midascivil技术讨论汇总

midascivil技术讨论汇总
midascivil技术讨论汇总

有关模型建立的基本问题

1、关于MIDAS截面面输入的讨论

问:请问fem2000兄,为什么只有变截面能导入已定义的PSC截面,必须先定义PSC截面,而其他变截面为什么不能导入(除PSC之外),且手工输入葙梁截面数据似乎太慢了,请问有还有没有其他便捷的输入截面方法,最主要的是解决葙梁截面输入,如桥博的节线输入,坐标输入,我觉得MIDAS 的输入法应该不会比其他软件差的(单位新买的正版的MIDAS,小弟在初步学习之中)

答:(1)以在EXCEL里面编辑好,在拷贝到截面表格里面哦

(2)在添加截面时候,有个导入功能,可以导入原先做过截面数据!如以前有相同或类似的就方便了许多。不妨试下。

(3)可以充分利用midas的截面特性计算器以及mct文件编辑器,截面的cad图你该有吧?将cad图存成dxf文件,导入截面特性计算器,不过要注意图形文件不能有面域,只能是线,因为他可以进行批量计算,所以你只要将所有截面放到一张图里,然后进行计算,最后导出mct文件,假若说是变截面,可以用mct的命令流将你得到的mct文件进行编辑,然后就可以导入变截面了。

(4)mct命令窗口中对各项mct命令都有提示,只要点插入命令你就能得到那个命令的命令流格式,如果对各项所代表的意义不明白可以参考在线帮助,相对来说,要比ansys的命令流好学多了,毕竟他有中文帮助。

你从spc导出来的mct文件里面给出的是section里的value格式,你可以参照value跟tapered 之间的差别,将你得到的value截面1,2拷贝到tapered形式里作为i,j截面,以此类推,然后修改其中的部分不同内容,就会得到了你想要的。

在编辑的时候推荐你用ultraedit编辑器,主要的方便之处是它可以进行行快和列快的转换,至于说怎么能提高编辑的效率,可以慢慢摸索,只要熟练了,看起来麻烦的事也会变得非常简单。(5)MIDAS变截面输入可以采用变截面组的方式!一个变截面的梁,可以定义变截面组,变截面组里面包括你所需要的变截面单元,此时把变截面组的所有单元设成一种变截面类型,变截面组的i端就是变截面的i端,j端就是变截面的j端!在变截面组里面i端到j端的截面特性是均匀变化的,可以定义成按线形或者多项式变化!变截面组可以再转换成变截面,此时,每个变截面组里的单元都会赋予不同的截面类型,同时,变截面组也会被删除!

注意:在截面对话框的“数值表单”中定义的变截面不能使用该功能。

(6)用截面特性计算器以后导入的截面默认的都是等效的矩形截面,如果要显示是箱形截面你应该在截面数据\变截面下选择合适的箱形截面然后输入数值。这样的到的才是箱形截面,如果这里面没有你要的截面你也可以用mct来编辑。

2、建模中如何快速生成单元

问:各位好

想问一个midas中很基础的问题,就是我在建立了大量的节点后,想再生成单元,有没有方便一点的办法,能不能像ansys中一样可以做一些循环什么的,还请指教!

答:(1)midas没有类似的循环,不过想实现批量的编辑也不难,利用mct文件的编辑,你可以先建立了节点然后利用节点重新编号的功能,对建立的节点按一定规律重新排列,然后在ultraedit(一种文本编辑工具,非常方便,可以使用列编辑)里面进行编辑,第一列是单元号,当然是1,2,3,4。。。依次排列,第二列是单元类型,批量输入你的类型,第五列输入i端节点,你直接就把第一列的单元号copy过来就可以了,然后第二列的可以将第一列的内容去掉1,把后面的拷贝过来,至于说其他的参数,如果你的单元都是同类的,都可以批量输入。当然以上所说的都是没有单元交叉的情况下才适合,不过这样编辑几次应该有的单元都能得到了。以下是mct命令的例子:

*ELEMENT ; Elements

; iEL, TYPE, iMAT, iPRO, iN1, iN2, ANGLE, iSUB, EXVAL; Frame Element

; iEL, TYPE, iMAT, iPRO, iN1, iN2, iN3, iN4, iSUB, iWID; Planar Element

; iEL, TYPE, iMAT, iPRO, iN1, iN2, iN3, iN4, iN5, iN6, iN7, iN8 ; Solid Element

; iEL, TYPE, iMAT, iPRO, iN1, iN2, REF, RPX, RPY, RPZ, iSUB, EXVAL ; Frame(Ref. Point) 1, BEAM, 1, 1,1,2,0

2, BEAM, 1, 1,2,3,0

3, BEAM, 1, 1,3,4,0

4, BEAM, 1, 1,4,5,0

5, BEAM, 1, 1,5,6,0

(2)其实还有一个办法。

比如你建立了101个节点,要组成一根梁,就要加100个单元。

你可以胡乱先建立100个单元,这个是容易的。

然后选择这些单元,查询-》单元详细表格。

在excel里输入

1 2

2 3

...

复制,到midas里那个表格中粘贴,ok了

(3)这个办法好像有很大的局限性,并且操作起来也不是很方便,“胡乱先建立100个单元”这好像只有对全部单元都在一条直线上很容易,如果不是一条直线上,连接节点也会很麻烦,不过manifold提到的利用midas的表格功能还是不错的,表格也很有用处。

3、midas中刚性连接与弹性连接中的刚性连接的区别

问:请教midas中刚性连接与弹性连接中的刚性连接问题

答:(1)刚性连接=主从节点

弹性连接中的刚性连接=刚臂

(2)刚性连接的功能是强制某些节点(从属节点)的自由度从属于某节点(主节点)。包括从属节点的刚度分量在内的从属节点的所有属性(节点荷载或节点质量)均将转换为主节点的等效分量。

弹性连接中的刚性连接只是使得被连接的两个节点具有相同的自由度,没有刚性连接的从属关系,一般用于一个节点已经有约束的情况。

再问:谢谢了,不过我还有一些不明白之处,主从约束是什么意思啊?还有当刚臂传递剪力时是不是还要产生由剪力与刚臂长度产生的二次弯矩啊?再问一下如何模拟梁单元的双支座?不好意思啊,我的问题可能很菜!

再答:(1)所谓主从约束,是老的FEM软件里的说法,是指两个或多个节点在特定自由度上其总体矩阵(刚度、质量、荷载)取相同的编号。

主从约束和刚臂有很多区别,在结构分析时要注意区分。

主从约束可以在节点的某个自由度上建立,没有距离效应,而刚臂顾名思义,所有自由度都连接在一起,存在你说的剪力二次弯矩。

(2)如manifold所说:

刚性连接=主从节点

弹性连接中的刚性连接=刚臂

而MIDAS软件常见提问与解答中讲到:9.刚臂的定义

在主菜单中选择模型>边界条件>刚性连接,定义主从节点间相关关系。

这到底是怎么回事啊?

到底应该怎样定义刚臂?是在刚性连接中还是在弹性连接中的刚性连接定义?

按我的理解应该有两种刚臂:一种是考虑主从关系的,应该在刚性连接中定义;另外一种是不考虑主从关系(两者属于平行关系)的,应该在弹性连接中的刚性连接定义!

考虑主从关系的有支座模拟,不考虑主从关系有墩梁固结!

(3)归纳一下大家的看法,在midas中,弹性连接的刚接就是形成刚臂单元(由于刚臂用来模拟共节点但不同坐标,可以认为同编号的节点间形成了一个刚臂单元),主要用来模拟墩梁固结位臵和同位臵左右截面不同的情况。在这里我有一个小问题就是,为什么midas中将墩梁固结处应本共节点的位臵设臵成两个节点,可能是程序中不像平面程序共节点之间自动形成刚臂,不过计算结果应该是一样的,因为在有限元分析中,都应该是加入一个[A]矩阵来处理的,只是midas中需要指定刚臂。而主从约束,是对于两个节点而言的,顾名思义主要是模拟两个节点自由度之间的关系,在有限元分析中,增加一个自由度方向上的主从约束关系相当于增加一个约束方程,在实际计算中采用充0臵1法,也就说,主从自由度改变了总刚的阶数,只是为了计算方便,才保留原结构的刚度矩阵阶数不变,这是两者分析上的不同。而且刚臂位臵是一个单元,象m兄说的,有个距离,因此存在二次弯矩,而主从约束一般是同一个位臵的两个节点。

4、MIDAS 坐标系的问题

问:这两天看了下MIDAS,对于它的坐标系定义搞的不是很清楚,单元坐标系是怎么定义的,哪位高手详细指点?

答:(1)参考MIDAS用户手册第二本有介绍;

(2)我用的是MIDAS CIVIL,而不是MIDAS GEN,两者在坐标系的定义上面基本一致,但也有不同,civil有个用户坐标系的概念,即UCS。

按照他们定义的坐标系,对于梁单元x轴是由N1指向N2,我就不清楚怎么确定的N1,N2呢,就是说里面有个方向问题了。

UCS用户坐标系这个概念也让人费解,有什么作用的呢,好像和单元坐标系又不是一回事。

我还想到一个问题,建模的时候选择截面,怎么确定截面的方向问题呢?举个例子,一个竖直杆,平面上截面的x向和y向不同,那么建模的时候怎么确定了这个截面的x向和y向的方向的呢?(3)你所说的梁单元n1、n2确定x轴的问题属于单元的局部坐标系,具体操作的时候先确定的点为n1,也就是你在连接单元的时候,先点的节点为n1,或者说扩展的时候被扩展的点为n1,这个不难确定,同时在确定了单元局部坐标系的时候默认的局部坐标系的y,z轴也就确定了,如果要修改局部坐标系的y,z轴与整体坐标系y,z轴的夹角,需要更改这里面的一项参数,就是贝塔角,具体的贝塔角的规定可以参考帮助文件。在确定局部坐标系的yz轴的时候,程序默认的是这样的:当局部坐标系x轴平行于整体坐标系的x轴,也就是单元平行于整体坐标系x轴,那么其他两个坐标轴也分别与整体坐标系的对应两个坐标轴平行,若单元平行于整体坐标系y轴,则单元局部坐标的z轴与整体坐标系z轴平行,以此类推。其它几种形式自己可以建立单元找到规律。

至于说用户坐标系对于作整体计算分析基本上用不上,主要是用于快速建立复杂模型,绝大多数实际结构的平面和立面是比较复杂的,但即使多么复杂的平面和立面也都是有规则的几何体组成的。用户可以为各几何体分别建立坐标系,在各自的坐标系上分别建模,这就是用户坐标系的用处。

最后这个问题,你可以看到,在midas的截面里面只有y,z轴截面的y,z轴默认的与局部坐标系的y,z轴是分别平行的。

另外还有一个节点局部坐标系的概念,你可以定义节点的局部坐标系,这个主要用于弯桥之类的作约束时用,可以用节点局部坐标来确定你所需要的边界条件。

前、后处理中的相关问题

1、拱桥稳定系数的计算问题

问:近日设计一座下承式系杆拱桥(钢管混凝土),用midas进行屈曲分析时发现5阶稳定系数是负数,百思不得其解。按说解刚度矩阵的时候负根是假根,应该去掉的,为何程序里会出现负值呢?请大家帮忙看看。

答:(1)稳定系数出现负值是反向加载地意思,如果你的实际结构不会出现这种情况,只要只看正值地计算结果就可以了。因为机械上很多情况都是荷载可以反向加的,而这个软件本身又是通用有限元的内核,所以会出现这种情况。

(2)拱桥的稳定分为面内失稳和面外失稳,在拱肋的横向支撑不够或拱截面的抗扭刚度不大的情况下,面外失稳一般先于面内失稳(。

系杆拱桥吊杆中的力为非保守力。拱肋发生横向位移时,吊杆也发生倾斜,但是吊杆的下端由于受到桥面系侧向刚度的约束而无法产生与上端同样大小的横向位移。这种情况下,吊杆的拉力会有使拱肋回归原位的一个分力,这个分力能提高拱轴的面外稳定性。

算出来的结果为负,极有可能使吊杆非保向力的影响。

2、civil中有关“荷载组增减系数”和有关施工阶段的讨论

问:MIDAS中移动荷载工况里的子荷载工况中有个“荷载组”增减系数,哪位知道是什么意思?

