Ni-W(D)刷镀层再强化机理的研究

电镀与精饰990310

电镀与精饰

PLANT & FINISHING

1999年 第21卷 第3期 No.3 Vol.21 1999

Ni-W(D)刷镀层再强化机理的研究

徐江 揭晓华 段桂生

摘 要 对Ni-W(D)刷镀层进行热处理,测量了热处理前后镀层硬度的变化,并利用X-射线衍射,对刷镀Ni-W(D)镀层再强化机理作了研究。在摩擦磨损实验中,利用了电子探针,对磨损前后镀层成分进行了分析,探讨了造成成分变化的原因,主要是W朝磨损区偏聚。

关键词 Ni-W(D)刷镀层,再强化,偏聚

AStudy on Brush Plated Ni-W(D) Layer Secondary Strengthening

Xu Jiang,Jie Xiachua,Duan Guisheng

Abstract The hardness of Ni-W(D)layer is measured before and after heat treatment,andthe mechanism ofbrush plated Ni-W(D)layer secondary strengthen was studied by X-ray diffrac-tion.The friction and wear tests were conducted.By the EPMA,the elements composition ofbrush plated were analyzed before and afterweartesting.The causes ofthe phenomenon were en-richmentofW element in wear areas.

Keywords brush plated Ni-W(D)layer,secondary strengthening,enrichment

1 引 言

电刷镀是一种在材料表面进行电沉积金属镀层的技术。此技术最初只是在零部件的维修方面得到应用。随着科学研究的不断深入,该技术显示出许多优于其它金属涂覆技术的优点。如工艺灵活性、镀层的多样性和应用的广泛性,从而得到越来越多的重视。近年来,人们在镀液、工艺、强化机理、实际应用等方面做了大量的工作。本文对镀层的再强化机理及镀层的磨损特性做了进一步的探讨。

2 实验方案

2.1 镀液配方及试验材料

Ni-W(D)配方如下:

硫酸镍 393.0 g/L

钨酸钠 23.0 g/L

甲酸 35.2 mL/L

柠檬酸 42.0 g/L

file:///E|/qk/ddjs/ddjs99/ddjs9903/990310.htm(第 1/4 页)2010-3-22 16:41:25

金属材料的强化方法

第五章金属材料的强化方法 一、金属材料的基本强化途径 许多离子晶体和共价晶体受力后直到断裂,其变形都属于弹性变形。 而金属材料的应力与应变关系如图5-1所示。 它在断裂前通常有大量塑性变形。它是晶体的一部分相对于另一部分沿一定晶面晶向的相对滑动。但是,晶体的实际滑移过程并不是晶体的一部分相对于另一部分的刚性滑移。 如果是刚性的滑移,则滑移所需的切应力极大,其数值远高于实际测定值。如,使铜单晶刚性滑移的最小切应力(计算值)为1540MPa, 而实际测定值仅为1MPa。各种金属的这种理论强度与实际测定值均相差3~4个数量级。这样的结果,迫使人们去探求滑移的机理问题,即金属晶体滑移的机理是什么?20世纪20年代,泰勒等人提出的位错理论解释了这种差异。 位错是实际晶体中存在的真实缺陷。现已可以直接观察到位错。 图5-2 位错结构

图5-3 位错参与的滑移过程 位错在力τ的作用下向右的滑移,最终移出表面而消失。由于只需沿滑移面A —A 改变近邻原子的位置即可实现滑移,因此,所需的力很小,上述过程很易进行。 由上述的分析可知,金属晶体中的位错数量愈少,则其强度愈高。现已能制造出位错数量极少的金属晶体,其实测强度值接近理论强度值。这种晶体的直径在1μm 数量级,称之为晶须。 由位错参与的塑性变形过程似乎可得到另一结论,即金属中位错愈多,滑移过程愈易于进行,其强度也愈低。事实并不是这样。如图5-4所示。 图5-4 强度和位错与其它畸变 可见,仅仅是在位错密度增加的初期,金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。这是因为位错密度继续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从一个位错源中产生并且在某个强障碍面前停止的时候就构成了位错的塞积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交截过程中在一位错上产生短位错);4)割阶运动引起的阻力。 金属受力变形达到断裂之前,其最大强度由两部分构成:一是未变形金属的流变应力σl ,即宏观上为产生微量塑性变形所需要的应力。流变应力的大小决定于位错的易动性:晶体内部滑移面上的位错源越容易动作,运动位错在扫过晶体滑移面时所受的阻力越小,则流变应力越低;其二是因应变硬化产生的附加强度,它由塑性变形过程中应变硬化速率 εσd d 和塑性变形量l f εε-来决定。所以,在断裂前的最大强度大致可按下式计算: ?+=f l d d d l εεεε σσσ)(max 工程结构材料主要是在弹性范围内使用的,因此,在构件的设计和使用中,流变应力的重要性更为突出。 对流变应力有贡献的阻力主要是两类:

