一个系统变量NTFS Protect System Files用于隐藏这些元数据。但是微软公司也提供了一个OEM TOOL,叫做NFI.EXE,用此工具可以转储NTFS主文件表的重要的元数据文件(元数据:是存储在卷上支持文件系统格式管理的数据。它不能被应用程序来访问,它只能为系统提供服务),使用NFI显示结果如下:

C:\>nfi C: |MORE

而这些元数据文件文件是系统驱动程序装配卷所必需的,WINDOWS 2000给每个分区赋予一

个盘符并不表示该分区包含有WINDOWS 2000可以识别的文件系统格式,如果一旦主文件表

损坏,那么该分区在WINDOWS 2000下是无法读取的。为了使该分区能够在WINDOWS 2000下能被识别,也就是必须首先建立WINDOWS 2000可以识别的文件系统格式即主文件表,这

可通过高级格式化该分区来完成。众所周知,Windows以簇号来定位文件在磁盘存储的位置,

在FAT格式的文件系统中有关簇号的指针是包含在FAT表中的,而在NTFS中有关簇号的指

针是包含在$MFT及$MFTMirr文件中的。

NTFS元文件

伴随着以上这些新增功能的是更多的用于存放与功能相关的数据的元文件。最后,在下面的

表中罗列出NTFS5中所有的元文件:

每个MFT记录都对应着不同的文件,如果一个文件有很多属性或是分散成很多碎片,就很可能需要多个文件记录。这时,存放其文件记录位置的第一个记录就叫做“基文件记录”(base

file record)。

MFT中的第1个记录就是MFT自身。由于MFT文件本身的重要性,为了确保文件系统结构的

可靠性,系统专门为它准备了一个镜像文件($MftMirr),也就是MFT中的第2个记录。

第3个记录是日志文件($LogFile)。该文件是NTFS为实现可恢复性和安全性而设计的。

当系统运行时,NTFS就会在日志文件中记录所有影响NTFS卷结构的操作,包括文件的创建和改变目录结构的命令,例如复制,从而在系统失败时能够恢复NTFS卷。

第4个记录是卷文件($Volume),它包含了卷名、被格式化的卷的NTFS版本和一个标明该磁盘是否损坏的标志位(NTFS系统以此决定是否需要调用Chkdsk程序来进行修复)。

第5个记录是属性定义表($AttrDef,attribute definition table),其中存放了卷所支持的所有文件属性,并指出它们是否可以被索引和恢复等。

第6个记录是根目录(),其中保存了存放于该卷根目录下所有文件和目录的索引。在访

问了一个文件后,NTFS就保留该文件的MFT引用,第二次就能够直接进行对该文件的访问。

第7个记录是位图文件($Bitmap)。NTFS卷的分配状态都存放在位图文件中,其中每一

位(bit)代表卷中的一簇,标识该簇是空闲的还是已被分配了的,由于该文件可以很容易

的被扩大,所以NTFS的卷可以很方便的动态的扩大,而FAT格式的文件系统由于涉及到FAT 表的变化,所以不能随意的对分区大小进行调整。

第8个记录是引导文件($Boot),它是另一个重要的系统文件,存放着Windows 2000/XP 的引导程序代码。该文件必须位于特定的磁盘位置才能够正确地引导系统。该文件是在

Format程序运行时创建的,这正体现了NTFS把磁盘上的所有事物都看成是文件的原则。这

也意味着虽然该文件享受NTFS系统的各种安全保护,但还是可以通过普通的文件I/O操作

来修改。

第9个记录是坏簇文件($BadClus),它记录了磁盘上该卷中所有的损坏的簇号,防止系

统对其进行分配使用。

第10个记录是安全文件($Secure),它存储了整个卷的安全描述符数据库。NTFS文件和目录都有各自的安全描述符,为了节省空间,NTFS将具有相同描述符的文件和目录存放在

一个公共文件中。

第11个记录为大写文件($UpCase,upper case file),该文件包含一个大小写字符转换

表。

第12个记录是扩展元数据目录($Extended metadata directory)。

第13个记录是重解析点文件($Extend\$Reparse)。

第14个记录是变更日志文件($Extend\$UsnJrnl)。

第15个记录是配额管理文件($Extend\$Quota)。

第16个记录是对象ID文件($Extend\$ObjId)。

第17~23记录是是系统保留记录,用于将来扩展。

MFT的前16个元数据文件是如此重要,为了防止数据的丢失,NTFS系统在该卷文件存储部

分的正中央对它们进行了备份,参见下图。

NTFS把磁盘分成了两大部分,其中大约12%分配给了MFT,以满足其不断增长的文件数量。

为了保持MFT元文件的连续性,MFT对这12%的空间享有独占权。余下的88%的空间被分配用来存储文件。而剩余磁盘空间则包含了所有的物理剩余空间--MFT剩余空间也包含在里面。MFT空间的使用机制可以这样来描述:当文件耗尽了存储空间时,Windows操作系统会简单地减少MFT空间,并把它分配给文件存储。当有剩余空间时,这些空间又会重新被划分给MFT。虽然系统尽力保持MFT空间的专用性,但是有时不得不做出牺牲。尽管MFT碎片有

时是无法忍受的,却无法阻止它的发生。

那么NTFS到底是怎么通过MFT来访问卷的呢?首先,当NTFS访问某个卷时,它必须“装载”该卷:NTFS会查看引导文件(在图中的$Boot元数据文件定义的文件),找到MFT的物理磁盘地址。然后它就从文件记录的数据属性中获得VCN到LCN的映射信息,并存储在内存中。这个映射信息定位了MFT的运行(run或extent)在磁盘上的位置。接着,NTFS再打开几个元数据文件的MFT记录,并打开这些文件。如有必要NTFS开始执行它的文件系统恢复操作。在NTFS打开了剩余的元数据文件后,用户就可以开始访问该卷了。

文件和目录记录

NTFS将文件作为属性/属性值的集合来处理,这一点与其他文件系统不一样。文件数据就是

未命名属性的值,其他文件属性包括文件名、文件拥有者、文件时间标记等。下图显示了一

个用于小文件的MFT记录。

每个属性由单个的流(stream)组成,即简单的字符队列。严格地说,NTFS并不对文件进行操作,而只是对属性流进行读写。NTFS提供对属性流的各种操作:创建、删除、读取(字节范围)以及写入(字节范围)。读写操作一般是针对文件的未命名属性的,对于已命名的