接上题,如果说两个车道的话,那么加载时,最少为一个车道,最多是两个车道,这个时候是不是系数应为2呢?

答:(1)MIDAS中"分析"里"施工阶段分析控制"默认的"最后施工阶段"是用户定义的第一施工阶段,当我改变最后施工阶段的定位时怎么计算后又回到默认值了?

(2)那个系数通常取1就行了,与车道数也没关系,车道折减系数系统也已经默认如他表中所示了,如果你计算时有需要,所用的不同于系统的系数,你可以用这个增减系数来改变。

3、用midas建立自锚式悬索桥模型的讨论

问:如何用midas建立自锚式悬索桥模型?midas的悬索桥建模助手好像只能见地锚式悬索桥,现在想建自锚式的,用midas的索单元如何建模呢?我用cable单元建了个经典算例的模型,即一根无应力索长为100米的索,一端固定(坐标0,0,90),另一端从(0,0,30)沿水平线移动到(100,0,30),且升温100度,线膨胀系数为6.5e-6,弹性模量为3e7KN/m2,面积为1m2,单位长度重量10kn.求任意位臵时索端水平及竖直分力大小。

答:(1)用ansys建立吧,现在midas还没有这个功能,不用建模助手自己建立模型是可以的,不过不能调成桥状态,只能用其他软件调出成桥状态后再将成桥索力导入midas成为几何刚度,所以midas模型只能在别的软件的帮助下建立成桥模型,而且还只能用于活载、屈曲、抗震等成桥后期的计算。总而言之,它不能自己调出成桥、不能模拟施工张拉吊杆的过程,只能算成桥以后的情况。所以建议还是暂时不要用midas做自锚式吊桥

(2)新版本也就是6.3.7版本已经可以了,建模助手里面考虑了自锚式悬索桥的计算,决定自锚式悬索桥形状的精确分析一般分为两个阶段。确定整体结构形成前状态(无应力索长状态),第二个阶段确定包含加劲梁、索塔墩等全部结构体系形成后的状态。悬索桥建模助手用于前面所述的确定整体结构形成前状态(无应力索长状态)的程序,建模助手内部又经历了两个步骤的分析过程。第一个步骤使用Ohtsuki博士的简化计算方法进行简化的初始平衡分析,在此阶段通过输入的加劲梁的均布荷载和Y、Z方向的垂度确定主缆的水平力和其三维坐标。第二个步骤为精确的初始平衡分析阶段,是使用前一步骤得到的主缆坐标和水平张力,通过非线性分析计算准确的索无应力长状态。

4、有关用MIDAS计算曲线梁的讨论

问;用midas建立曲线梁模型怎么办,是用单元》建立曲线并分割成线单元》么?如果这样的话,那么从模型上看,内弧与外弧自重相等,即外弧侧有空隙,内弧侧重叠,那么对自重情况下的扭转有影响,这种情况下该如何处理?

答:(1)如果你的模型中心线是规则的曲线,则可以用单元》建立曲线并分割成线单元》,如果是不规则的,需要先在cad里面划分好单元然后导入节点坐标,如果单元划分的足够细那么外弧侧有空隙内弧侧重叠的现象就不会很明显,我想要想很精确的模拟内外侧的差异如果建立单梁模型好像还没有哪个软件可以模拟得很好,只有建立实体或者板单元的模型,但是一般又没有建立板活实体模型来进行整体计算的,所以大部分还是用另一种近似的方法,梁格法。事实上个人认为如果是等宽的窄曲线桥如果曲线半径不是很小只要单元划分细一些,计算是没有问题的。

再问:难道单元划分细了计算就精确了么?我觉得只是视觉上的效果,对于计算应当一样,对于反力,内弧与外弧自重一样,单元划分详细程度对反力应当没影响的,还请解答?

答:说得没错,所以我才说只要建立单梁模型你就很难实现所谓的内外重力不等,除非你另外加等效的扭矩,如果真要计算自重的扭矩你可以在梁单元上加均布扭矩,加二期恒载的时候同样也要加均布扭矩。如果想比较精确的模拟的话就像上面说得你只能用板单元或者实体单元了,但这又不太实际,另外一个选择就是比较麻烦的梁格法,说麻烦主要是他的梁格划分要满足单个梁格的中性轴要保持与原截面的中性轴一致才能计算比较准确,如果计算对象是变宽的的曲线梁要满足个要求将会是一个比较麻烦的过程。

MIDAS地震荷载输入的问题

问:请问一下,在MIDAS中如果要输入地震荷载,一定要手算结构的质量吗?我想,应该不会,但是我不知道为什么,也不知道哪个命令可以让程序帮助我完成。所以,请有经验的朋友帮助一下。答:您好!

中国规范里地震作用的分析有基底剪力法、振型分解法、静力弹塑性分析(Pushover)、动力弹性时程分析、动力弹塑性时程分析等。

在MIDAS程序里的实现:

基底剪力法: 在"荷载>横向荷载>静力地震荷载"中定义. 该方法因为需要层的概念,有些通用有限元程序不提供该方法。

振型分解法: 在"荷载>反应谱分析数据"中定义. 在后处理上MIDAS提供振型参与质量系数,供设计人员判断所取振型数量是否足够。并提供规范规定的层间剪力、层间位移、剪重比、每层各构件所负担的剪力等。

静力弹塑性分析(Pushover): 需要先做结构分析和设计。然后在"设计>静力弹塑性分析控制"等命令中实现。提供梁、柱、桁架、剪力墙的Pushover分析。

动力弹性时程分析: 在"荷载>时程分析数据"中定义.

动力弹塑性时程分析: 开发完毕。模块增加预计在7~8月份。

定义结构的自重: 在"荷载>自重"中给出Z的系数"-1"。

将结构的自重转化为质量: 在"模型>结构类型"中将自重转化为质量。推荐使用转化为X、Y、Z 方向(当不计算竖向地震时,可选转化为X、Y方向)。

将活荷载转化为质量: 根据规范要求应将部分活荷载转化为质量。在"模型>质量>将荷载转化成质量"中实现。

另:MIDAS的计算楼板和筏式基础(可自动布桩)的程序MIDAS/SDS正在优惠销售(5000元)。该程序可计算无梁楼盖(包括不平衡弯矩的冲切计算)。楼板配筋计算是按有限元分析进行的,并考虑了梁、柱、剪力墙的刚度协调。还可进行楼板振动分析(可用于居住性能评价-该功能将为结构人员增加新的饭碗)。

MIDAS程序将不断进取,使之更适合于中国的工程设计要求。

MIDAS预应力损失计算分析

Midas的预应力混凝土结构计算是相当出色的,加上空间分析的能力,是我花很大精力学习和研究的原因。

预应力混凝土桥,两个问题最重要,一个是预应力损失,一个是收缩徐变。无论是使用什么软件,一定要彻底详细的搞明白细节。所以我对Midas的预应力损失计算方法做了些验证。

还是用“后张铰接板”的例子,桥博和Midas对比。

首先说明桥博中的设臵:

6中预应力损失

(1)摩擦系数=0.3 偏差系数=0.0066

(2)钢束回缩:各0.006

(3)无

(4)按先1,2,后3,4的顺序张拉。

(5)这个是固定的0.07*1395=97.65

(6)施工阶段设臵为第一阶段10天,安装结构,张拉钢束,第2阶段:收缩徐变1000天

由于在midas里不能象桥博那样分别输出,所以分别考虑这些损失。

首先把所有损失关闭,除了摩阻损失项系数

梁格法研究

问:最近在研究梁格法,看了不少的论文,也看了论坛上不少的贴子,感觉基本上都是汉勃.利那本书上的东西,我有几个疑问:

1.划分截面后要保证梁格截面与原截面行心保持一致,对单箱单室,可以对称划分,对单箱双室,顶底板分别在1/3处划开,所以对单箱单室和单箱双室还是好划分的,但对单箱多室就不是蛮好划分了,我看有的论文上有一种说法就是对于多室可以在各相邻两腹板中间划开,行心不需要保证一定要在一线上,但在计算惯性矩时仍按整体结构的主轴计算,不知这样到底行不行?

2.梁格法的截面特性特别是抗扭惯性矩是要按相关公式计算后调整的,因为软件计算不准,现在一般计算采用的就是桥博与midas了,桥博中我看截面特性的调整一般只有一个自设定抗扭惯矩,midas中可以直接修改截面特性的数值,难道在实际计算中真的要一个一个截面去调吗,那样的计算工作几乎很难完成并且很容易犯错的

不知道各位大侠在实际设计工作中是怎么作的,希望一起交流,谢谢!!!

答:1.划分截面后要保证梁格截面与原截面行心保持一致,理论上要求这样,但在MIDAS中出于建模方便,各个纵梁截面形心不一定要在一直线上。

(2)1.划分后的截面中性轴偏离了原整体截面的中性轴,应该对各个截面特性计算完毕后,利用移轴公式换算成整体截面的参数特性。

2.扭转可按照箱梁扭转的相应理论进行计算,但应考虑箱梁约束扭转效应,一般乘1.15系数。

再问:是不是用midas分析箱梁必须使用梁格法建模啊可不可以直接使用自带的截面形式直接采用梁单元建模呢?望高手指点

答:选用哪种方式建模只是进行不同的假设而已,取决于结构的特点和你要求的精度。

单梁模型是假设梁的横向是刚性的。当梁的宽度比跨度小很多时适用。

梁格模型考虑了梁的横向弯曲作用和扭转变形作用。

板单元和实体单元考虑了泊松比的影响,计算结果最为准确,但也最麻烦。

问:在做施工过程模拟分析时,计算结果中增加了postcs工况,此工况下的内力及位移含义是什么?解释一下postcs的含义,用法,以及采用时应该注意什么问题。

答:(1)Postcs阶段的模型和边界为在施工阶段分析控制对话框中定义的“最终施工阶段”的模型。再问:你说的,我早已核实过。模型分析的最后阶段的结果与postcs结果不一样。

例如:我把某桥的施工控制分析模型分了100个工况进行模拟,其中最后一个阶段,也就是第100

阶段就是成桥阶段(这一阶段就是二期恒载阶段,增加了52kN/m的均布荷载)。

计算完毕后。在后处理模式下,第100阶段的计算结果(主梁内力和位移)与postcs下的结果不一样。不是差的一点。

还是望高手解释一下postcs是什么意思。弄不明白这个含义,就不知道结果的意义。

答:midas帮助中荷载组合里面有说明

Postcs阶段的模型和边界为在施工阶段分析控制对话框中定义的“最终施工阶段”的模型,荷载为该最终施工阶段上的荷载和在“基本”阶段上定义的没有定义为“施工阶段荷载”类型的所有其他荷载。

23m预应力空心板梁格分析反力计算的困惑

问:最近分析一23m的预应力空心板,采用纵梁加虚拟横梁的方法,截面采用civil 2006的PSC数值型截面,可以显示真实截面形状。分析时横梁采用二型截面,释放横梁之间的弯距约束。具体的约束见模型:遇到的问题:

1.采用模型中的约束,计算第二阶段的支座反力,有些是正的,有些是负的,不合理,但不知道问题出在那里?