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

金属材料的强化方法和位错的关系

陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。另外,位错对晶体的扩散和相变等过程也有较大影响。 首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。 其次,滑移赋予了金属材料的延性。如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。 第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。如板条状马氏体钢( F12钢)等。 第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。 第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。 金属的强化 strengthening of metals 通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。一种手段对提高某一强度指标可能是有效的,而对另一强度指标

激光冲击强化技术发展现状与展望教学内容

激光冲击强化技术发展现状与展望

激光冲击强化技术发展现状与展望 摘要:首先简介了激光冲击强化的基本原理和技术优势;然后简述了该技术在国内外的发展和应用情况,扼要介绍了我国激光冲击强化技术研究现状和近期取得的主要进展;最后对激光冲击强化技术的发展进行了展望。我国激光冲击强化设备和技术已基本成熟,可以进入工业应用。 关键词:激光冲击强化;冲击波;表面处理;疲劳 长期以来,我国多型航空发动机在使用过程中出现了由于发动机叶片打伤、疲劳断裂和腐蚀等造成的重大故障和事故,直接影响了发动机使用安全性和寿命,成为我军航空装备的重大问题。飞机结构连接件、壁板及小孔边等裂纹也成为限制寿命的重要因素。 飞机和航空发动机结构大量采用金属材料,金属材料的主要失效形式疲劳和腐蚀均始于材料表面,所以金属材料表面的结构和性能直接影响着材料的综合性能。为此,人们采用喷丸、滚压、内挤压等多种表面强化工艺来改善金属表面性能。利用强激光诱导冲击波来强化金属表面的新技术称为激光冲击强化技术(简称LSP ),由于其表面强化效果好,自产生之日起就得到了广泛的关注和研究。1998年该技术被美国研发杂志评为全美100项最重要的先进技术之一。美国上世纪90年代后期开始的航空发动机高频疲劳研究计划中,将激光冲击强化技术列为工艺技术措施首位。2005年,研制激光冲击强化系统的MIC 公司获美国国防制造最高成就奖。美国将该技术列为第四代战斗机发动机关键技术之一,足见该项技术的重大价值。 1 激光冲击强化技术简介 当短脉冲(几十纳秒内)的高峰值功率密度(9210/W cm )的激光辐射金属表面时,金属表面吸收层(涂覆层)吸收激光能量发生爆炸性汽化蒸发,产生高压(GPa)等离子体,该等离子体受到约束层的约束爆炸时产生高压冲击波,作用于金属表面并向内部传播。在材料表层形成密集、稳定的位错结构的同时,使材料表层产生应变硬化,残