属性则可以通过已命名的数据流句法来进行操作。

一个文件通常占用一个文件记录。然而,当一个文件具有很多项属性值或很零碎的时候,就可能需要占用一个以上的文件记录。这种情况下,第一个文件记录是其基本的文件记录,存

储有该文件需要的其它文件记录的位置。小文件和文件夹(典型的如1500字节或更少)将

全部存储在文件的MFT记录里。

文件夹记录包括索引信息,小文件夹记录完全存储在MFT结构内,然而大的文件夹则被组织成B+树结构,用一个指针指向一个外部簇,该簇用来存储那些MFT内存储不了的文件夹的

属性。

NTFS卷上文件的常用属性在下表中列出(并不是所有文件都有所有这些属性)。

常驻属性与非常驻属性

当一个文件很小时,其所有属性和属性值可存放在MFT的文件记录中。当属性值能直接存放在MFT中时,该属性就称为常驻属性(resident attribute)。有些属性总是常驻的,这样NTFS才可以确定其他非常驻属性。例如,标准信息属性和根索引就总是常驻属性。

每个属性都是以一个标准头开始的,在头中包含该属性的信息和NTFS通常用来管理属性的信息。该头总是常驻的,并记录着属性值是否常驻、对于常驻属性,头中还包含着属性值的

偏侈量和属性值的长度。

如果属性值能直接存放在MFT中,那么NTFS对它的访问时间就将大大缩短。NTFS只需访问磁盘一次,就可立即获得数据;而不必像FAT文件系统那样,先在FAT表中查找文件,再读

出连续分配的单元,最后找到文件的数据。

小文件或小目录的所有属性,均可以在MFT中常驻。小文件的未命名属性可以包括所有文件

数据。建立一个小文件如下图所示:

该文件的内容

文件属性

如通过NFI查看文件“新建文本文档.txt”的文件记录号为36,显示内容如下:

File 36

新建文本文档.txt

$STANDARD_INFORMATION (resident)

$FILE_NAME (resident)

$FILE_NAME (resident)

$DATA (resident)

从显示内容可以看出文件的全部属性都是常驻属性,包括DATA属性,没有非常驻属性,所以,用WINHEX打开MFT,查看该文件记录,有如下图的内容

小文件的文件记录

小目录的索引根属性可以包括其中所有文件和子目录的索引。参见下图

小目录的MFT记录

大文件或大目录的所有属性,就不可能都常驻在MFT中。如果一个属性(如文件数据属性)

太大而不能存放在只有1KB的MFT文件记录中,那么NTFS将从MFT之外分配区域。这些区域通常称为一个运行(run)或一个盘区(extent),它们可用来存储属性值,如文件数据。如果以后属性值又增加,那么NTFS将会再分配一个运行,以便用来存储额外的数据。值存

储在运行中而不是在MFT文件记录中的属性称为非常驻属性(nonresident attribute)。NTFS决定了一个属性是常驻还是非常驻的;而属性值的位置对访问它的进程而言是透明的。

当一个属性为非常驻时,如大文件的数据,它的头部包含了NTFS需要在磁盘上定位该属性值的有关信息。下图显示了一个存储在两个运行中的非常驻属性。

存储在两个运行中的非常驻属性

在标准属性中,只有可以增长的属性才是非常驻的。对文件来说,可增长的属性有数据、属

性列表等。标准信息和文件名属性总是常驻的。

一个大目录也可能包括非常驻属性(或属性部分),参见下图。在该例中,MFT文件记录没有足够空间来存储大目录的文件索引。其中,一部分索引存放在索引根属性中,而另一部分则存放在叫作“索引缓冲区”(index buffer)的非常驻运行中。这里,索引根、索引分配

以及位图属性都是简化表示的,这些属性将在后面详细介绍。对目录而言,索引根的头及部

分值应是常驻的。

大目录的MFT记录

当一个文件(或目录)的属性不能放在一个MFT文件记录中,而需要分开分配时,NTFS通过VCN-LCN之间的映射关系来记录运行(run)或盘区情况。LCN用来为整个卷中的簇按顺

序从0到n进行编号,而VCN则用来对特定文件所用的簇按逻辑顺序从0到m进行编号。下图显示了一个非常驻数据属性的运行所使用的VCN与LCN编号。

非常驻数据属性的VCN

当该文件含有超过2个运行时,则第三个运行从VCN8开始,数据属性头部含有前两个运行VCN的映射,这便于NTFS对磁盘文件分配的查询。为了便于NTFS快速查找,具有多个运行文件的常驻数据属性头中包含了VCN-LCN的映射关系,参见下图

非常驻数据属性的VCN-LCN映射

虽然数据属性常常因太大而存储在运行中,但是其他属性也可能因MFT文件记录没有足够空间而需要存储在运行中。另外,如果一个文件有太多的属性而不能存放在MFT记录中,那么第二个MFT文件记录就可用来容纳这些额外的属性(或非常驻属性的头)。在这种情况下,

一个叫作“属性列表”(attribute list)的属性就加进来。属性列表包括文件属性的名称

和类型代码以及属性所在MFT的文件引用。属性列表通常用于太大或太零散的文件,这种文件因VCN-LCN映射关系太大而需要多个MFT文件记录。具有超过200个运行的文件通常需要

属性列表。

NTFS文件系统结构分析

NTFS文件系统结构分析 在NTFS文件系统中,文件存取是按簇进行分配,一个簇必需是物理扇区的整数倍,而且总 是2的整数次方。NTFS文件系统并不去关心什么是扇区,也不会去关心扇区到底有多大(如是不是512字节),而簇大小在使用格式化程序时则会由格式化程序根据卷大小自动的进行 分配。 文件通过主文件表(MFT)来确定其在磁盘上的存储位置。主文件表是一个对应的数据库, 由一系列的文件记录组成--卷中每一个文件都有一个文件记录(对于大型文件还可能有多个记录与之相对应)。主文件表本身也有它自己的文件记录。 NTFS卷上的每个文件都有一个64位(bit)称为文件引用号(File Reference Number,也称文件索引号)的唯一标识。文件引用号由两部分组成:一是文件号,二是文件顺序号。文 件号为48位,对应于该文件在MFT中的位置。文件顺序号随着每次文件记录的重用而增加, 这是为NTFS进行内部一致性检查而设计的。 NTFS使用逻辑簇号(Logical Cluster Number,LCN)和虚拟簇号(Virtual Cluster Number,VCN)来进行簇的定位。LCN是对整个卷中所有的簇从头到尾所进行的简单编号。卷因子乘 以LCN,NTFS就能够得到卷上的物理字节偏移量,从而得到物理磁盘地址。VCN则是对属于特定文件的簇从头到尾进行编号,以便于引用文件中的数据。VCN可以映射成LCN,而不必 要求在物理上连续。