2.修改模型中的越束,即将释放梁端部的约束的数值逐渐的修改变化,一直变为1,可以看出支座反力趋向合理,但不知原因所在?实际上我也见过有人完全释放约束的,但不知道我的模型为什么会有这个问题?

3.如果修改模型中的支座越束,将每个支座的RX全部约束,结果同2的修改,应该比较符合实际,但实际上不知道要不要约束这个RX?

请诸位帮忙看看我得模型,多谢!

答:对铰接空心板,我自己做过详细的比较,发现其内力包括反力的横向分布受横向刚度的影响很大,内力数值对横梁的刚度以及边界条件的变化十分敏感,在计算中很难找到确定性的建立模型的方法。

所以最可靠的办法就是用传统的办法计算其横向系数,然后进行单梁计算,空间梁格模型我还从来没见过谁曾经成功模拟过,所以就铰接空心板来说,空间梁格模型是一种代价大而不可靠的方法。其根本原因,我认为铰接空心板的线铰且只传剪力的力学机理,属于力法范畴,根本不是以位移法为基础的目前狭义上的有限元法能解决的。

当然空间模型可能带来的一个好处是下部,比如盖梁计算的方便,能建立统一模型的话,会让盖梁设计更加经济。

请教:连续梁施工阶段支座反力不对称与桥梁预应力的关系

问:本人属初学者,请教问题如下:

本人所建模型如下如附件(为70+120+70m变截面边续梁),在建模过程中发现:若不导入合拢段预应力束,则各施工阶段的支座反力均左右对称,但若是在模型中导入合拢段预应力钢束,则在各施工阶段中的支座支反力不对称。

请问大侠:本模型左右不对称的原因是否是支座设臵不当吗?

若不是,请教为什么在MIDAS中,合拢段预应力束会对施工阶段的支座支反力产生影

响?这是不合常理的。

答:你首先要保证结构的支座,预应力束的位臵、张拉力、张拉顺序等都是对称的。

另外,预应力会对施工阶段的支座反力产生影响。

如果结构、预应力都对称的话,按道理,你的支座反力应该对称的,要是有差别应该也很小。

最终整体结果的不对称是由ZD9的钢束错误引起的,而你所说的施工过程中从CS5开始的反力不对称是正常的结果,因为从CS5开始激活的主梁都是与跨中合龙段预应力钢束有关的,在施工阶段分析控制中的“截面特征值变化”选项中你选择的是“钢束引起的变化”,所以程序在计算截面特形时会考虑预应力钢束孔道引起的变化,由于这些阶段还没有长拉预应力钢束和注浆,所以计算的时候截面特性是扣除孔道的,如果你选择了“常量”,则结果肯定是对称的。

midas中如何模拟各种支座

问:在建立桥梁结构的计算模型时,会遇到各种类型支座,不知道各位都是怎么模拟的?是不是用弹性连接进行模拟?同时支座也有一定的高度,具体应该怎么考虑?

请教各位大侠给予回复

答:(1)对于支座的模拟,板式橡胶支座比较容易清楚地模拟,具体的模拟可以采用相应的梁单元,该梁单元的单元长度为板式橡胶支座的橡胶层厚度,需要查表得到总厚度后计算其中钢板的厚度,然后总厚度减钢板厚度,因为钢板起的作用只是限制橡胶的横向变形。支座材料的弹性模量可以有形状系数计算得到66s-162就是了。对于其他支座,一般来说就是用约束或者弹性支撑了,如

果该方向是固定的,就输入一个很大的k值,无法准确用梁单元来模拟。

具体的我是这样做的,大家参考一下:

板式橡胶支座刚度采用三维弹性连接器来模拟计算:

单元局部坐标系x轴方向刚度(该桥为支座竖向刚度计算):

SDx = EA/l

单元局部坐标系y、z轴方向刚度(该桥为支座横、纵刚度计算):

SDy = SDz = GA/l

单元局部坐标系x轴方向转动刚度(该桥为支座平面内转动刚度计算):

SRx = GIp/l

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

SRy = GIy/l

单元局部坐标系z轴方向转动刚度(该桥为支座纵向转动刚度计算):

SRz = GIz/l

式中:EG为板式橡胶支座抗压、抗剪弹模;A为支座承压面积;Iy,Iz为支座承压面对局部坐标轴y、z的搞弯惯性矩;Ip为支座搞扭惯性矩;l为支座净高。

固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,故模拟在墩顶设臵一个横、纵、竖三维抗压、抗剪的大值,各方向抗弯的小值,即SDx=SDy=SDz=+∞,而SRx=SRy=SRz=0的弹性连接。

(2)个人觉得如果按楼上所说的用弹性连接器来模拟板式橡胶支座的话存在一定问题,就是无法判断支座是否出现局部脱空,因为支座不但会出现整体脱空还会出现局部脱空,判断是否局部脱空就需要从支座角点是否出现拉应力来判断,但是弹性连接是无法观察角点应力的。

另外,逐项输入弹性连接的刚度不但麻烦而且还容易出错,假如按楼上所说的l为支座净高的话,模拟是错误的,应该是支座中橡胶层的总厚度,如果了解板式橡胶支座的原理就会知道,钢板的厚度对弹模是没有影响的,钢板只起限位作用,因此不能把钢板也作为受力结构的一部分。

(3)个人观点:

单元局部坐标系x轴方向刚度(该桥为支座竖向刚度计算):

SDx = EA/l

单元局部坐标系y、z轴方向刚度(该桥为支座横、纵刚度计算):

SDy = SDz = GA/l

单元局部坐标系x轴方向转动刚度(该桥为支座平面内转动刚度计算):

SRx = GIp/l

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

以上三项应该可以这样模拟

但是

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

SRy = EIy/l

单元局部坐标系z轴方向转动刚度(该桥为支座纵向转动刚度计算):

SRz = EIz/l

(4)支座刚度模拟应如wentao8401兄所言!

对于bridgedlut (井中蛙) 兄所提“无法判断支座是否出现局部脱空,因为支座不但会出现整体脱空还会出现局部脱空,判断是否局部脱空就需要从支座角点是否出现拉应力来判断,但是弹性连接是无法观察角点应力的”,既然无法通过观察弹性连接的角点应力来判断,那不妨通过节点位移来判断支座的受力状态:支座上节点位移向下——受压,支座位移向上——抗拔!

问:midas gen 如何进行大跨度楼板的震动频率计算?

答:(1)个人经验:midas gen的面单元没有内部剖分功能,和线单元的变形协调需要硬剖分、公用节点,所以用起来不方便,不推荐采用,推荐改用Sap2k。

(2)可以看一下附件里的资料。

问:midas gen 如何进行大跨度楼板的震动频率计算?

答:(1)个人经验:midas gen的面单元没有内部剖分功能,和线单元的变形协调需要硬剖分、公用节点,所以用起来不方便,不推荐采用,推荐改用Sap2k。

隔震结构怎样建模?

问:最近单位在做一个砌体结构抗震的课题。

我们想把隔震技术应用到砌体结构的抗震加固中,现在先尝试用Midas模拟隔震后的结构,看看效

果怎样。

有几个问题想请教一下大家:

1、在墙体下加入橡胶垫隔震支座,应该怎么建模呢?如果是用Midas软件,在“边界条件”下有“节点弹性支承”、“弹性连接”、“一般支承”几种,都具有定义相对剪切刚度等的功能,不知到又什么区别?隔震支座用哪种比较好?

2、建模时候支座地方是建立两个节点,用弹簧单元连接起来;还是建一个节点就行了呢?

3、是不是只能用时程分析法?振型反应谱法不适用呢?(《抗震规范》12.2.2条)

小弟以前没做过隔震方面的计算,很多东西不太懂,多谢指点。

答:

第一个问题,可以查阅Midas手册和隔震垫的产品参数,那里比所有人都能把参数的问题讲得更清楚;

第二个问题,都可以;若你关心隔震层剪力变形等反应值,用线连接;

第三个问题,只能用时程分析或者等效静力方法

"第三个问题,只能用时程分析或者等效静力方法"

请问,振型分解反应谱法不适用的原因是因为长周期谱缺失吧

因为隔震垫参数里面的有效刚度和有效阻尼都是假定的所以不能用振型分解法

振型反应谱中是振型线性整体组合的,而时程分析振型是按照时间间隔组合。由于阻尼器产生的阻尼矩阵随着时间及位移变化,属于非线性,因此无法用振型分解法。

MID AS施工阶段分析的边界问题

问:在用MIDAS做施工阶段分析时,我看到有的模型没有考虑施工过程中的支架支撑作用,而是直接定义成桥后的边界支座情况,整个施工过程中边界也并未发生变化,直接按成桥边界处理。不知这样做是否合理?像桥博,在施工阶段也是考虑支架的支撑作用的。本人不解,诚请各位高手指教!答:施工阶段的位移与施工过程是密切相关的,所以应该考虑各施工阶段的边界变化。

问:简单的框架模型,内力为何出现异常?请大侠指点!三根次梁,中间的次梁的应力是正的,其余两根应力均为负。一般来说,这三根次梁的应力不会相差这么大吧。至少应该是同正同负的。答:你显示的应该是组合应力中的最大值,次梁的应力自然有正有负,你显示一下上翼缘的应力会发现次梁的应力全部显示为正值,而显示下翼缘的应力则全是负值。而最大值则取正负应力的绝对值中最大那个。

midas混凝土设计配筋的问题

问:midas混凝土设计配筋时,实配钢筋显示时有钢筋,为什么选择所需配筋时全部为0哪?请各位师兄指教!

答:单位改为cm就看到了

midas怎么考虑离心力加载

答:首先进行一般的移动荷载分析,在后处理利用移动荷载追踪器功能获得某项结果的最不利加载位臵和荷载,然后通过按JTG D60-2004的4.3.3条计算离心力系数,将其与最不利荷载相乘,用梁单元荷载中集中荷载方式(局部坐标系)加载到最不利加载位臵。因为离心力不考虑冲击的影响,而程序中提供的最不利荷载中包括了冲击系数,所以在将离心力与最不利荷载相乘时应除以(1+ )。

双塔结构中midas能否象sap一样用“刚性连接”模仿刚性楼面

问:双塔结构中midas能否象sap一样用“刚性连接”模仿刚性楼面,如果能的话,每层刚性连接的主、从结点如何设臵?可以任选每层中一个节点做为主结点么?

在层数据中设臵刚性楼面对双塔结构好像不太好,每层加板单元的话计算量又太大

答:可以"刚性连接"!!

MIDAS如何考虑框架中梁刚度放大系数?

问:请问用MIDAS做过框架结构师兄,框架中梁刚度放大系数在哪里调整?