激光冲击强化提高压气机叶片疲劳性能研究_何卫锋

第26卷第7期2011年7月 航空动力学报 Journal of Aerospace Power Vol.26No.7 Jul.2011 文章编号:1000-8055(2011)07-1551-06 激光冲击强化提高压气机叶片疲劳性能研究 何卫锋,李应红,李 伟,李玉琴,李启鹏 (空军工程大学工程学院,西安710038) 摘 要:根据1Cr11Ni2W2M o V 不锈钢材料性能,确定了激光冲击强化参数;并通过标准试片疲劳试验,验证了该参数条件下激光冲击强化提高不锈钢材料振动疲劳寿命的有效性.设计了不锈钢叶片振动疲劳试验,确定了叶片冲击强化部位和方式,对强化叶片进行了型面检查、一阶弯曲振动疲劳试验和强化机理研究.结果表明:激光冲击强化后的叶片各个截面尺寸在设计范围之内,强化后叶片的应力-循环次数(S-N )曲线往上移动,提高了叶片的疲劳强度,在660M Pa 应力水平下,叶片的振动中值疲劳寿命提高70%;激光冲击强化引起的残余应力和表层微观组织变化是疲劳强度提高的主要原因.关 键 词:激光冲击强化;压气机叶片;振动;疲劳寿命;残余应力中图分类号:T G665;V216.3 文献标志码:A 收稿日期:2010-05-13;修订日期:2010-11-11 作者简介:何卫锋(1977-),男,湖南桃江人,讲师,博士,主要从事激光冲击强化技术研究. Laser shock peening on vibration fatigue behavior of compressor blade H E We-i feng,LI Ying -hong,LI Wei,LI Yu -qin,LI Q-i peng (The Engineering Institute, Air For ce Engineering U niv ersity ,Xi an 710038,China) Abstract:According to the m echanical perfo rmance of the 1Cr11Ni2W2M oV stainless steel,the technical param eters of laser shock peening (LSP)w ere determ ined.T he standard coupons w ith/w ithout LSP w ere tested fo r examining the fatigue perfo rmance.It prov es that LSP,w ith the selected parameters,can im pro ve the stainless steel's vibration fatig ue life re -m ar kably.Fr om the ex periment results o f coupons,the v ibration fatigue experiment for the com pressor blade in one certain aero -eng ine w as designed according to the structur e and loads of the blade.T he treated zo ne w as desig ned on the surface where the vibratio n stress is the most severe.In order to avoid m acrosco pical deform ation,the blades w ere treated o n both sides sim ultaneously.This confir ms that different sectio n parameters after LSP on the blade ar e w ithin the range of desig n r equests.The vibration fatigue results indicate that the S -N (stress -number of cy cles)curve w ith LSP mo ves up as compared w ith that one w ithout LSP.When the max vibratory stress w as about 660MPa,the blade fatigue life w ith LSP w as pro -lo ng ed for 70%.Finally,the reasons w ere analyzed fr om the residual com pr essive stress and micro str ucture after LSP. Key words: laser shock peening;co mpr essor blade;vibratio n;fatigue life;residual stress 激光冲击强化(LSP)采用短脉冲(几十纳秒)的高峰值功率密度(>109 W/cm 2 )的激光辐照金属表面,使金属表面涂覆的吸收保护层吸收激光 能量并发生爆炸性气化蒸发,产生高压(>1GPa)的等离子体冲击波,利用冲击波的力效应使表层材料微观组织发生变化,在较深的厚度上残留压

金属材料的强化方法

金属材料的强化方法 金属材料的强化途径,主要有以下几个方面; (1)结晶强化。结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: 1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。在损坏的构件中,常可发现有大量的夹杂物。采用真空冶炼等方法,可以获得高纯度的金属材料。 (2)形变强化。金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。 (3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。 (4)相变强化。含金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构.使金属材料得到强化,称为相变强化。相变强化可以分为两类: 1)沉淀强化(或称弥散强化)。在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。一是立方晶系,如TiC、V4C3.NbC 等,二是六方晶系,如M02、W2C、wc等,三是正菱形,如Fe3C。对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。 2)马氏体强化。金属材料经过淬火和随后同火的热处理工艺后,可获得马氏体组织,使材料强化。但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。 (5)晶界强化。晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身:世在高温时,沿晶界的扩散速度比晶内扩敞速度大得多,晶界强度显著降低。因此强化品界对提高钢的热强性是很有效的。硼对晶界的强化作用,足由于硼偏集于晶界上,使晶界区域的品格缺位和空穴减少,晶界自由能降低;B还减缓了合金元素沿晶界的扩放过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。 (6)综合强化。在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。例如: 1)固溶强化十形变强化,常用于固溶体系合金的强化。 2)结晶强化+沉淀强化,用于铸件强化。 3)马氏体强化+表面形变强化。对一些承受疲劳裁荷的构件,常存调质处理后再进行喷丸或滚压处理。 4)固溶强化+沉淀强化。对于高温承压元件常采用这种方法,以提高材料的高温性能。有时还采用硼的强化晶界作用.进一步提高材料的高温强度。