NTFS的目录只是一个简单的文件名和文件引用号的索引,如果目录的属性列表小于一个记 录的长度,那么该目录的所有信息都存储在主文件表的记录中,对于大于记录的目录则使用 B+树进行管理。

Linux 文件系统体系结构

6内容 o基本的文件系统体系结构什么是文件系统?文件系统体系结构高层体系结构主要结构有趣的文 件系统结束语参考资料评论 在IBM Bluemix 云平台上开发并部署您的下一个应用。 现在就开始免费试用 基本的文件系统体系结构 Linux 文件系统体系结构是一个对复杂系统进行抽象化的有趣例子。通过使用一组通用的API 函数,Linux 可以在许多种存储设备上支持许多种文件系统。例如,read函数调用可以从指定的文件描述符读取一定数量的字节。read函数不了解文件系统的类型,比如ext3 或NFS。它也不了解文件系统所在的存储媒体,比如AT Attachment Packet Interface(ATAPI)磁盘、Serial-Attached SCSI(SAS)磁盘或Serial Advanced Technology Attachment(SATA)磁盘。但是,当通过调用read函数读取一个文件时,数据会正常返回。本文讲解这个机制的实现方法并介绍Linux 文件系统层的主要结构。 回页首 什么是文件系统? 首先回答最常见的问题,“什么是文件系统”。文件系统是对一个存储设备上的数据和元数据进行组织的机制。由于定义如此宽泛,支持它的代码会很有意思。正如前面提到的,有许多种文件系统和媒体。由于存在这么多类型,可以预料到Linux 文件系统接口实现为分层的体系结构,从而将用户接口层、文件系统实现和操作存储设备的驱动程序分隔开。 挂装 在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂装(mount)。使用mount命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。

三种方法-Win7系统优化(图文解说)

第一部分修改注册表 1.桌面显示ie8主图标 不要把快捷方式当成主图标啊 将以下代码储存为reg格式,双击导入注册表即可。请注意,如果你的系统不是安装在c盘下,请把里面所有的c盘盘符改为你的安装盘符。 Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Desk top\NameSpace\{00000000-0000-0000-0000-100000000001}] @="Internet Explorer" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}] @="Internet Explorer" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\DefaultIcon] @="C:\\Windows\\System32\\ieframe.dll,-190" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell] @="" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\NoAdd Ons] @="无加载项(&N)" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\NoAdd Ons\Command] @="\"C:\\Program Files\\Internet Explorer\\iexplore.exe\" -extoff" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\Open] @="打开主页(&H)" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\Open\ Command] @="\"C:\\Program Files\\Internet Explorer\\iexplore.exe\"" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\Set] @="属性(&R)" [HKEY_CLASSES_ROOT\CLSID\{00000000-0000-0000-0000-100000000001}\shell\Set\C ommand] @="\"C:\\Windows\\System32\\rundll32.exe\"

结构化分析

结构化分析 1.1简介 随着信息化时代的来临,计算机与网络的普及,超市作为一个贴近日常的综合消费模式,也有着信息化需求。大型超市系统早已普及的收银系统多是在市面的ERP软件中,选取一款进行客户化定制,或独立开发的。在后台库存与商品的管理上,市面上也有着对应的众多软件选择。而随着电商平台的发展,线上销售的模式也被一些一定规模超市集团启用。这也意味着线上服务系统衔上超市综合信息系统的一环。该超市信息管理系统实践拟从前台与后台两个使用者角度,收银、商品、库存、人员、线上服务等几个模块着手,进行结构化分析与设计。 该系统旨在达到几项目标,通过软件系统加快商品收款结算速度,减少人为产生金额交易差错可能性与发生率,有效管理商品,商品的信息、进货情况、销售情况以及库存情况都可以直观显示以及可通过系统记录以及部分可行调控。其次做到对系统用户角色的分类管理以及权限划分。对这些信息的数据管理和统计对于营销策略与进货选择都有极大的参考价值。以此顶替无法满足现在超市运作,无法应对复杂多变市场的人工模式。 该系统的收银、商品、库存以及内部管理人员模块拟通过C\S模式,而线上订单与顾客人员模块采用B\S模式。C\S客户端拟采用C++编写,B\S拟使用JSP和oracle。软件规模上,C\S客户端暂不考虑分布式数据的问题,采用统一的服务器与数据库对所有数据进行管理,而B\S需要考虑的同时访问量与数据同步的问题,这些在技术上默认达到要求,我们期望做到服务器可以同时满足万人访问量需求。 2.1系统业务流程

系统流程图 2.2系统逻辑模型 收银系统数据流图

商品、库存、员工管理系统数据流图 线上购物系统数据流图

(完整版)win7系统优化方法(超级牛逼)