答:使用命令模型-材料和截面特性-截面特性值系数,在其中设臵相应方向刚度的调整。

连续梁施工阶段支座反力不对称与桥梁预应力的关系

问:本人所建模型如下如附件(为70+120+70m变截面边续梁),在建模过程中发现:若不导入合拢段预应力束,则各施工阶段的支座反力均左右对称,但若是在模型中导入合拢段预应力钢束,则在各施工阶段中的支座支反力不对称。

请问大侠:本模型左右不对称的原因是否是支座设臵不当吗?

若不是,请教为什么在MIDAS中,合拢段预应力束会对施工阶段的支座支反力产生影

响?这是不合常理的。

答:(1)你首先要保证结构的支座,预应力束的位臵、张拉力、张拉顺序等都是对称的。

另外,预应力会对施工阶段的支座反力产生影响。

如果结构、预应力都对称的话,按道理,你的支座反力应该对称的,要是有差别应该也很小。

(2)检查模型要仔细,其实你都已经找到问题所在了,只要在认真一点就找到错误了,如果结构对称荷载对称,并且对称施工,结果肯定是对称的,既然只有加了合龙段钢束才出现问题,就仔细检查合龙段钢束好了,必然是钢束不对称的,看一下你的ZD9,只定义了一半。

再问:ZD9钢束不对称是一个方面的问题;

问题奇怪的不是两个墩的支座反力不对称,而是因输入合拢段钢束后导致单个墩的两个支点反力不对称。

即:若在模型中不输入合拢段钢束,则在各施工阶段,墩与墩之间、单墩两侧支点间反力均对称;

若在模型中输入合拢段钢束,则自第四个施工阶段,墩与墩之间、单墩两侧支点间反力开始不对称。

这样的结果让人感觉很是奇怪!

再答:最终整体结果的不对称是由ZD9的钢束错误引起的,而你所说的施工过程中从CS5开始的反力不对称是正常的结果,因为从CS5开始激活的主梁都是与跨中合龙段预应力钢束有关的,在施工阶段分析控制中的“截面特征值变化”选项中你选择的是“钢束引起的变化”,所以程序在计算截面特形时会考虑预应力钢束孔道引起的变化,由于这些阶段还没有长拉预应力钢束和注浆,所以计算的时候截面特性是扣除孔道的,如果你选择了“常量”,则结果肯定是对称的。

(5)

关于纤维单元输入与结果查看的问题

问:请问,进行非弹性时程分析时,

1、定义了纤维单元后,如何分配啊?

2、能输出钢筋、砼纤维应力-应变曲线吗?

3、如何输出梁柱弯矩-转角关系曲线、及弯矩-转角滞回曲线?

答:1、首先需要定义纤维材料特性,然后在纤维截面分割中把各种特性赋予截面中相应的部分。3、可以输出弯矩-转角即M-phi曲线。

问一个局部升降温的问题

问:正常情况下,局部升降温引起的上下缘应力应该相反嘛,但是我的一个模型是上下缘相同,查了半天也不知道是怎么回事,是不是截面输入的有问题?

答:你使用的是什么单元,如果是梁单元,施加单元温度荷载,则无法模拟上下缘应力的真实情况,需要使用温度梯度功能来处理。如果你使用板单元来建模对梁单元做细部分析,可以施加单元温度荷载。

刚架桥整体温变下墩梁固结点弯矩为何无法自平衡?

问:我建模计算一个5*20m箱梁,联端为双支座模拟,1-4#独柱墩与梁固结。温度工况均匀升降温,发现在此工况单独作用下,墩梁固结处弯矩无法自平衡。按照结构力学,墩梁固结处两边梁的弯矩与墩弯矩在此节点之和(正负根据弯矩的方向确定)应该为0才对。很是疑惑,烦请精通人士看一下我的模型是在哪里出现了问题。非常感谢计算模型

箱梁整体升温25度,结构My

ST:升温25度1号墩墩梁固结处MY的效应

左侧梁单元:15,Amy=2541KNm

右侧梁单元:16,Bmy=2900KNm

墩顶单元:73,Cmy=3500KNm

按照固结点处的弯矩自平衡和三个单元的弯矩方向,A+B=C才对,可是2541+2900=5441远远大于墩顶弯矩3500KNm

部分结果

回答上题:按照结构力学,墩梁固结处两边梁的弯矩与墩弯矩在此节点之和(正负根据弯矩的方向确定)应该为0才对。

首先,出现这样的结果是正常的,与结构力学里的概念并不矛盾,但是我们都知道,每一个定理和结论都有它的适用范围,都是以一定的假设或规定为前提的,如果不遵循假设或规定而去套用它,结论肯定是错误的。

既然是按照结构力学,那么结构力学里面的共用节点和你有限元计算时的共用节点就要统一,你模型中的主梁截面使用了偏心功能(中下部),midas的偏心功能主要是为建模方便,但是我们在使用的时候需要理解它的原理,实际上他在计算时将节点和截面上的质心之间用一个刚臂连接,最终计算完成输出结果时仍旧会按质心的连线来输出,所以,你看到的实际结果是主梁质心处的弯矩和墩与梁底交接处墩的弯矩,只要墩有剪力存在,他们当然是不平衡的,由于墩顶和主梁截面质心之间的距离,必然会有产生一个弯矩的作用,你用墩的剪力与这个距离相乘,也就是0.6848x2835=1941,与3500相加,就是5441,相加以后比较的结果就统一在在主梁截面质心那个点了,仍旧符合结构力学里面的概念。

23m预应力空心板梁格分析反力计算的困惑

问:最近分析一23m的预应力空心板,采用纵梁加虚拟横梁的方法,截面采用civil 2006的PSC数值型截面,可以显示真实截面形状。分析时横梁采用二型截面,释放横梁之间的弯距约束。具体的约束见模型:遇到的问题:

1.采用模型中的约束,计算第二阶段的支座反力,有些是正的,有些是负的,不合理,但不知道问题出在那里?

2.修改模型中的越束,即将释放梁端部的约束的数值逐渐的修改变化,一直变为1,可以看出支座反力趋向合理,但不知原因所在?实际上我也见过有人完全释放约束的,但不知道我的模型为什么会有这个问题?

3.如果修改模型中的支座越束,将每个支座的RX全部约束,结果同2的修改,应该比较符合实际,但实际上不知道要不要约束这个RX?

答:对铰接空心板,我自己做过详细的比较,发现其内力包括反力的横向分布受横向刚度的影响很大,内力数值对横梁的刚度以及边界条件的变化十分敏感,在计算中很难找到确定性的建立模型的方法。

所以最可靠的办法就是用传统的办法计算其横向系数,然后进行单梁计算,空间梁格模型我还从来没见过谁曾经成功模拟过,所以就铰接空心板来说,空间梁格模型是一种代价大而不可靠的方法。其根本原因,我认为铰接空心板的线铰且只传剪力的力学机理,属于力法范畴,根本不是以位移法为基础的目前狭义上的有限元法能解决的。

当然空间模型可能带来的一个好处是下部,比如盖梁计算的方便,能建立统一模型的话,会让盖梁设计更加经济。

下面将江安老师的回复附上,大家可以讨论:

在您的模型是空心板梁,中间是绞接,这样模拟绞接是对的。但是,在安装了横梁后,我们可以看到,中间任何一根梁上面,实际上在Rx方向转动是自由的,从模型上来[$shy]讲,是约束不够;实际情况是这样的:一般端头设臵二个支座,每个支座都能提供DZ,实际效果就是相当于能提供Rx。而如果用的是橡胶支座,只要有一定的宽度,也[$shy]是能实际上提供Rx的约束的,所以,我认为,这个Rx应该要设臵的。

我原来的模型是T梁,中间用湿接缝连接,所以,用的是刚性连接。刚性的横梁连接二根纵梁后,就能提供Rx方向的约束,所以,约不约束,效果差不多。

感谢您的提醒,在这里,我们又可以在Rx约束方面注意到:空心板梁及T梁的梁格在建立模型中要考虑Rx,其中空心板梁一定要考虑,而T梁则可以不考虑。

关于midas中从属节点的问题

问:我在用midas计算混凝土结构的时候,软件提示警告:自动释放从属节点的约束,(如:[警告]自动解除从属节点的自由度。节点=670,自由度成分=X-位移 [警告]自动解除从属节点的自由度。节点=670,自由度成分=Y-位移

[警告]自动解除从属节点的自由度。节点=670,自由度成分=绕Z-轴旋转)节点均为柱底支座节点我该如何处理,还是不用理它,请高手指点

答:节点670有重复约束的自由度,程序已经自动解除了,你可以再检查一下看节点670的约束是不是你想要的约束。

好像是因为我的层数据有问题(因为是体育馆看台节点的标高太多了),现在把层数据删掉就可以了。关于mct文件导入的问题

由于midas的mct文件的导入导出非常方便,在进行批量修改的时候我经常将模型导出成mct文件,然后利用查找替换,或者其他的方式进行批量修改,可是在做一个工程的时候发现我修改了一个附加扭矩的荷载然后导入,在恒载下竟然得到了与原模型不同的计算结果,为验证是否是因为我的操作不当造成了结果不同我又重新将原模型导出mct文件,然后原封不动的导入得到另外一个文件,

计算,结果竟然还是得到了与原模型不同的计算结果。具体的造成这种结果的原因还不太清楚。但可以肯定的是不是我的操作错误。

因此提醒大家最好少用mct得导入,如果要做批量修改,一个比较保险的方法就是:

1、先导出mct文件,然后复制你要修改的那一部分命令跟参数,放到另一个文本,做批量修改。

2、删除模型中你要修改的那一部分,利用工具栏中的mct命令窗口,将修改以后的那部分命令流复制到mct命令窗口,运行。

这样你就能比较保险的计算了。

另外我用的是正版的6.3.5版本的Midas/civil,附上两个结果的对比,从图上可以看出反力的差别。

请帮忙用midas2006将mcb导出mct

问:请哪位兄台帮忙用midas2006将mcb导出mct,我用的是6.7.1版的。

答:midas2006与midas6.7.1的mct的格式是不一样的。

不能直接导过去,如果手动改的话,工程量会很大的。

Midas如何加拱桥吊杆力

问:用初始荷载,还是用预应力中的初拉力荷载?(柔性吊杆)

答:模拟吊杆的方法

(1)可以采用等效节点荷载(可能不太理想)

(2)建立梁单元布臵预应力钢束,张拉预应力钢束,但查看吊杆组合应力时会出现压应力,但内力确是受拉?这个问题是否可以忽略?

(3)采用初拉力荷载需要转化为桁架单元吧,但是在结果中查看吊杆内力,却与初始加载差别很大,而且计算结果与前面两种方法有较大差别。盼高手解释?

再答:用索单元+初拉力荷载的方法是正确的,至于说结果内力和杆内力不同:本来就应该不同的,

你可以去看看和有关的书籍

再答:初拉力荷载,计算结果中吊杆内力同施加的荷载内力不同,这也是正常的。你可以在一个工况中添加这个荷载,在这个工况中不要加入其他荷载,计算后查看结果,你会发现在这个工况,吊杆内力就是你施加的荷载。但是当你把自重等其他荷载都算在内时,吊杆的内力当然和你施加的荷载不等了啊。如果要相等,也简单,建立几个施工工况,最后一个施工阶段,张拉吊杆,这样计算的吊杆力就是你施加的吊杆张拉力,OK!