基于ABAQUS的激光冲击金属表面强化

《现代设计理论与方法》 基于ABAQUS的激光冲击金属表面强化 班级机械工程 学号 姓名

基于ABAQUS的激光冲击金属表面强化 一、激光冲击金属表面强化的国内外现状 金属材料的失效形式主要是于材料表面的疲劳、腐蚀和磨损,所以材料表面的结构和性能直接影响着材料的综合性能。激光冲击强化是利用短脉冲( 一般在5 0s n以内)、高功率密度的激光通过透明约束层,作用于金属表面所涂覆或帖附的吸收层上,吸收层吸收激光能量后迅速气化。形成稠密的高温、高压等离子体,该等离子体继续吸收激光能量后急剧升温膨胀,然后爆炸形成高强度冲击波作用于金属表面。当冲击波的峰值压力超过材料的动态屈服强度时,材料发生塑性变形并在表层产生平行于材料表面的拉应力。激光作用结束后,由于冲区域周围材料的反作用,其力学效应表现为材料表面获得较高的残余压应力。 激光冲击的研究可以追溯到1963年,White首先发现了激光诱发冲击波现象[5l,这一发现为激光冲击技术的应用拉开了序幕。目前激光冲击强化在美国已历经三十多年的发展,技术逐渐成熟。2000年以来,高能激光冲击强化技术研究水平有了新突破,应用领域有了新的拓展,其中一些成果受到世人瞩目。利弗莫尔(livemore)实验室在YMP研究计划中进行了304不锈钢的耐腐蚀实验,证实激光冲击后的不锈钢试样耐腐蚀性能获得了极大提高。高能束激光冲击技术可用于核废料储存容器焊缝的处理,以及改善核反应器的安全性与可靠性,延长反应器零件的工作时间,从而使沸水反应器和压力水反应器具有更长的服役时间和更低的运行成本。日本东芝为了将激光冲击处理技术用于核反应堆中型芯零件和焊接构件焊缝的强化,专门设计了激光冲击伸缩强化头,可深入内壁实施强化。 我国对激光冲击处理技术的研究始于上世纪90年代。中国科技大学、华中科技大学、南京航空航天大学等单位在这方面已做了大量的基础研究,但还没有工化应用。1991年我国高功率(109w/cm2)激光装置通过鉴定,激光冲击强化的研究才真正开始。1993年,在国家有关部门支持下,中国科技大学与南京航空航天大学、成都飞机设计研究所等单位合作,采用特制的激光冲击处理实验装置,对激光冲击进行了一系.列的研究,有效地强化了碳钢、合金钢及镍基高温合金钢。“九