Win7优化 1、通过关闭特效,有效提高windows7的运行速度右键单击我的电脑-->属性-->高级系统设置-->性能-->设置-->视觉效果,留下五项"平滑屏幕字体边缘"、"启用透明玻璃"、"启用桌面组合"、"在窗口和按钮启用视觉样式"、"在桌面上为图标标签使用阴影",其余的把勾全拿了,可以马上感觉到速度快了不少,而视觉上几乎感觉不到变化。另外还可以勾选上“显示缩略图,而不是显示图标” 2、据说可提高文件打开速度10倍的设置控制面板-->硬件和声音-->显示【显示或缩小文本及其他项目】-->设置自定义文本大小(DPI)去掉“使用Windows XP 风格DPI 缩放比例”的勾选,确定。【按照提示,注销计算机】 3、轻松访问控制面板-->轻松访问-->轻松访问中心-->使计算机易于查看-->勾选“关闭所有不必要的动画(如果可能)” 4、更改“Windows资源管理器”的默认打开的文件夹启动参数的命令格式为:%SystemRoot%explorer.exe /e,〈对象〉/root, 〈对象〉/select, 〈对象〉开始-->所有程序-->附件-->Windows资源管理器-->右击-->属性-->“快捷方式”选项卡-->目标修改为“%windir%\explorer.exe /e, D:\Downloads”,确定。然后右击“Windows资源管理器”-->锁定到任务栏 5、修改“我的文档”、“桌面”、“收藏夹”、“我的音乐”、“我的视频”、“我的图片”、“下载”等文件夹的默认位置方法一:CMD-->regedit,修改

“[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVers ion\Explorer\User Shell Folders]”方法二:系统盘-->用户-->“当前用户名”,分别右击上述文件夹-->属性-->位置-->移动 6、更改临时文件夹位置(%USERPROFILE%\AppData\Local\Temp) 右击“计算机”-->属性-->高级系统设置-->“高级”选项卡-->“环境变量”按钮-->X用户环境变量 7、更改“IE临时文件夹”位置IE-->Internet选项-->“常规”选项卡-->“设置”按钮-->“移动文件夹”按钮-->选择 8、系统自动登录cmd-->“control userpasswords2”-->去掉“要使用本机,用户必须输入用户名和密码”复选勾 9、关闭系统休眠 cmd-->“powercfg -h off” 10、去除历史纪录cmd-->“gpedit.msc”-->打开“本地组策略编辑器” (1)计算机配置-管理模板-系统-关机选项-关闭会阻止或取消关机(启动) (2)用户配置-->管理模板-->"开始"菜单和任务栏-->不保留最近打开的历史(启用) (3)用户配置-->管理模板-->"开始"菜单和任务栏-->退出系统时清除最近打开的文档的历史(启用) (4)用户配置→管理模板→Windows组件→Windows资源管理器→在Windows资源管理器搜索框中关闭最近搜索条目的显示(启用) 11、在任务栏同时显示“星期几”控制面板→时钟、语言和区域→区域和语言→更改日期、时间或数字格式,点击弹出窗口中的“更改

结构化需求分析方法

结构化分析(SA)方法 结构化开发方法(Structured Developing Method)是现有的软件开发方法中最成熟,应用最广泛的方法,主要特点是快速、自然和方便。结构化开发方法由结构化分析方法(SA法)、结构化设计方法(SD 法)及结构化程序设计方法(SP 法)构成的。 结构化分析(Structured Analysis,简称SA 法)方法是面向数据流的需求分析方法,是70 年代末由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。它适合于分析大型的数据处理系统,特别是企事业管理系统。 SA 法也是一种建模的活动,主要是根据软件内部的数据传递、变换关系,自顶向下逐层分解,描绘出满足功能要求的软件模型。 1 SA 法概述 1.SA 法的基本思想 结构化分析(Structured Analysis,简称SA 法)是面向数据流的需求分析方法,是70年代由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。 结构化分析方法的基本思想是“分解”和“抽象”。

分解:是指对于一个复杂的系统,为了将复杂性降低到可以掌握的程度,可以把大问题分解成若干小问题,然后分别解决。 图4 是自顶向下逐层分解的示意图。顶层抽象地描述了整个系统,底层具体地画出了系统的每一个细节,而中间层是从抽象到具体的逐层过渡。 抽象:分解可以分层进行,即先考虑问题最本质的属性,暂把细节略去,以后再逐层添加细节,直至涉及到最详细的内容,这种用最本质的属性表示一个自系统的方法就是“抽象”。 2.SA 法的步骤 ⑴建立当前系统的“具体模型”; 系统的“具体模型”就是现实环境的忠实写照,即将当前系统用DFD 图描述出来。这样的表达与当前系统完全对应,因此用户容易理解。 ⑵抽象出当前系统的逻辑模型;

掌握系统优化的方法说课讲稿

哲学第七课第二框中的一个知识点 《掌握系统优化的方法》 【学情分析】本身哲学知识就具有高度的抽象性、概括性,高一学生受到生活阅历、知识结构的影响,对哲学知识学习起来是有一定难度的。所以,在教学过程中,我充分调动学生结合教材,结合具体的生活事例来分析、理解哲学知识。 【教学目标】 1、通过学习使学生掌握系统优化的方法,培养和锻炼综合性思维。 2、使学生能够运用系统优化的方法安排自己学习和生活 3、培养学生学会统筹考虑,优化组合,培养合作精神和树立集体主义观念。 掌握系统优化的方法。它是一个难点,本身不好理解,在高考中也是一个重要的考点。整体和部分的关系,在一定意义上是系统和要素的关系。我们首先要回顾一下整体和部分的辩证关系。

我是整体,若没有 我,你们木板就失去了 存在的意义,你们必须 服从我。不对吧,应该说没有我们木板,就没有你木桶,凭什么要我们服从 你呢? 只有木桶才能盛水。为了 多盛水,你要再长一些,与 伙伴们保持一致,可不能闹 分裂啊。你能盛多少水,还得由我短板说了算。我离开了你,照样存在。 我要…… 根据木桶和木板的争论,请你说说整体和部分的关系 1、通过多媒体展示漫画,由学生来扮演木桶和木板之间的对话。通过对话交流引发学生思考整体与部分之间的关系。激发学生学习的兴趣。 2、通过多媒体展示整体与部分关系的学习表格。 同学们小组讨论,结合着桶和木板的争论,具体地说一说整体和部分的关系。 整体部分相互 区 别含义 整体是事物的——和发展的全过程,从数量上看它是一 部分是事物的局部或发展的各个阶段,从数量上看它是多地位、 作用和 功能整体在事物的存在和发展过程中居于——地位,整体统帅着部分,具有部分所不具备的功能部分在事物的存在和发展过程中处于被支配地位,部分服从和服务于整体联系相互联 系,密 不可分第一,整体是由部分构成的,离开了部分,整体就不复存在。部分的功能及其变化会影响整体的功能,——的功能及其变化甚至对整体 的功能起决定作用。 第二,部分是整体中的部分,离开了整体, 部分就不成其为部分。整体的功能、状态及其 变化也会影响部分。 3、同学们通过交流讨论来展示学习成果,加深对整体与部 分关系的认识。