再答:吊杆选择只受拉(索)单元时,如果查看组合内力时,吊杆内力肯定与荷载工况不同相关,我原想表达的是:我只建立吊杆这个单独的工况,没有加入其它荷载工况。吊杆内力远远小于初拉力。附上我只加入了吊杆初拉力的模型。模型中吊杆初拉力为4200kN。

至于说索的结果内力与吊杆内力不同,我也承认,可是我单独看结果中加载的索力,总应该一致吧?或者说我加载的初拉力是错误的,对初拉力理解错误?我理解的初拉力就是预应力张拉的张拉力。

再答:大概的看了一下楼上的模型,我想说明几点:

1、你如果想查看吊杆的力应该到施工阶段去看,在成桥阶段查看的时候吊杆的内力并不等于你的初始张拉力。

2、你的定义吊杆的时候直接将吊杆定义为一个直径为116mm的圆形截面,如果转换到15.24的预应力钢绞线,那么应该是75根(每根15.24的钢绞线面积为140mm2),我不知道楼上的是否是想描述里面是钢绞线外面是钢管套护的结构?如果是那么你定义的截面应该是有问题的。

3、而且一般的时候也都是将只受拉单元用桁架单元来模拟,因为只受拉单元在荷载工况组合时会出现如下提示“[警告] 在只受拉/只受压桁架上使用的荷载组合结果无效。”故一般建议将只受拉单元用桁架单元模拟。

楼上说的这三条都有一定道理,但是好像都没有回答前面提出来的问题,要想解决这个问题就应该理解midas中索的初拉力的以下含义:

midas中的初拉力分为体内力和体外力,施工阶段分析控制对话框中的索初拉力控制选项就有体内力和体外力两种。该选项仅适用于索单元,不适用于预应力钢束。在预应力荷载中给索单元加初拉力后做施工阶段分析时,如果选体内力程序中将以一定的变形量的方式加载到单元中,犹如给单元加一温度荷载一样。索内最终张力与索两端的锚固条件有关。当索两端完全锚固时,索内张力为所加初拉力;当索两端完全自由时,索内张力为零(可以类比加温度荷载时的自由伸缩)。在预应力荷载中给索单元加初拉力后做施工阶段分析时,如果选体外力程序中将做为荷载加载在索两端。当该阶段只有该索力作用时,索的张力不变;当该阶段有其他荷载作用或下一阶段有其他荷载作用时,索力会有相应变化。非施工阶段分析时,对于斜拉桥和悬索桥的初拉力程序内部按体内力进行处理。

sunsamuel的模型并没有做施工阶段分析,因此这里的初拉力是按体内力来计算的,而此时的约束相当于弹性约束,因此张拉以后的内力会小于你所赋予的初拉力。要想实现索张力就等于初拉力就应该设定施工阶段,在施工阶段分析控制对话框中的索初拉力控制选项选择体外立,并且在在某一施工阶段激活初拉力,就会得到你所需要的张拉力。

仔细看了

bridgedlut 的回复,实在太精辟了。非常谢谢解答,midas这个困扰我很久的问题终于解决了。

初拉力只有在一定条件下,才等于张拉力。感觉很像用ansys link10单元降温模拟体外预应力。xkm:这个是我模型的设臵的问题,是原来采用梁单元+预应力钢绞线残留,见笑了。

继续向bridgedlut兄提问哈:

一般吊杆都需要二次张拉才能达到设计值,比如某一吊杆第一次张拉力为500kN,第二次补张拉至700kN。那么此时如何模拟?

我的一种方法是建立两荷载组,第一组张拉力为500,第二组为700,然后在补张拉施工阶段,钝化第一组,激活第二组,结果好像不对,因为第二组上去以后结果内力、应力变化剧烈(2倍),不符合我的认识。或者不钝化第一组?

另外一种方法是,建立两组荷载组,第一组为500,第二组为200,然后在补张拉施工阶段,激活第二组,不钝化第一组。但这样没办法考虑补张拉施工阶段吊杆内力增量。

体如何处理呢?

记得好像bridgedlut兄以前在论坛上提到添加替换的功能,不过自己没有试过。

可以在荷载组中将不同阶段的索力定义为不同的组。然后加载在不同施工阶段中。在施工阶段分析控制对话框中的索初拉力选项中选择体外力,然后会出现两个选项,“添加”和“替换”。当选择添加时,索的初拉力为累加;当选择“替换”时,表示将索力调整到某值(该阶段被激活的索力荷载值)。

例如你所说的一个阶段索力是100t,调索后是200t,如果你选择了“替换”选项,你需要分别定义100t,200t两个荷载组,分别在不同的施工阶段激活;如果你选择了“添加”选项就应该定义两个100t的荷载组在不同的施工阶段激活。

你可以按照上面说得试试看,不用钝化荷载组,一直用激活命令。选择添加的话个人感觉应该是考虑补张拉施工阶段吊杆内力增量。

疑问=未解决问题为什么我系杆拱拱肋上加很大的力,拱肋上下缘应力不变,弯矩有很大变化。midas模拟系杆拱(刚性系杆)系梁梁中的预应力用体内束和体外束计算结果相差很大,用体外束计算的结果和手算的差不多,为什么?

谢谢前辈们的指点。还有一些疑惑:

在吊杆张拉阶段(只施加初拉力),CS恒荷载下吊杆内力=初拉力,但此时CS合计是考虑了前面结构变形(荷载作用),那么程序里面实际的吊杆内力我认为应该=CS合计。

后续施工阶段或者成桥阶段,一般是按照施工阶段合计+成桥阶段移动荷载等来查看内力的。

这里就出现一个矛盾的地方:我们最初给的初拉力并不等于实际张拉时的张拉力,在不考虑预应力损失的情况下以及分批张拉相互影响的情况下,施工张拉力就应该等于吊杆力。那么如何给定施工时张拉力呢?是否按照相应施工阶段的CS合计?不知道我的理解有没有问题。

对这个问题小弟也很迷惑,假如选择体外力,并选则添加选项,那是否表示在某一阶段激活吊杆力后,吊杆实际的内力为前一阶段吊杆内力与本阶段张拉力的叠加呢(本阶段无其它荷载)?

还有,如不施加张拉力,拱桥自身本可平衡,而施加了张拉力(体外力)后会导致系梁、拱肋的内力重新分配,有时拱肋内甚至弯矩会增加很大,那么就与拱桥的受力原理似乎有些不符,那张拉的目的是什么呢

现在我的理解是,体内力体外力都可以用,只是两种手段而已。体外力就是你在那个阶段加多少,就是实际张拉多少。体内力其实可理解为降温,其值与吊杆实际张拉内力不是等号关系,而需通过结果看吊杆实际内力。体内力的值并不是我们关心的吊杆内力。

答:不能同时执行特征值分析和静力几何非线性分析。

问:出现下边错误提示一般是哪里的原因?

正在生成分析/后处理用数据。

正在计算结构整体重量。

完成生成分析/后处理用数据。

保存模型数据。

检查模型数据。

[错误] 不能同时执行特征值分析和静力几何非线性分析。

答:这个很容易理解,前者是线性分析,后者是非线性分析,在midas里面不能同时执行。

有限元中单元阶次的定义是什么?

问:有限元中单元阶次的定义是什么?

答:要是单元的节点仅仅是它的顶点,比如4节点四面体,8节点六面体单元都是一阶单元,或线性单元;如果单元的边上还有中间节点就是二阶单元,如10节点四面体,20节点六面体单元;另外还有三阶单元等,这里的阶次其实就是单元插值函数(形函数)的阶次。高阶相对低阶的精度要更高一些。

请教MIDAS中计算斜拉索索力松弛的方法和原理

问:问了MIDAS技术支持答复说是需启用非线性分析(我分析的桥梁跨径较小,原来只进行了线性分析),对此有两个困惑:

1、和线性分析相比,启用非线性分析时还有相应的其余哪些项要设,比如“体内力、体外力”,比如边界条件是否要设为“变形前”。。。

2、MIDAS里对索的松弛计算原理是怎样的?技术支持还没给我答复

答:MIDAS技术支持确认过后答复是MIDAS目前不能计算斜拉索的松弛,而国产桥梁分析软件QJX 和桥博好像也都不能计算斜拉索的松弛。

midas怎么考虑水平地震力和竖向地震力?

问:竖向地震力在那儿定义?没有找到定义的接口

答:(1)反应谱分析工况里面选择Z方向,注意质量转换的时候要勾选Z方向以及竖向地震力的反应谱调幅系数

(2)在分析工况下面有调幅系数,或者在定义反应谱的时候就定义这个系数

(3)MIDAS好像不可以按《抗规》5.3条计算静力的竖向地震作用,反应谱分析到是可以考虑竖向,偶现在试用的结果显示有点奇怪,也正在找这方面的资料。

midas复制层数据时问题

问:[错误] 在单元 6859 输入的节点不正确。同样的节点号 2456 输入在节点输入区域号 1 和 2。是什么原因

答:就是同一个节点号,在同一个单元里出现了两次。

midas复制层数据时问题

问:[错误] 在单元 6859 输入的节点不正确。同样的节点号 2456 输入在节点输入区域号 1 和 2。是什么原因

答:就是同一个节点号,在同一个单元里出现了两次。

midas中的菜单快捷键如何保存?

问:midas中的菜单快捷键都无法使用?需要自己定义?如果自定义好了,应该如何保存这些自定义?如果重装的话,这些键又需要重新定义一次?

有什么保存的好办法?

答:(1)命令行的快捷命令不错,推荐使用:

如创建单元,只要输入CE即可调出对话框等。

(2)可以保存为文件

中震弹性设计与中震不屈服的区别

问:MIDAS GEN 中可以进行中震弹性设计与中震不屈服的设计,但我对中震弹性设计与中震不屈服两者的概念有些模糊,想向各位高手请教一下。

答:(1)我觉得中震弹性设计的概念就是计算地震力的时候地震影响系数曲线按照中震情况下的地震烈度来取,而中震不屈服这个概念很少听到,倒是大震不屈服分析很多

(2)中震弹性设计就是在中震时结构的抗震承载力满足弹性设计要求,中震不屈服的设计就是地震作用下的内力按中震进行计算。

中震弹性设计与中震不屈服的设计在MIDAS中的实现

一、中震弹性设计

1、在MIDAS/Gen中定义中震反应谱

主菜单》荷载》反应谱分析数据》反应谱函数:定义中震反应谱,即在定义相应的小震反应谱基础上输入放大系数β即可。

2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数。

3、其它设计参数的定义均同小震设计。

二、中震不屈服设计

1、在MIDAS/Gen中定义中震反应谱。内容同中震弹性设计。

2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数)。内容同中震弹性设计。

3、定义荷载组合时将地震作用分项系数取为1.0。

4、将材料分项系数定义为1.0,即构件承载力验算时取用材料强度的标准植。

5、其它操作均同小震设计。

(3)中震下弹性与不屈服主要是考虑材料特性与地震作用来说的——

弹性设计时,构件内力取设计值并考虑荷载分项系数计算,材料为强度设计值。

不屈服设计时,构件内力组合值系数取1,材料为标准值。

至于这2种放大内力计算中震,都是按照放大地震作用后评估结构抗震性能。还是值得再商讨的,毕竟仅仅放大了地震力而没有考虑构件的塑性发展。

关于MIDAS细部分析应用的问题

问:用MIDAS分析一个H型钢柱支架。柱子双向受弯,同时还有扭矩作用。

考虑到常用结构分析软件,不能计算这样复杂受力构件。我就尝试用MIDAS板单元分析。建模形式和变形状况如图所示。

计算发现,这样细化分析结果有些问题,好像稳定应力体现不出来,而这样开口薄壁构件在弯扭作用下的扇形应力也没法显现。所以计算结果往往偏小。

而我拿MIDAS的计算结果与SAP2000比较了一下,这两个程序比较接近。是不是用有限元这样分析不妥。

不知道我的看法是否正确,请高手指点,谢谢。

答上:从结果图形看,应力并不是很大,要想效果比较明显应该使用较大的荷载,另外不知道万工建模时用的是薄板还是厚板单元,这个模型尽管也可以用薄板计算,但是相对来说厚板计算更为准确,薄板单元是根据欧拉-伯努利梁理论开发的,而厚板单元是依据铁木辛柯梁理论开发的,厚板单元理论考虑了横向剪切应力的影响。事实上厚板单元不但可以分析厚板,利用降阶积分,也可分析薄板。