(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

机械加工强化机理与工艺技术研究进展 李拓宇

机械加工强化机理与工艺技术研究进展李拓宇 发表时间:2019-02-22T14:25:51.553Z 来源:《防护工程》2018年第32期作者:李拓宇 [导读] 人们要充分利用现有的科学技术成果,促进机械加工强化机理与工艺技术的应用,以满足机械产品加工的复杂性需求。 哈尔滨轴承集团公司黑龙江哈尔滨 150036 摘要:人们要充分利用现有的科学技术成果,促进机械加工强化机理与工艺技术的应用,以满足机械产品加工的复杂性需求。事实证明,只有这样才能推动机械制造业快速稳定地向前发展。因此,相关人员应将上述内容与科研结果更多地作用于各类机械产品加工中,使工艺技术发挥出更大的价值。 关键词:机械加工;强化机理;工艺技术;研究进展 引言: 在机械加工过程中,我们要在保证了机械加工产品质量的前提下考虑机械企业的利益,合理的控制机械加工的每一个环节,熟练掌握机械加工的工艺,尽量将机械加工工艺的误差缩到最小,提高机械产品的质量就能推动机械加工企业的生存和发展,也能推动我国机械加工业的可持续发展。 1机械加工工艺的概述 机械技工是指利用传统机械加工的方法,按照图纸的图样和尺寸,使毛坯形状、尺寸的相对位置和性质成为合格零件的全过程,加工工艺是工人进行加工前所需要做的工作,避免在加工过程中发生加工失误,造成经济损失。总的来说,加工工艺是每个步骤的详细参数,也就是详细标准和要求。加工工艺的选择是机械加工工程的基础,若加工工艺的选择不够好,那么将会直接影响机械加工产品的质量。 2 机械加工强化机理 2.1 位错强化 在众多的材料强化过程中,位错强化是一种有效的强化方法。当材料发生塑性形变时,位错间相互作用可以提高材料的位错密度,而位错运动受到阻碍时候发生塞积。这种塞积现象可以提高材料的硬度。温度对于金属的位错强化也会产生影响,而不同种类的金属,其产生的影响大小也是不同的。而这种现象被成为热激活效应。材料在其临界温度时,当温度继续升高,位错作用减弱,位错运动继续进行。实际中,如果温度高于临界温度,随着温度升高,此时位错运动收到的阻碍变小,而材料中流变应力却不变。故在对金属材料进行硬化的时,应对零件的工作环境温度情况予以考虑,从而确定材料的临界温度,避免零部件在高温下工作时强度降低而发生形变,对设备造成不利影响。 2.2 晶界强化 晶界强化是指运用向钢锅中加入表面活性元素或者细化晶粒的方法提高钢的持久性以及蠕变极限。晶界强化可以显著提高材料的耐用度,是一种较为常见的强化方式。晶界强化的作用主要表现在两个方面,一个是直接层面一个是间接层面。直接层面主要是由晶体本身带来的,晶体本身的位错塞积可以对滑移产生一定的阻碍作用,间接层面是由晶界的不相容性带来的,为了集中晶界影响区的高应力就必须在最大程度上增大晶界的强化作用。因此总的来说,晶界的强化虽然可以显著提高材料的强度但是由于存在塑性应变不相容的隐患,可能会导致机械材料过早的疲劳失效。 2.3 应变强化 应变强化又被称为加工硬化是指在材料变形的过程当中,通过错位运动,使金属材料的强度和硬度都有所提高,但材料的塑性、韧性会在一定程度上下降,而这一系列的塑性变形过程都是发生在结晶温度以下。这种过程产生的原因是,金属材料在进行塑性变形的时候,其内部的晶粒发生错位滑移,使其内部晶粒拉长、破碎和纤维化,金属内部发生了结构变化,这种反应最终会显著提高金属材料、零件等表面强度,提高零件和构件的安全度,可得到截面变形均匀一致的冷冲压件,可以改进低碳钢的切削性能,使切屑易于分离。 2.4 固溶强化 固溶强化是指溶质原子溶入之后,会引起溶剂金属的晶格产生畸变,从而使位错运动受到的阻力增大,这种方法其本质就是利用合金元素,提高合金强度与硬度,但是使用这种方法时,影响最终机械材料的硬度的因素有很多,例如,溶质原子的原子分数、溶质原子与基体金属的价电子数目等。因此此方法在使用时要严格注意其溶质浓度,需要考虑全面,合理控制溶质原子的数目。 3 机械加工强化工艺与装备技术 3.1 喷丸工艺技术 喷丸强化,也称喷丸处理。是减少零件疲劳,提高寿命的有效方法之一,喷丸处理就是将高速弹丸流喷射到零件表面,使零件表层发生塑性变形,而形成一定厚度的强化层,强化层内形成较高的残余应力,由于零件表面压应力的存在,当零件承受载荷时可以抵消一部分应力,从而提高零件的疲劳强度。现阶段,喷丸强化这种技术主要应用在机械加工领域,同时在实践中已经取得了不错的成效,尤其是长期处在腐蚀环境下的零部件,在经过这种方法处理后,材料耐用性得到了极大的提高。喷丸技术发展到现在,已经出现了超声喷丸工艺与高压水喷丸工艺这两种主流工艺。超声喷丸工艺需要将待加工零件置于真空中,利用超声波使弹丸发生机械振动,达到强化材料的目的。同其他方式相比,超声波喷丸工艺更加便捷。但在利用这种方式进行强化时需要特别注意喷丸均匀性,如果喷丸不均匀,会使零件强度不均匀,从而导致零件的损坏,带来损失。 3.2 激光冲击强化工艺技术 作为喷丸强化工艺的新形式,该工艺技术能够利用短脉冲与高功率密度,将强激光通过透明约束层作用于金属材料的能量吸收层上。这样一来,当吸收层所吸收的能量实现汽化后,蒸汽就会吸收强激光的能量,进而形成等离子体。这里的工艺参数包括:激光波长、激光功率密度以及约束层厚度等。值得注意的是,由于喷丸强化工艺的激光功率密度大小会受到约束层与被加工零件材料使用的影响,因此,工艺技术人员应保证激光诱导冲击波压力大于材料的动态屈服强度。这样一来,激光冲击强化工艺技术的应用,就能提高机械加工设备的生产效果。此外,由于激光冲击强化工艺已经广泛作用于航空工业中零件表面改性处理以及板料的整体塑性成形,因此,在完成处理后,