文件系统结构分析

文件系统结构分析 1嵌入式文件系统 1.1嵌入式文件系统体系结构 在嵌入式系统中,文件系统是嵌入式系统的一个组成模块,它是作为系统的一个 可加载选项提供给用户,由用户决定是否需要加载它。同时,它还需要满足结构紧 凑、代码量小、支持多种存储设备、可伸缩、可剪裁、可移植等特点。基于上面的要 求,嵌入式文件系统在设计和实现时就要把它作为一个独立的模块来整体考虑。特别 是对文件系统内部资源的管理要做到独立性。 由于嵌入式文件系统是作为嵌入式系统的一个可选加载项提供给用户的,当 用户针对其应用的特殊要求对嵌入式系统进行配置时没有选择加载文件系统,但 是用户还是需要使用到系统I/O。由于这种情况的出现就决定了嵌入式系统中的文件 系统不再具有I/O设备的管理功能。系统I/O的管理和使用接口的提供将由 I/O管理 模块完成,文件系统作为一个独立的自包含模块存在。 基于以上考虑,嵌入式文件系统的体系结构如图1所示。 1卩 硬件 图1嵌入式文件系统体系结构 在嵌入式文件系统的最上层是文件系统 API。文件系统的一切功能都是通过这一层提供给用户的。同时,在整个文件系统中也只有这一层对用户是可见的。 在这一层中所提供的所有功能接口都将严格的遵循 POSIX标准。 文件系统核心层是实现文件系统主要功能的模块。在这一层中,文件系统要把

用户的功能操作转化成对文件系统的抽象对象的操作。这些操作将通过下面的功能模块最终落实到物理介质上面。如果文件系统需要支持多种具体的文件系统格式的话,这一层还可以进一步细分成虚拟文件系统和逻辑文件系统。 块高速缓存的存在是为了提高文件系统的性能。在这一层中缓存着以前访问过的块设备数据。文件系统通过一定的算法来高效的管理这些数据,以提高缓冲的性能。同时,它的存在使下层的数据操作对上层的文件操作透明,提高了文件系统的模块性。 1.2 嵌入式文件系统体系的功能与特点 文件系统是操作系统的重要组成部分,用于控制对存储设备的存取。它提供对文件和目录的分层组织形式、数据缓冲(对于实时系统,允许绕过缓冲)以及对文件存取权限的控制。 嵌入式系统所使用的文件系统除了要提供通用文件系统的功能外,还由于嵌入式操作系统的特殊性而具有其自身的一些特点。嵌入式文件系统的设计应该满足如下目标: 1.实现按名存取。和桌面操作系统类似,用户对文件的操作是通过其“文件名”来完成的。因此,用户只需知道待操作文件的文件名,就可以方便的访问数据,而不必关心文件在物理设备上是如何存放的,以及如何对文件的打开、关闭操作进行处理等细节。所有与文件相关的管理工作都由文件系统组件隐式完成。 2.与实时系统相适应。嵌入式应用大多数都具有实时性需求。实时系统不仅 要求计算结果地准确无误,而且要求特定的指令要在限定的时间内完成,这就对文件系统提出了很高的要求。在通用操作系统中,往往采取分页和虚拟存储器管理的机制来满足规定的指令时间。然而嵌入式实时操作系统一般都不具有虚拟存储器管理机制,且各种外部设备的性能差异较大,控制文件系统的实时性变得非常困难。为了尽可能提高文件系统的实时性,除了选取高速存储介质作为嵌入式系统的外设外,还应该根据设备的特点设置一定大小的高速缓冲,以提高数据存取的相应速度。 3.支持多任务环境。面对日益复杂的计算环境,应用常常采取“分而治之” 的方法,将解决方案划分为多个任务,每个任务完成相对单一的功能。实时操作系统的设计目标之一就是对多任务的支持。从应用的层面上看,多任务可以对文件进行并发读操作,在实时内核进程间同步与通信机制支持下进行写操作。此外,文件系统内部实现也应该具备较好的可重入性,即利用同步机制对全局数据结构 进行必要的保护。 4.支持多种逻辑文件系统标准。随着操作系统技术的发展,出现了多种成熟的桌面文件系统标准,如 Windows下的FAT系列,Linux中的ext系列等。将这些成熟标

FAT32文件系统的存储组织结构

FAT32文件系统的存储组织结构(一) (2012-05-19 16:57) 标签: FAT32 文件系统分类:文件系统 对磁盘的物理结构,逻辑结构和存储结构有了比较深入的了解后,我们来仔细探讨FAT32文件系统的存储组织结构。说到文件系统的组织结构,我们应该马上意识到,这指的是文件系统在同一个分区内的组织结构,在这个话题上,我们完全可以不管分区之外的所有事情。 为了分析FAT32文件系统的存储组织结构,我们来建立一个实实在在的文件系统:将U盘插入电脑,将U盘格式化成FAT32分区格式: 以建好的U盘FAT32文件系统为基础,下面从文件系统的各个组成来分别加以介绍。 分区引导扇区DBR 用winhex打开U盘显示如下:

这是FAT32分区引导记录,定义如下: 偏移00H: 3字节的跳转指令 EB 58 90,跳过下面的BPB和扩展BPB部分 偏移03H:8字节的硬盘分区类型文本字符名:4D 53 44 4F 53 35 2E 30 即:MSDOS5.0 偏移0BH: 25字节的分区参数块(BPB),细分如下: 偏移0BH:扇区字节数 00 02 即0X0200,512字节 偏移0DH:每簇扇区数 08即每簇包括8个扇区