再答上:另外,我觉得你想看的应力结果可能不是图中显示的sig-YZ而应该是von-Mises应力和Tresca应力,这两种结果在midas里面分别以sig-eff和Max-shear来表示,也叫做有效应力和最大剪应力,你可以使用具有平面内旋转自由度的厚板单元建立模型查看一下有效应力的结果。

再问:我用的是厚板单元计算的。厚板计算结果中包括上部应力和下部应力,两个应力结果是不同的。

不过,我觉得好像薄板是不是更合理一些,因为H型钢的板厚只有6mm,8mm。

我还没有完全搞清楚这些应力的方向和含义。我需要和我自己建立的方法作比较。

用本例进一步分析表明:

1、Midas中,P-Deta与线性分析结果相同;

2、P-Deta和非线性分析不能同时使用;

3、几何非线性用Newton-Raphson方法可以分析;

4、几何非线性用弧长法和位移控制法,计算出错;

5、Newton-Raphson方法的结果与我采用的双力矩分析结果较为吻合;

6、本例中具有较明显的几何非线性特征。

答:1、这个结论下得有问题,对于这个例子,P-Deta与线性分析结果相同与Midas无关,跟计算软件无关,因为P-Deta效应本来指的就是结构在横向力(弯矩或剪力)和轴力作用下,轴力对结构刚度的影响造成的结构非线性效应,本例中荷载只有弯矩和扭矩,并没有轴力,所以没有P-Deta效应,无论用什么软件分析P-Deta与线性分析结果均会相同。

2、civil新版本中已经可以同时使用了。

3和4、通常使用NR法计算时比较容易收敛,弧长法和位移控制法,计算出错并不是说不能用这两种方法计算,而是与你设定的非线性分析控制参数有关,一般来说这两个方法对计算收敛的条件要

求比较高。

5、如果你用其他两种方法,计算也收敛,则结果应该也会非常接近。

再问:说明几点:

1、这个例题,我在用Midas分析的同时,也用sap2000算了一下。用sap2000分析时,线性结果与P-DETA结果相差较多。

2、本例中,在柱顶也施加了一个竖向轴力。

3、我这里的Midas还没有升级。其他两种方法我在抽空试一下。

谢谢。

答:如果是加了竖向力结果肯定是有差别了,不好意思,看上面的模型说只有弯矩和扭矩以为是荷载的原因,那就是这个原因了:在Midas中,P-Delta效应分析仅限于桁架单元、梁单元(包括变截面梁单元)和墙单元。板单元还考虑不了P-Delta效应,要想得到比较准确的结果就用非线性分析吧。问:对于这个例题,我用Midas和sap2000作了比较:

1、板单元,Midas中P-DETA和线性分析结果一样;

2、sap2000,考虑P-DETA和线性分析结果有较大差别。

两个软件有区别。

今天用Midas分析上面的例子。

我改变扭矩做个比较,发现有些结果异常。

减小扭矩,钢柱扭转变形反而大了,柱子转了好几圈,这是不可能的。

而sap2000和双力矩计算都正常。不知道Midas有什么问题?

今天又试了一下Midas,发现出问题的原因了。是程序单位设臵的问题。

采用N,mm单位制,计算结果就不对,迭代次数多,计算时间长,计算变形和应力较大。

采用kN,mm单位制,计算结果比较合理,迭代次数减少,计算时间也缩短了,数值都正常了。

这是不是Midas的一个小bug?

自答:我又试了一下,应该是找到问题关键。主要是我在设臵钢柱顶板厚度的时候出现的问题。1、如果顶板设臵的太薄,采用线性计算时不会有问题,采用几何非线性计算时,就可能出现变形过大的现象,我把图形放上来就可以清楚地看到。我在这里,顶板取了0.1mm厚。

了。就没有上图中的屈曲破坏的形态了。

预应力施加失败!

问:一个简单的简支梁计算,施加预应力钢束,分阶段张拉预应力,但是计算结果标明预应力不起作用,请教其中原因。计算模型见附件,Midas版本是Civil2006(V7.2.0 Release No.2)。

答:楼主预应力荷载就是定义成施工阶段荷载(CS)的,模型的问题在于预应力钢束特性值定义中“管道每米局部偏差的摩擦影响系数”输入的值太大,大于正常值好几个数量级,所以得到的结果都被摩擦损失掉了,按照规范输入正确的摩擦系数就能得到预应力的作用结果了。

钢束工具问题:

我使用的时候有些复杂的线型可能会无法导出“圆弧”类型钢束的数据,但可以转出“样条”类型的钢束。关于插入点是大家提议较多的问题,有什么更好的方法也欢迎不吝赐教啊!

请问一下:提示竖弯钢束及平面钢束长度不一致,错误是怎末会事?还有钢束插入点坐标必须在DXf 文件中标出吗?

钢束插入点在dxf文件中不必标出,但在工具中最好给出,否则在导入到civil后钢束虽然形状正确,但位臵错误也不合要求。

钢束坐标确定的是钢束的形状,钢束的插入点则决定了钢束在梁体中的位臵。

关于竖弯和平弯长度不一致的提示:目前的容许误差是2mm,以后计划修改为误差为钢束总长的0.2%。超过此误差,则提示钢束形状不一致。

midas中定义的截面是否可以导出为CAD格式

问:midas中定义的截面是否可以导出为CAD格式的?如果不能导出,有什么办法可以检查已经建好的模型中某个截面的尺寸(顶板、腹板、底板等)定义是否正确?

答:导出DXF就可以选择上截面中心+形状

检查模型直接看截面特性就好啦

树形菜单关闭后如何恢复

问:刚学MIDAS,不小心把界面左边的树形菜单关闭了,请问怎么显示啊

答:(1)对着菜单栏,点击右键就可以了。偶也是。

(2)点一下选择工具条上的“工作目录树和前次对话框”按钮,就行了

(3)点击工具--用户定制--树形菜单(里面可以像CAD一样设臵)

midas中如何模拟各种支座

问:在建立桥梁结构的计算模型时,会遇到各种类型支座,不知道各位都是怎么模拟的?是不是用弹性连接进行模拟?同时支座也有一定的高度,具体应该怎么考虑?

答:(1)对于支座的模拟,板式橡胶支座比较容易清楚地模拟,具体的模拟可以采用相应的梁单元,该梁单元的单元长度为板式橡胶支座的橡胶层厚度,需要查表得到总厚度后计算其中钢板的厚度,然后总厚度减钢板厚度,因为钢板起的作用只是限制橡胶的横向变形。支座材料的弹性模量可以有形状系数计算得到66s-162就是了。对于其他支座,一般来说就是用约束或者弹性支撑了,如果该方向是固定的,就输入一个很大的k值,无法准确用梁单元来模拟。

(2)具体的我是这样做的,大家参考一下:

板式橡胶支座刚度采用三维弹性连接器来模拟计算:

单元局部坐标系x轴方向刚度(该桥为支座竖向刚度计算):

SDx = EA/l

单元局部坐标系y、z轴方向刚度(该桥为支座横、纵刚度计算):

SDy = SDz = GA/l

单元局部坐标系x轴方向转动刚度(该桥为支座平面内转动刚度计算):

SRx = GIp/l

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

SRy = GIy/l

单元局部坐标系z轴方向转动刚度(该桥为支座纵向转动刚度计算):

SRz = GIz/l

式中:EG为板式橡胶支座抗压、抗剪弹模;A为支座承压面积;Iy,Iz为支座承压面对局部坐标轴y、z的搞弯惯性矩;Ip为支座搞扭惯性矩;l为支座净高。

固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,故模拟在墩顶设臵一个横、纵、竖三维抗压、抗剪的大值,各方向抗弯的小值,即SDx=SDy=SDz=+∞,而SRx=SRy=SRz=0的弹性连接。

(3)个人觉得如果按楼上所说的用弹性连接器来模拟板式橡胶支座的话存在一定问题,就是无法判断支座是否出现局部脱空,因为支座不但会出现整体脱空还会出现局部脱空,判断是否局部脱空就需要从支座角点是否出现拉应力来判断,但是弹性连接是无法观察角点应力的。

另外,逐项输入弹性连接的刚度不但麻烦而且还容易出错,假如按楼上所说的l为支座净高的话,模拟是错误的,应该是支座中橡胶层的总厚度,如果了解板式橡胶支座的原理就会知道,钢板的厚度对弹模是没有影响的,钢板只起限位作用,因此不能把钢板也作为受力结构的一部分。

(4)个人观点:

单元局部坐标系x轴方向刚度(该桥为支座竖向刚度计算):

SDx = EA/l

单元局部坐标系y、z轴方向刚度(该桥为支座横、纵刚度计算):

SDy = SDz = GA/l

单元局部坐标系x轴方向转动刚度(该桥为支座平面内转动刚度计算):

SRx = GIp/l

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

以上三项应该可以这样模拟

但是

单元局部坐标系y轴方向转动刚度(该桥为支座横向转动刚度计算):

SRy = EIy/l

单元局部坐标系z轴方向转动刚度(该桥为支座纵向转动刚度计算):

SRz = EIz/l

(5)支座刚度模拟应如(4)所言!

对于bridgedlut (井中蛙) 兄所提“无法判断支座是否出现局部脱空,因为支座不但会出现整体脱空还会出现局部脱空,判断是否局部脱空就需要从支座角点是否出现拉应力来判断,但是弹性连接是无法观察角点应力的”,既然无法通过观察弹性连接的角点应力来判断,那不妨通过节点位移来判断支座的受力状态:支座上节点位移向下——受压,支座位移向上——抗拔!