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

激光冲击强化铝合金力学性能及微观塑性变形机理研究

激光冲击强化铝合金力学性能及微观塑性变形机理研究 激光冲击强化具有高压(GPa-TPa)、超快(几十纳秒)、超高应变率 (107-108S-1,比爆炸成形高出100倍)的显著特点,广泛应用在金属构件的表面 改性上,然而目前对于金属材料表层激光冲击细化晶粒的微观结构演变、性能结构关系尚缺乏系统的研究,尤其是对超高应变率下严重塑性变形导致的晶粒细化机制和微观强化机理,现在仍然缺乏统一的认识和深入的理解。本文针对激光冲击铝合金的宏观性能、微观结构演变以及塑性变形进行了若干基础研究,为激光冲击波技术的工业应用提供依据。 本文主要开展以下四个方面内容的研究:不同工艺参数下铝合金试样的表面完整性和疲劳寿命研究、不同应变速率下的拉伸性能,在铝合金微观结构演变的基础上研究多次激光冲击铝合金晶粒细化机制和微观强化机理、激光冲击铝合金表面凹坑深度推导和理论计算,获得了以下主要结论和创新性成果:(1)系统研究了激光单次和多次冲击诱导铝合金塑性变形层不同区域的微观组织结构,建立了深度方向残余应力和微观结构的对应关系,首次深入系统地揭示了激光冲击铝合金晶粒细化机制和微观强化机理;在激光冲击塑性变形区域发现了激光冲击铝合金的空位簇缺陷并对形成机制进行初步的研究:激光冲击明显细化铝合金冲击区域表层的晶粒。激光单次冲击LY2铝合金晶粒细化过程中,深度方向的位错结构从随机分布位错→位错线→位错缠结→亚晶进行逐步演变,最终形成细化的晶粒;多次激光冲击的铝合金的上表面,晶粒尺寸约为100-200 nm。 在观测试验结果的基础上,系统地提出了多次激光冲击强化铝合金的微观机制:(ⅰ)原始粗晶内位错线的形成;(ⅱ)位错线的堆积导致位错墙和位错缠结的形成;(ⅲ)位错墙和位错缠结细分粗晶成亚晶粒;(ⅳ)在外来载荷的作用下亚晶

论述四种强化的强化机理强化规律及强化方法

论述四种强化的强化机理 强化规律及强化方法 The Standardization Office was revised on the afternoon of December 13, 2020

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。

铝合金激光冲击强化表面改性的研究进展_柳军宁

铝合金激光冲击强化表面改性的研究进展 柳军宁*1,2裴峻峰1,2 (1.常州大学;2.江苏省油气井口装备工程技术研究中心) 摘要介绍了激光冲击强化的作用机理,综述了激光冲击强化对铝合金材料残余应力、疲劳寿命、表面形态和微观结构等机械性能的影响和有限元分析方法在研究中的应用,总结了国内外在该领域的最新研究迸展。 关键词激光冲击强化铝合金机械性能 中图分类号TQ05014+1文献标识码A文章编号0254-6094(2011)02-0141-05 铝合金比重小,但却有着接近或超过优质钢 的强度,具有热膨胀系数低、易于成形、热导率高、成本低廉等优点,广泛应用于航空、航天、汽车、包装、建筑、电子等各个领域。但是,铝合金也存在诸多问题,如在氯离子及碱性介质存在的情况下,极易发生点腐蚀、缝隙腐蚀、应力腐蚀和腐蚀疲劳等多种形式的破坏,硬度较低、摩擦系数高、磨损大,容易拉伤且难以润滑导致铝合金耐磨性差。这些在很大程度上都限制了铝合金的使用范围[1,2]。 国内外对铝及其合金表面进行改质处理的研究很多,这些方法都可改变铝及其合金表面的应力分布、摩擦系数、微观硬度等,以期拓宽其应用范围。激光冲击波技术利用其极高的冲击压力,对材料作冲击改性处理,在金属的冲击强化处理和材料的冲击精密成型等领域已获得广泛的应用[3]。笔者主要介绍激光冲击强化(LSP)在铝及其合金表面改性方面的应用和研究进展。 1激光冲击强化的机理 激光冲击强化(简称LSP)技术,是利用高功率密度(大于1GW/c m2)的短脉冲(ns级)激光,辐照金属材料表面所产生的高密度等离子体喷射爆炸所形成的冲击应力波(GPa级)来改善材料的抗疲劳、磨损和应力腐蚀等性能的一项新技术[4~8]。 激光冲击一般采用钕玻璃、红宝石及YAG高功率激光装置[9](图1),激光功率密度一般大于1G W/c m2,有时可达10T W/c m2。如此强度的激光与材料相互作用会出现激光等离子体现象,这是一种物理现象。如图2所示,激光冲击强化过程可分为3个阶段[10]:当强激光穿过约束层冲击金属表面的能量吸收层时,能量吸收层会吸收激光的能量,在极短时间内汽化电离,形成一个高温高压的等离子体层;由于约束层的存在,等离子体压力迅速升高,施与试样一个冲击加载,产生向金属内部的强冲击波;冲击波压力达到GPa量级,远大于材料的动态屈服强度,使材料产生屈服和塑性变形, 同时在成形区域产生残余压应力。 图1激光冲击强化设备示意图 *柳军宁,男,1984年10月生,硕士研究生。江苏省常州市,213016。