偏移0EH:保留扇区数 24 00即保留36个扇区 偏移10H:FAT表份数 02即两个FAT表 偏移11H:未用 00 00 偏移13H:未用 00 00 偏移15H:介质类型 F8即本地硬盘 偏移16H:未用 00 00 偏移18H:每磁道扇区数 3F 00 即每磁道63扇区 偏移1AH:磁头数 FF 00即255个磁头 偏移1CH:隐藏扇区数 80 1F即8064个隐藏扇区 偏移20H:磁盘总扇区数 80 F0 77 00即总共7860352个扇区 (7860352*512=4024500224,因为我的U盘是4G) 偏移24H:52字节的扩展分区参数块(扩展BPB),细分如下: 偏移24H:FAT表占用扇区数 EE 1D 00 00即FAT表占7662个扇区 偏移28H:未用 00 00 00 00 偏移2CH:根目录入口簇号 02 00 00 00即根目录从02号簇开始 偏移30H:文件系统信息扇区号 01 00即扇区1 偏移32H:备份引导扇区的位置 06 00即6号扇区(第7个扇区),从WINHEX中我们也可以看到,6号扇区的内容和0号引导扇区内容是一样的 偏移34H:未用 00 00 00 00 00 00 00 00 00 00 00 00 偏移40H:物理磁盘号 00 偏移41H:未用 00 偏移42H:扩展引导标志 29即0X29 偏移43H:磁盘序列号F1 2A 27 04通常为一随机数 偏移47H:卷标ASCII 4E 4F 20 4E 41 4D 45 20 20 20 20 即NO NAME

第五章 文件系统习题及答案

第五章文件系统习题及答案 一、填空题 1.文件系统主要管理计算机系统的软件资源,即对于各种的管理。 【答案】文件 【解析】用户使用计算机来完成自己的某项任务时,总会碰到这样一些问题:其一,使用现有的软件资源来协助自己工作。例如,利用系统调用和利用库函数与实用程序等来减少编程的工作量,避开与硬件有关的部分。其二,编制完成的或未完成的程序存放在什么地方,需要访问的数据存放在什么地方。这实际上是怎样对软件资源进行透明的存放,并能透明地存取,文件系统也就应运而生了。 2.从用户的角度看,文件系统的功能是要实现① 。为了达到这一目的,一般要建立② 【答案】①按名存取,②文件目录 【解析】文件系统的建立就是要让用户透明地对文件进行存取,这就要求文件系统要解决把每个文件的符号名与其所在的文件存储空间中的物理地址联系起来的问题,这也是文件系统最基本的功能。实现符号名与具体物理地址的转换,其主要环节是查目录。所以,文件目录的组织是文件系统研究的主要问题之一。 3.UNIX系统中,一般把文件分为① 、② 和③ 三种类型。 【答案】①普通文件、②目录文件、③特殊文件 【解析】普通文件既包括系统文件,也包括用户文件、库函数文件和实用程序文件。它主要指组织格式是无结构、无记录概念的字符流式文件。 目录文件则是由文件系统中的各个目录所形成的文件。 特殊文件(或设备文件)在UNIX系统中,每台设备都被看作为一个特殊文件。 4.串联文件是文件① 组织的方式之一,其特点是用② 来存放文件信息。 【答案】①物理,②非连续的物理块 【解析】串联文件结构中,每个物理块设有一个指针,指向其后续连接的另一个物理块,从而使得存放同一文件的物理块链接成一个串联队列。 5.文件存储器一般都被分成若干大小相等的① ,并以它为单位进行 ② 。 【答案】①物理块,②信息交换 【解析】文件存储空间的管理是文件系统的重要任务之一,磁盘、磁带是常见的文件存储器。 6.文件存储空间管理的基本方法有① 、② 。 【答案】位示图法、空闲块链接法。 【解析】文件存储空间的管理实质上是空闲块的组织和管理问题,它包括空闲块的分配与空闲块的回收等问题,这就要求对文件存储空间的空闲块进行有效的组织和管理。 7.目录文件是由① 组成的,文件系统利用② 完成“按名存取”和对文件信息的共享和保护。 【答案】①文件说明,②目录文件

Linux文件系统相关数据结构及相互间的关系案例分析

文件系统相关数据结构及相互间的关系 一.详细关系: 1.进程要访问文件,就要首先与文件系统中要访问的文件建立连接,在进程数据结构task_struct中,有两个指针fs和files,一个指向fs_struct数据结构,是关于文件系统的信息;另一个指向files_struct数据结构,是关于已打开文件的信息。 2.fs_struct数据结构中有dentry结构指针,dentry结构中有inode结构指针。Dentry结构所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode 结构所代表的是物理意义上的文件,记录的是物理上的属性。它们之间的关系是多对一的关系。Inode结构中定义union数据结构用于大致反应Linux内核目前所支持的各种文件系统。 2.1.dentry结构中有一个d_inode指针指向相应的inode结构,dentry结构代表的是逻辑意义上的文件,描述文件的逻辑属性,因此目录项在磁盘上并没有对应的映像;而inode结构代表的是物理意义上的文件,记录其物理属性,对与一个具体的文件系统,inode结构在磁盘上有对应的映像。由此可见,一个索引节点对象可能对应多个目录项对象。一个有效的dentry结构必定对应一个inode 结构,这是因为一个目录项要么代表一个文件,要么代表一个目录,而目录实际上也是文件。所以只要dentry结构是有效的,则其指针d_inode必定指向一个inode结构。反之则不成立,因为一个inode可以对应多个dentry结构,即一个文件可以有不止一个文件名或路径名。因为一个已经建立的文件可以被链接到其他文件名。所以inode结构中有一个i_dentry,凡是代表着同一个文件的所有目录项都通过其dentry结构体中的d_alias域挂入相应的inode结构体中的