如何输入单箱双室截面中靠中腹板处的倒角?

midascivil常见问题总结

1、如何利用板单元建立变截面连续梁(连续刚构)的模型建立模型后如何输入预应力钢束?使用板单元建立连续刚构(变截面的方法)可简单说明如下: 1)首先建立抛物线(变截面下翼缘) ; 2)使用单元扩展功能由直线扩展成板单元,扩展时选择投影,投影到上翼缘处。; 3)在上翼缘处建立一直线梁(扩展过渡用),然后分别向横向中间及外悬挑边缘扩展成板单元; 4)使用单元镜像功能横向镜像另一半; 5) 为了观察方便,在单元命令中使用修改单元参数功能中的修改单元坐标轴选项,将板单元的单元坐标轴统一起来。在板单元或实体块单元上加预应力钢束的方法,目前设计人员普遍采用加虚拟桁架单元的方法,即用桁架单元模拟钢束,然后给桁架单元以一定的温降,从而达到加除应力的效果。温降的幅度要考虑预应力损失后的张力。这种方法不能真实模拟沿钢束长度方向的预应力损失量,但由于目前很多软件不能提供在板单元或块单元上可以考虑六种预应力损失的钢束,所以目前很多设计人员普遍在采用这种简化分析方法。 MIDAS目前正在开发在板单元和块单元上加可以考虑六种预应力损失的钢束的模块,以满足用户分析与设计的要求。 2、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接? 可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。此类问题关键在于横向虚拟梁的刚度取值。可参考有关书籍,推荐写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。 3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接可否自己编辑截面形式 可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。您也可以从CAD中导入截面(比如单线条的箱型截面,然后在截面特性值计算器中赋予线宽代表板宽)。 4、如果截面形式在软件提供里找不到,自己可否编辑再插入变截面,如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过SFC计算再填入A、

迈达斯civil使用手册簿

Civil 使用手册 01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示预应力钢筋材料定义。 2、通过自定义方式来定义——示混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规→选择相应规数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 钢 材 规 范 混 凝 土 规 范 图1 材料定义对话 框

02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4); 图1 收缩徐变函数 图2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 图3 时间依存材料特性连接 图4 时间依存材料特性值修改

midascivil技术讨论汇总

有关模型建立的基本问题 1、关于MIDAS截面面输入的讨论 问:请问fem2000兄,为什么只有变截面能导入已定义的PSC截面,必须先定义PSC截面,而其他变截面为什么不能导入(除PSC之外),且手工输入葙梁截面数据似乎太慢了,请问有还有没有其他便捷的输入截面方法,最主要的是解决葙梁截面输入,如桥博的节线输入,坐标输入,我觉得MIDAS 的输入法应该不会比其他软件差的(单位新买的正版的MIDAS,小弟在初步学习之中) 答:(1)以在EXCEL里面编辑好,在拷贝到截面表格里面哦 (2)在添加截面时候,有个导入功能,可以导入原先做过截面数据!如以前有相同或类似的就方便了许多。不妨试下。 (3)可以充分利用midas的截面特性计算器以及mct文件编辑器,截面的cad图你该有吧?将cad图存成dxf文件,导入截面特性计算器,不过要注意图形文件不能有面域,只能是线,因为他可以进行批量计算,所以你只要将所有截面放到一张图里,然后进行计算,最后导出mct文件,假若说是变截面,可以用mct的命令流将你得到的mct文件进行编辑,然后就可以导入变截面了。 (4)mct命令窗口中对各项mct命令都有提示,只要点插入命令你就能得到那个命令的命令流格式,如果对各项所代表的意义不明白可以参考在线帮助,相对来说,要比ansys的命令流好学多了,毕竟他有中文帮助。 你从spc导出来的mct文件里面给出的是section里的value格式,你可以参照value跟tapered 之间的差别,将你得到的value截面1,2拷贝到tapered形式里作为i,j截面,以此类推,然后修改其中的部分不同内容,就会得到了你想要的。 在编辑的时候推荐你用ultraedit编辑器,主要的方便之处是它可以进行行快和列快的转换,至于说怎么能提高编辑的效率,可以慢慢摸索,只要熟练了,看起来麻烦的事也会变得非常简单。(5)MIDAS变截面输入可以采用变截面组的方式!一个变截面的梁,可以定义变截面组,变截面组里面包括你所需要的变截面单元,此时把变截面组的所有单元设成一种变截面类型,变截面组的i端就是变截面的i端,j端就是变截面的j端!在变截面组里面i端到j端的截面特性是均匀变化的,可以定义成按线形或者多项式变化!变截面组可以再转换成变截面,此时,每个变截面组里的单元都会赋予不同的截面类型,同时,变截面组也会被删除! 注意:在截面对话框的“数值表单”中定义的变截面不能使用该功能。 (6)用截面特性计算器以后导入的截面默认的都是等效的矩形截面,如果要显示是箱形截面你应该在截面数据\变截面下选择合适的箱形截面然后输入数值。这样的到的才是箱形截面,如果这里面没有你要的截面你也可以用mct来编辑。 2、建模中如何快速生成单元 问:各位好 想问一个midas中很基础的问题,就是我在建立了大量的节点后,想再生成单元,有没有方便一点的办法,能不能像ansys中一样可以做一些循环什么的,还请指教! 答:(1)midas没有类似的循环,不过想实现批量的编辑也不难,利用mct文件的编辑,你可以先建立了节点然后利用节点重新编号的功能,对建立的节点按一定规律重新排列,然后在ultraedit(一种文本编辑工具,非常方便,可以使用列编辑)里面进行编辑,第一列是单元号,当然是1,2,3,4。。。依次排列,第二列是单元类型,批量输入你的类型,第五列输入i端节点,你直接就把第一列的单元号copy过来就可以了,然后第二列的可以将第一列的内容去掉1,把后面的拷贝过来,至于说其他的参数,如果你的单元都是同类的,都可以批量输入。当然以上所说的都是没有单元交叉的情况下才适合,不过这样编辑几次应该有的单元都能得到了。以下是mct命令的例子: *ELEMENT ; Elements ; iEL, TYPE, iMAT, iPRO, iN1, iN2, ANGLE, iSUB, EXVAL; Frame Element ; iEL, TYPE, iMAT, iPRO, iN1, iN2, iN3, iN4, iSUB, iWID; Planar Element ; iEL, TYPE, iMAT, iPRO, iN1, iN2, iN3, iN4, iN5, iN6, iN7, iN8 ; Solid Element ; iEL, TYPE, iMAT, iPRO, iN1, iN2, REF, RPX, RPY, RPZ, iSUB, EXVAL ; Frame(Ref. Point) 1, BEAM, 1, 1,1,2,0 2, BEAM, 1, 1,2,3,0 3, BEAM, 1, 1,3,4,0 4, BEAM, 1, 1,4,5,0 5, BEAM, 1, 1,5,6,0 (2)其实还有一个办法。

迈达斯civil使用手册

Civil使用手册 01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计 材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据 库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线 膨胀系数、容重等。 02- 时 间 依 存 材 料 特 性 定 义 我 们 通 常 所 说 的 混 凝 土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3);

3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4); 定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构 件 图1收缩徐变函数 图2强度发展函数 图3时间依存材料特性图4 时间依存

理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 03-截面定义 截面定义有多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面(图1~图3)。 在这个例题中分别采用这四种方式定义了几个截面,采用调用数据库中标准截面定义角钢截面;采用用户输入截 面形状参数定义箱形截面;用户输入截面特性值定义矩形截面;通过导入其他模型中的PSC 截面来形 成当前模型中的两个新的截面。 对于在截面数据库中没有的截面类型,还可以通过程序提供的截面特性计算器来生成截 面数据,截面特性计算器的使用方法有相关文件说明,这里就不赘述。 04-建立节点 节点是有限元模型最基本的单位,节点的建立可以采用捕捉栅格网、输入 调用数据库中标准截面 输入截 面控制 参数定义截面 图2数值型截面定义对话框 图2数值型截面定义对话框

MIDASCIVIL最完整教程

第一章“文件”中的常见问题........................................................... 错误!未定义书签。 1.1 如何方便地实现对施工阶段模型的数据文件的检查?....... 错误!未定义书签。 1.2 如何导入CAD图形文件? .................................................... 错误!未定义书签。 1.3 如何将几个模型文件合并成一个模型文件?....................... 错误!未定义书签。 1.4 如何将模型窗口显示的内容保存为图形文件?................... 错误!未定义书签。

第一章“文件”中的常见问题 1.1如何方便地实现对施工阶段模型的数据文件的检查? 具体问题 本模型进行施工阶段分析,在分析第一施工阶段时出现“W ARNING : NODE NO. 7 DX DOF MAY BE SINGULAR”,如下图所示。但程序仍显示计算成功结束,并没有给出警告提示,如何仅导出第一施工阶段的模型进行数据检查? 图1.1.1 施工阶段分析信息窗口警告信息 相关命令 文件〉另存当前施工阶段为... 问题解答 模型在第一施工阶段,除第三跨外,其他各跨结构都属于机动体系(缺少顺桥向约束),因此在进行第一施工阶段分析时,程序提示结构出现奇异;而在第二施工阶段,结构完成体系转换,形成连续梁体系,可以进行正常分析。 在施工阶段信息中选择第一施工阶段并显示,然后在文件中选择“另存当前施工阶段为...”功能将第一施工阶段模型导出,然后对导出的模型进行数据检查即可。 相关知识 施工阶段分析时,对每个阶段的分析信息都会显示在分析信息窗口中,同时保存在同名的*.out文件中,通过用记事本查看*.out文件确认在哪个施工阶段分析发生奇异或错误,然后使用“另存当前施工阶段为...”功能来检查模型。 分析完成后的警告信息只针对成桥阶段,各施工阶段的详细分析信息需要查看信息窗口的显示内容。 1.2如何导入CAD图形文件? 具体问题 弯桥的桥梁中心线已在AutoCAD中做好,如何将其导入到MIDAS中? 相关命令 文件〉导入〉AutoCAD DXF文件... 问题解答 将CAD文件保存为dxf格式,然后在MIDAS/Civil中选择导入AutoCAD文件,然后选择需要导入的图层确认即可。如图 图1.2.1 MIDAS导入CAD文件图1.2.2 可导入的数据文件 相关知识 在导入AutoCAD的dxf文件时,程序可以导入直线(L)、多段线(P)、三维网格曲面,

MidasCivil入门教程

第一讲 简支梁模型的计算 1.1 工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1 横截面 1.2 迈达斯建模计算的一般步骤 后处理理处 前 第五步:定义荷载工况 第八步:查看结果 第七步:分析计算第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元第一步:建立结点 1.3 具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。 第02步:启动Midas Civil.exe ,程序界面如图1-2所示。

第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3 新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4所

示。 图1-4 保存工程 第05步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z 坐标值。如图1-5所示。 图1-5 结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6 建立节点 第07步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如图 1-6所示。 图1-6 单元节点

迈达斯MIDASCIVIL培训教材-截面特性值计算器的使用说明

<图 1-(1)> 生成Plane 截面的过程 建立截面的轮廓 生成Plane 截面 利用网格进行计算

※注意事项 MIDAS/Civil和Gen数据库中提供的规则截面的抗扭刚度计算方法参见附录一。 对于MIDAS/Civil和Gen数据库中提供的规则截面,利用 MIDAS/Civil、Gen的截面特性计算功能计算截面特性值比SPC更好一些。 MIDAS/Civil和Gen数据库中提供的PSC截面,当用户输入的截面属于薄壁型截面时,应使用本截面特性值中的Line方式重新计算抗扭刚度,然后在截面特性值增减系数中对抗扭刚度进行调整。 对于Plane形式的截面,程序是通过有限元法来近似计算抗扭刚度的。在抗扭问题里使用的近似求解法有Ritz法(或者Galerkin法)、Trefftz法,所有的近似求解都与实际结果多少有点误差,其特征如下: J Ritz≤J Exact≤J Trefftz 像SPC一样利用有限元法近似地计算抗扭刚度时,通常使用Ritz法, 故其计算结果有可能比实际的抗扭刚度小。用户可通过加大网格划分密度方法来提高结果的精确度。 对于Line形式的截面, 如薄壁截面,线的厚度很薄时几乎可以准确地计算其抗扭刚度。但是如果是闭合截面(无开口截面),这种计算方式会导致其抗扭刚度的计算结果随着线厚度的增加而变小,所以对于不是薄壁截面的闭合截面应尽量避免使用Line的方式计算截面特性。 在SPC中对薄壁闭合截面,对闭合部分一定要使用model>closed loop>Register指定闭合。 SPC可以在一个窗口里任意的建立很多个截面,并分别进行分析,且可根据名称、位置、截面特性值等可以很方便地对截面进行搜索及排列。 <图2> 将DXF文件中的截面形状导入后,生成截面并进行排列