金属的强化机制及强韧性能的控制

金属的强化机制及强韧性能的控制 强化一般是指金属材料的室温流变强度,即光滑试样在大气中、按给定的变形速率、室温下拉伸时所能承受应力的提高。应强调指出:提高强度并不是改善金属材料性能惟一的目标,即使对金属结构材料来说,除了不断提高强度以外,也还必须注意材料的综合性能,即根据使用条件,要有足够的塑性和韧性以及对环境与介质的适应性。 一、强化机制 强化的理论基础从根本上讲,金属强度来源于原子间结合力。直到1934年,奥罗万、波拉尼和泰勒分别提出晶体位错的概念;位错理论的发展揭示了晶体实际切变强度低于理论切变强度的本质。在有位错存在的情况下,切变滑移是通过位错的运动来实现的,所涉及的是位错线附近的几列原子。而对于无位错的近完整晶体,切变时滑移面上的所有原子将同时滑移,这时需克服的滑移面上下原子之间的键合力无疑要大得多。金属的理论强度与实际强度之间的巨大差别,为金属的强化提供了可能性和必要性。可以认为实测的纯金属单晶体在退火状态下的临界分切应力表示了金属的基础强度,是材料强度的下限值;而估算的金属的理论强度是经过强化之后所能期望达到的强度的上限。 强化途径金属材料的强化途径不外两个,一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。可惜当晶须的直径较大时,强度会急剧下降。另一强化途径是向晶体内引入大量晶体缺陷。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的。 固溶强化结构用的金属材料很少是纯金属,一般都要合金化。合金化的主要目的之一是产生固溶强化,另外,也可能产生沉淀强化、细化晶粒强化、相变强化和复相强化等,这要看合金元素的作用和热处理条件而定。合金元素对基体的固溶强化作用决定于溶质原子和溶剂原子在尺寸、弹性性质、电学性质和其他物理化学性质上的差异,此外,也和溶质原子的浓度和分布有关;固溶强化的实现主要是通过溶质原子与位错的交互作用。

激光冲击强化技术发展现状与展望

激光冲击强化技术发展现状与展望 摘要:首先简介了激光冲击强化的基本原理和技术优势;然后简述了该技术在国内外的发展和应用情况,扼要介绍了我国激光冲击强化技术研究现状和近期取得的主要进展;最后对激光冲击强化技术的发展进行了展望。我国激光冲击强化设备和技术已基本成熟,可以进入工业应用。 关键词:激光冲击强化;冲击波;表面处理;疲劳 长期以来,我国多型航空发动机在使用过程中出现了由于发动机叶片打伤、疲劳断裂和腐蚀等造成的重大故障和事故,直接影响了发动机使用安全性和寿命,成为我军航空装备的重大问题。飞机结构连接件、壁板及小孔边等裂纹也成为限制寿命的重要因素。 飞机和航空发动机结构大量采用金属材料,金属材料的主要失效形式疲劳和腐蚀均始于材料表面,所以金属材料表面的结构和性能直接影响着材料的综合性能。为此,人们采用喷丸、滚压、内挤压等多种表面强化工艺来改善金属表面性能。利用强激光诱导冲击波来强化金属表面的新技术称为激光冲击强化技术(简称LSP ),由于其表面强化效果好,自产生之日起就得到了广泛的关注和研究。1998年该技术被美国研发杂志评为全美100项最重要的先进技术之一。美国上世纪90年代后期开始的航空发动机高频疲劳研究计划中,将激光冲击强化技术列为工艺技术措施首位。2005年,研制激光冲击强化系统的MIC 公司获美国国防制造最高成就奖。美国将该技术列为第四代战斗机发动机关键技术之一,足见该项技术的重大价值。 1 激光冲击强化技术简介 当短脉冲(几十纳秒内)的高峰值功率密度(9210/W cm )的激光辐射金属表面时,金属表面吸收层(涂覆层)吸收激光能量发生爆炸性汽化蒸发,产生高压(GPa)等离子体,该等离子体受到约束层的约束爆炸时产生高压冲击波,作用于金属表面并向内部传播。在材料表层形成密集、稳定的位错结构的同时,使材料表层产生应变硬化,残留很大的压应力,显著的提高材料的抗疲劳和抗应力腐蚀等性能,这就是激光冲击强化,其原理如图1所示。