全面了解NTFS文件系统结构

解读NTFS NTFS是一个比FAT复杂的多的文件系统,我们一起努力来把它完整的解读出来 NTFS的引导扇区也是完成引导和定义分区参数,和FAT分区不同,FAT分区的B OOT记录正常,就显示分区没有错误,即使文件不正确,而NTFS分区的BOOT不是分区的充分条件,它要求必须MFT中的系统记录如$MFT等正常该分区才能正常访问。其BPB参数如下表所示。 字节偏移长度常用值意义 0x0B 字 0x0002 每扇区字节数 0x0D 字节 0x08 每簇扇区数 0x0E 字 0x0000 保留扇区 0x10 3字节 0x000000 总为0 0x13 字 0x0000 NTFS未使用,为0 0x15 字节 0xF8 介质描述 0x16 字 0x0000 总为0 0x18 字 0x3F00 每磁盘扇区数 0x1A 字 0xFF00 磁头数 0x1C 双字 0x3F000000 隐含扇区 0x20 双字 0x00000000 NTFS未使用,为0 0x28 8字节 0x4AF57F0000000000 扇区总数 0x30 8字节 0x0 $MFT的逻辑簇号 0x38 8字节 0x54FF0000 $MFTMirr的逻辑簇号 0x40 双字 0xF6000000 每MFT记录簇数 0x44 双字 0x01000000 每索引簇数 0x48 8字节 0x14A51B74C91B741C 卷标 0x50 双字 0x00000000 检验和 MFT中的文件记录大小一般是固定的,不管簇的大小是多少,均为1KB。文件记录在MFT文件记录数组中物理上是连续的,且从0开始编号,所以,NTFS是预定义文件系统。MFT仅供系统本身组织、架构文件系统使用,这在NTFS中称为

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

树形目录结构文件系统

操作系统课程设计 课程名称操作系统 题目名称树形目录结构文件系统学生学院 专业班级 学号 学生姓名 指导教师 2011 年1 月13 日

目录 一、课程设计目的 (3) 二、设计概要 (3) 三、详细设计 (3) 3.1数据结构设计 (4) 3.2程序功能模块图 (5) 3.2.1 文件管理系统主功能图示 (5) 3.2.2 用户界面管理图示 (5) 3.2.3 新建文件图示 (6) 3.2.4 复制、剪切文件图示 (6) 3.2.5 粘贴文件图示 (7) 3.2.6 删除文件图示 (7) 四、程序界面设计及运行结果分析 (8) 五、课程设计总结 (12) 六、参考文献 (12)

一、课程设计目的: 操作系统课程设计是配合操作系统课开设的专业基础必修课。本课程通过设计实现一个综合作业,培养学生程序设计的方法和技巧,提高学生编制清晰、合理、可读性好的系统程序的能力,加深对操作系统课程的理解。 二、设计概要: (1) 运行平台: Windows系列 (2) 设计平台: Microsoft Visual Studio 2008 (3) 存储系统:XML文件 (4) 运行需求: .NET Framework 2.0版本以上 (5) 软件简介: 文件管理系统 (6) 功能简介: A、提供用户登录注销功能 B、多用户管理,多级目录形式,文件可互相共享. C、智能化的树形和列表界面操作(包括图标、列表以及详细显示方 式,方便的菜单,右击菜单,工具栏等) D、模拟Windows多种实用功能 (7)本系统参照了windwos文件管理结构,实现了其大部分常用功能,采用多用户系统实现了文件夹与文件的创建,打开,读写,删除,关闭,剪切,复制,粘贴,重命名,刷新,查看,排列图标、属性设置、模糊搜索以及多用户文件共享功能。 三、详细设计: 3.1、数据结构设计: 本程序采用XML文件形式管理文件信息,XML文件适合小数据块的存储和传输,.NET为XML提供了丰富的类库,更加方便了操作使用,详细数据设计思路如下: XML文件编码声明: 首节点: 用户设计: 两个数据段:用户名和用户密码; XML实现: 文件夹设计: 一个数据段:文件夹名称 XML实现: 文件设计: 四个数据段:文件名称、文件保护码、文件空间和文件共享性

系统优化方法(《生活与哲学》)

《生活与哲学》第七课重难点解析 掌握系统优化的方法 一. 系统的含义及基本特征 系统是相互联系、相互作用的诸要素构成的统一整体。要素是组成系统整体的各个部分。无论是自然事物还是社会事物,包括人们的思想意识,一般都是以系统的方式而存在的。每一事物或过程,因其内在要素相互联系而形成小系统,又同周围的其他事物相互联系,构成更大的系统。如:在自然界中,每一个细胞都是由细胞核、细胞质、细胞膜等组成的系统;每一个生物体也都是由细胞组成的系统;每一个生物种属和生物群落也都自成系统。在人类社会中,每一个人都同他人结成层次不同的系统,如家庭、乡村、政党、民族、国家等。人类社会就是由生产力和生产关系、经济基础和上层建筑等要素组成的系统。 系统的基本特征主要有:(1)整体性。任何系统都是由各个要素相互联接、相互作用而构成的有机整体。整体性是系统的本质特征。这种整体性表现为,系统对外来作用能作为一个统一的整体作出反应,而不管它作用于哪一部分;同时,系统作为一个整体,具有它的各个要素都不单独具有的功能和性质。整体的新功能来自于各个要素的相互作用和结构优化,即“整体功能大于部分功能之和”。(2)有序性。系统内部结构具有层次等级式的组织化特征,每一系统都是由若干要素按照一定的秩序、方式或比例组合而成。系统中的各个要素各有其特定的位置、顺序和规则。结构稳定,系统就相对稳定;结构变化,系统的性质和功能就发生相应的变化。如整个社会就是一个大系统,随着我国经济的不均衡发展和社会内部结构的变化,影响社会发展的不稳定因素也在增加。构建和谐社会的发展策略也就应势而出。(3)内部结构的优化趋向。从系统的整体发展方向来看,系统的形成是从无序向有序、从低级有序向高级有序的不断演化过程。结构有序合理,会促进系统的发展,结构失序或不合理则阻碍系统的发展。因此,要注重系统内部结构的优化趋向。为促进系统的法则功能状态的提高,就要不断调整、完善和优化系统的结构。除上述特征外,系统还有层次性、开放性、关联性等。 综上所述,我们在把握系统优化的方法时,要注意这样三点:1.要着眼于事物的整体性,从整体上把握系统的功能和性质;2.要注意遵循系统内部结构的有序性;3.要注重系统内部结构的优化趋向。 二、掌握系统优化的意义 掌握系统优化的方法对于我们认识世界和改造世界都具有重要的指导意义。 首先,从认识世界来说,系统优化的方要求我们用综合的思维方式来认识事物。既要着眼于事物的整体,从整体出发认识事物和系统,又要把事物和系统的各个要素联系起来进行考察,在联系中把握各要素,把握事物整体,统筹考虑,优化组合,最终形成关于此事物的完整的、准确的认识。 从改造世界来说,系统优化方法要求处理和解决问题是要着眼于整体功能状态的优化,做到从整体出发,统筹全局,寻求最优目标。在工作实践中,要注重系统内部结构的优化趋向,实现整体功能大于部分功能之和。如在经济和社会发展中,社会发展是一个系统工程。经济发展和人口、资源、环境、社会保障等必须相互配合,东部地区的快速发展必须和西部大开发、东北老工业基地的振兴、中部地区的崛起协调共进,物质文明、精神文明、政治文明应该共同进步。所有