激光冲击复合强化机理及在航空发动机部件上的应用研究_李应红

中国科学: 技术科学 2015年 第45卷 第1期: 1 ~ 8 https://www.360docs.net/doc/1c15439273.html, https://www.360docs.net/doc/1c15439273.html, 引用格式: 李应红, 何卫锋, 周留成. 激光冲击复合强化机理及在航空发动机部件上的应用研究. 中国科学: 技术科学, 2015, 45: 1–8 Li Y H, He W F, Zhou L C. The strengthening mechanism of laser shock processing and its application on the aero-engine components (in Chinese). Sci Sin Tech, 2015, 45: 1–8, doi: 10.1360/N092014-00234 《中国科学》杂志社 SCIENCE CHINA PRESS 论 文 航天专题 激光冲击复合强化机理及在航空发动机部件上的应用研究 李应红*, 何卫锋, 周留成 空军工程大学航空航天工程学院等离子动力学重点实验室, 西安 710038 * E-mail: gswwd@https://www.360docs.net/doc/1c15439273.html, 收稿日期: 2014-08-30; 接受日期: 2014-12-25 国家自然科学基金(批准号: 51205406, 51405507)资助项目 摘要 针对激光冲击强化在航空发动机高温部件、薄叶片和叶片榫槽/榫齿等复杂部件(位)应用的问题, 系统开展了激光冲击表面纳米化方面的研究. 本文在总结多种航空发动机金属材料激光冲击表面纳米化表征、原理、热稳定性研究的基础上, 提出了基于表面纳米化和残余压应力的激光冲击复合强化机理, 进而提高了激光冲击强化在高温部件上使用温度, 并介绍了薄壁结构、榫槽/榫齿等特殊部件(位)激光冲击强化工程应用的情况. 激光冲击表面纳米化及其复合强化机理的研究工作, 拓宽了激光冲击强化的研究领域和应用范围. 关键词 激光冲击强化 航空发动机 疲劳断裂 表面纳米化 复合强化机理 高温部件 1 引言 金属构件疲劳性能与表面完整性密切相关. 一般情况下, 零部件疲劳断裂特别是高周疲劳断裂往往是在表面产生裂纹并逐渐扩展导致整体破坏. 为提高结构可靠性, 延长使用寿命, 在不改变基体材料性能的前提下, 表面强化技术得到了越来越多的研究和应用. 激光冲击强化是一种高效的表面强化技术, 利用激光冲击波的力学效应, 在金属材料表层形成大数值残余压应力和微观组织变化, 显著提高其疲劳强度和寿命, 是解决航空发动机高频疲劳断裂问题的有效手段[1~3]. 其中, 残余压应力提高金属材料的疲劳性能机理已经有了一套比较成熟的理论, 残余压应力主要通过降低部件承受的平均应力、降低裂纹扩展速率甚至使裂纹闭合等方面提高材料的疲劳强 度. 美国激光冲击强化技术的发展路线也是以残余压应力强化机制为指导, 根据部件特点, 设计激光冲击参数, 优化残余压应力场来提高金属部件疲劳性能[4]. 有很多文献分析和说明了激光冲击强化的机理. 例如, Peyre 和Fabbro [5]对激光冲击强化诱导残余应力形成机制进行了描述, 并认为残余压应力是提高疲劳性能的主要原因. Charles 等人[6]对激光冲击强化研究进行了综述, 对于提高金属材料疲劳寿命的机理, 仍然描述为冲击后形成的残余应力改善了抗疲劳性能. Breuer [7], Spanrad 等人[8], Golden 等人[9], Sano 等人[10,11], Hatamleh [12]研究了激光冲击强化对金属材料微动疲劳、外物打伤性能、焊接接头抗应力腐蚀性能的影响, 均认为激光冲击强化诱导的残余压应力是提高疲劳性能的主要原因. 但随着激光冲击强化技术研究和应用的进一步

相关文档
最新文档