第六章 文件系统习题

第六章文件系统 一. 单项选择题 1.操作系统对文件实行统一管理,最基本的是为用户提供( )功能。 A.按名存取 B.文件共享 C.文件保护 D.提高文件的存取速度 2.按文件用途分类,编译程序是( )。 A.系统文件 B.库文件 C.用户文件 D.档案文件 3.( )是指将信息加工形成具有保留价值的文件。 A.库文件 B.档案文件 C.系统文件 D.临时文件 4.把一个文件保存在多个卷上称为( )。 A.单文件卷 B.多文件卷 C.多卷文件 D.多卷多文件 5.采取哪种文件存取方式,主要取决于( )。 A.用户的使用要求 B.存储介质的特性 C.用户的使用要求和存储介质的特性 D.文件的逻辑结构 6.文件系统的按名存取主要是通过( )实现的。 A.存储空间管理 B.目录管理 C.文件安全性管理 D.文件读写管理7.文件管理实际上是对( )的管理。 A.主存空间 B.辅助存储空间 C.逻辑地址空间 D.物理地址空间8.如果文件系统中有两个文件重名,不应采用( )结构。 A.一级目录 B.二级目录 C.树形目录 D.一级目录和二级目录9.树形目录中的主文件目录称为( )。 A.父目录 B.子目录 C.根目录 D.用户文件目录 10.绝对路径是从( )开始跟随的一条指向制定文件的路径。 A.用户文件目录 B.根目录 C.当前目录 D.父目录 11.逻辑文件可分为流式文件和( )两类。 A.索引文件 B.链接文件 C.记录式文件 D.只读文件 12.由一串信息组成,文件内信息不再划分可独立的单位,这是指( )。A.流式文件 B.记录式文件 C.连续文件 D.串联文件 13.记录式文件内可以独立存取的最小单位是由( )组成的。 A.字 B.字节 C.数据项 D.物理块 14.在随机存储方式中,用户以( )为单位对文件进行存取和检索。 A.字符串 B.数据项 C.字节 D.逻辑记录 15.数据库文件的逻辑结构形式是( )。 A.链接文件 B.流式文件 C.记录式文件 D.只读文件 16.文件的逻辑记录的大小是( )。

Linux文件系统分析

Linux文件系统分析 1. Linux磁盘分区和目录 Linux 发行版本之间的差别很少,差别主要表现在系统管理的特色工具以及软件包管理方式的不同。目录结构基本上都是一样的。Windows 的文件结构是多个并列的树状结构, 最顶部的是不同的磁盘(分区),如: C , D , E , F 等。 Linux 的文件结构是单个的树状结构. 可以用tree 进行展示。在Ubuntu 下安装tree (sudo apt-get install tree ), 并可通过命令来查看。 每次安装系统的时候我们都会进行分区,Linux 下磁盘分区和目录的关系如下: –任何一个分区都必须挂载到某个目录上。 –目录是逻辑上的区分。分区是物理上的区分。 –磁盘Linux 分区都必须挂载到目录树中的某个具体的目录上才能进行读写操作。 –根目录是所有Linux 的文件和目录所在的地方,需要挂载上一个磁盘分区。 以下是我们可能存在的一种目录和分区关系: 图1:目录和分区关系 Q: 如何查看分区和目录及使用情况? –fdisk 查看硬盘分区表 –df :查看分区使用情况 –du: 查看文件占用空间情况 Q:为什么要分区,如何分区? –可以把不同资料,分别放入不同分区中管理,降低风险。 –大硬盘搜索范围大,效率低 –磁盘配合只能对分区做设定 –/home /var /usr/local 经常是单独分区,因为经常会操作,容易产生碎片 2. Mount 挂载和NFS 简介

挂载的概念:当要使用某个设备时,例如要读取硬盘中的一个格式化好的分区、光盘或软 件等设备时,必须先把这些设备对应到某个目录上,而这个目录就称为“挂载点(mount point )”,这样才可以读取这些设备,而这些对应的动作就是“挂 载”。将物理分区细节屏蔽掉。用户只有统一的逻辑概念。所有的东西都是文件。 Mount 命令可以实现挂载: mount [-fnrsvw] [-t vfstype] [-o options] device dir Q :所有的磁盘分区都必须被挂载上才能使用,那么我们机器上的硬盘分区是如何被挂载 的? A :这主要是它利用了/etc/fstab 文件。每次内核加载它知道从这里开始mount 文件系统。每次系统启动会根据该文件定义自动挂载。若没有被自动挂载,分区将不能使用。如下是我的/etc/fstab 的定义,主要是根据装机的分区来的: # <> proc/proc proc defaults00 #/dev/sda1 被自动挂载到/ UUID=cb1934d0-4b72-4bbf-9fad-885d2a8eeeb1 /ext3relatime,errors=remount-ro 01 # /dev/sda5 被自动挂载到分区/home UUID=c40f813b-bb0e-463e-aa85-5092a17c9b94 /home ext3relatime02 #/dev/sda7 被自动挂载到/work UUID=0f918e7e-721a-41c6-af82-f92352a568af /work ext3relatime02 # 分区/dev/sda6 被自动挂载到s none swap sw00 Q :移动硬盘如何挂载?如何挂载一个新的分区? 移动硬盘有驱动模块会自动挂载,如果有个新硬盘,要先进行分区,并通过mount 命令挂载到某个文件夹。如果要自动挂载则可以修改/etc/fstab 文件. NFS 简介:NFS 相信在很多地方都有广泛使用,是一个非常好的文件共享方式。我们公 司所使用的上传服务就是把文件上传到某台网络服务器上,中间就是通过NFS 实现。 使用NFS 客户端可以透明的地访问服务器端的文件。NFS 也是通过mount 来实现,底层是通过NFS 通信协议实现。基本原理:

相关文档
最新文档