Midascivil荷载组合详解

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取0.8(根据通用规范4.1.62-3-1=24 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*CRL 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*BRK*70% 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.1*0.7*W 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*SF 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*IP 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*(T+TPG) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL+1.4*(L+IL+CF) +1.4*0.7*LS+1.4*0.7*FR

midas Civil 基本操作

midasCivil基本操作 ——by石头歌一、材料定义 三种定义材料的方法: 1、导入数据库中的材料性能参数 2、用户自定义 【材料和截面】对话框——【添加】——【设计类型】选择【用户定义】,输入【名称】和【用户定义】中的材料性能参数,【确认】。 3、导入其它模型中的材料性能参数 【材料和截面】对话框——【导入】,打开其它模型,从【选择列表】中选择不导入的材料,输回到【材料列表】,【编号类型】选择【新号码】以避免覆盖已存在的材料,点击【确认】。 二、时间依存材料定义 时间依存材料是英文说法的直译,在国内就是指混凝土的收缩徐变特性,在其他国家还包含混凝土抗压强度随时间变化的特性。 1、徐变和收缩 在这里,先介绍混凝土收缩徐变特性的定义方法。三个步骤: (1)定义收缩徐变函数 【特性】——【时间依存性材料】——【徐变/收缩】——【时间依存性材料(徐变和收缩)】对话框——【添加】,输入【名称】,选择【设计规范】,例如选择【China(JTG D62-2004)】,输入各参数,【确认】。注意:【构件理论厚度】可

暂时输入一个正数值,以后在利用软件的自动计算功能进行修改;【水泥种类系数】规范中只给出一个值,一般的硅酸盐水泥或快硬水泥取5。国外相关论文对该系数的解释:与水泥种类有关的系数,对于慢硬水泥(SL)取4;对于普通水泥(N)和快硬水泥(R)取5;对于快硬高强水泥(RS)取8。 用户也可以自定义混凝土的收缩徐变函数:【特性】——【时间依存性材料】——【用户定义】。用户自定义混凝土收缩徐变函数很少使用,所以不再介绍。 (2)将定义好的收缩徐变函数与材料相连接 【特性】——【时间依存性材料】——【材料连接】,选择【徐变和收缩】名称,【选择指定的材料】,点击【添加/编辑】。 (3)修改单元依存材料特性 【特性】——【时间依存性材料】——【修改特性】,选中要修改的单元,选择要修改的参数,例如,选择【构件的理论厚度】,采用【自动计算】,选择【中国标准】,输入参数【a】,【适用】。注意:参数【a】代表空心部分内周长的参与系数,0代表不参与,1代表全部参与。 2、抗压强度 与混凝土收缩徐变特性的定义方法类似,抗压强度发展特性的定义方法如下:(1)定义抗压强度发展函数 【抗压强度】——【时间依存性材料(抗压强度)】对话框——【添加】,输入【名称】,选择【设计规范】,国内没有相关规范,只能选择国外的规范,例如选择欧洲规范【CEB-FIP】,输入【混凝土平均抗压强度】,选择【水泥类型】,点击【重画】可以查看抗压强度发展系数随时间的变化规律,【确认】。 (2)将定义好的抗压强度发展函数与材料相连接 【材料连接】,选中要编辑的材料,选择【强度进展】名称,点击【添加/编辑】。

midas桥梁分析结果输出

输出 输出文本 文本输出功能是将MIDAS/Civil通过结构分析功能算出的结构分析结果按用户指 定的方式进行整理并以文本文件的形式输出的功能。 MIDAS/Civil的文本输出的主要功能如下。 按荷载组合目录(Load Set)来输出的功能 (各输出内容可各自指定不同的荷载组合目录) 按材料、截面特性、单元编号等选择构件并输出其内力及变形的功能 按截面特性输出最大/最小值的功能 输出节点位移和支点反力的功能 按不同单元分别输出包络值及概要的功能 输出各单元的单元坐标系及全局坐标系的功能 文本输出功能,是为获得最终结果,按步骤将所需资料输入的方式来进行的。利 用文本输出功能得出结果的过程如下。 181

G ETTING S TARTED 182 1.设定荷载组合 点击主菜单的结果>文本输出,画面上就会出现选择荷载集合的对话窗口。 选择荷载集合的对话窗口 荷载集合是指对于构件内力、节点位移、节点反力等为了能够按不同的目的输出而采用的各种荷载工况的集合。在选择荷载集合的对话窗口可按需要建立各种荷载集合。 步骤选项(Step Option)是在进行各施工阶段分析或者几何非线性分析时指定步骤输出方法的功能。点 击就会出现如下的荷载集合(Load Set)输入窗口。 荷载集合的输入窗口

输出 183 输入荷载集合的名称,对所需的荷载工况/荷载组合条件表示?后点 击 键就可将该荷载集合予以登录。 根据需要可通过点击对已登录的荷载集合的内容进行修改 或点击将已登录的荷载集合删除。 将所需的荷载集合全部登录后,点击进入下一个输入窗口。 2. 选择输出单元 在输出单元对话窗口指定欲输出的单元并选择输出形式。 首先在输出单元时使用的荷载集合栏对已登录的荷载集合指定其中一个后,在所要输出的单元前表示?以进行选择。此时在对话窗口上只有输出可能的单元会被激活而显示出来。 若点击单元种类右侧的键,可对单元的输出进行详细的设定。 选择输出单元的对话窗口

Midascivil荷载组合详解

主要根据公路桥涵设计通用规范(JTGD60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。a.在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L用ML代替。b.反应谱荷载工况的简称为ESPc.在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取(根据通用规范4.1.6条第1项)。为了考虑人群荷载单独作用的情况(系数的情况),需要另外单独定义一个人群荷载移动工况。d.下面组合中考虑了可变荷载作用的不同时组合(JTGD60-2004e.不考虑汽车荷载的恒荷载+其他可变荷载的组合及组合值系数需用户另外添加(规范无规定)。f.永久荷载中既有对结构承载能力不利,又有对结构的承载能力有利的永久荷载时,需要用户另外添加组合或修改“永久荷载对结构的承载能力有利组合”中的系数。g.在荷载组合自动生成对话框中选择“考虑弯桥制动力”时,当汽车制动力与离心力同时出现在荷载组合中时,制动力荷载的组合系数自动乘以的系数。h.程序会自动生成各状态组合的包络组合。i.钢结构的组合依然沿用旧规范。j.当有移动荷载作用时,在设计中实际采用的组合会更多(对每个荷载组合都会对弯矩最大时、剪力最大时、轴力最大时的情况进行验算)。k.在荷载>静力荷载工况中定义荷载名称,但没有具体定义荷载值时,荷载组合的自动生成功能将不包含该荷载工况名称。l.预应力混凝土设计荷

载组合在荷载组合的“混凝土”中定义。a)永久荷载对结构的承载能力不利(120个)恒荷载组合(1 个):*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL永久荷载+1个可变作用(8 个):*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)*D +*PS+*EV+*EH+*(SH+CR)+*B+*STL+**D+*PS+*EV+*EH+ *(SH+CR)+*B+*STL+**D+*PS+*EV+*EH+*(SH+CR)+*B+* STL+**D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+**D+*PS+* EV+*EH+*(SH+CR)+*B+*STL+**D+*PS+*EV+*EH+*(SH+C R)+*B+*STL+*(T+TPG)*D+*PS+*EV+*EH+*(SH+CR)+*B+* STL+*FR永久荷载+汽车荷载+1个其他可变作用(8 个):*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+* **D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+*** D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+**BRK *70%*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+ ***D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+*** D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+***D+ *PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+**(T+TPG )*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+**FR 永久荷载+汽车荷载+2个其他可变作用(8×7/2-3-1=24 个):*D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)+* *LS+***D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF)

midascivil进行桩土模拟

midas/civil进行桩土模拟 一般来说承台位置桩基的模拟有以下几种方法。 1. 不模拟桩时: a. 将承台上桩位置视为固定(一般用于扩大基础、沉井基础、锚定等)。 方法:一般支撑全部固结 b. 将承台上桩位置视为弹性支承(最普遍的做法) 方法:墩底作用六个方向的弹簧等代群桩的作用,这六个弹簧刚度是竖向刚度、顺桥向刚度、横桥向刚度的抗推刚度、绕竖轴的抗扭刚度和绕两个水平轴的抗弯刚度,它们的 计算方法与静力法相同,只是考虑到在瞬间荷载作用下的抗力比持续荷载作用的大,一般 取 2. 模拟桩时 a. 端承桩,不考虑桩土共同作用,将桩下端固结。 方法:在桩底全部固结 b. 端承桩,考虑土对桩的侧向约束,将桩下端固结,桩身隔一段间距布置侧向约束 仅受压弹性支承。 c. 摩擦桩,考虑土对桩的侧向和竖向约束,桩身隔一段间距布置两个方向的仅受压 弹性支承。 方法:用三维梁单元模拟实际的桩基础,用土弹簧单元模拟桩周围土抗力的影响, 地震波从桩端或者土弹簧输入。土弹簧模拟:选择模型〉边界条件〉面弹性支撑,支撑类 型选择节点弹性支撑,单元类型选择梁单元,然后在下面输入三个方向土的基床系数即可,或者三个方向取同样的刚度也可以,基床系数在地质勘探报告或土力学书上查。 单独模拟桩基是可行的,有相关书籍介绍,可把桩基上部视为铰接、抗固、弹性支承等 几种方式。 问题: 1、要求加上桩土共同作用。在 midas 中,用梁单元建桩,然后用弹性支撑模拟桩土共同作用(水平方向),用的是 m 法。竖向就在桩端固结了(是嵌岩桩)。承台用板元建,将群桩桩顶与承台共同作用(共用节点)。再往上就是桥墩,用梁单元。“对桩土联合更加重要的应该是桩底竖向摩阻”。桩底竖向摩阻是如何考虑的?是用弹簧单元吗? 做水平方向的时候用 m 法,由 m 值可以方便的得到弹簧的劲度系数。而竖向用什么参 数来模拟弹簧的劲度系数? 2、用空间杆系核平面杆系的结果相差应该还是比较大的吧。 3、群桩,我想用如下方法来做:把群桩的等效面积和等效刚度算出(其中等效刚度 和面积确定时采用等效宽度 b1)不知道行不行。 回答: 1、对于嵌岩桩来说,桩底做成固接就可以了,不考虑桩底竖向摩阻。桩土联合作用 只有桩侧摩阻。

midas Civil的计算书功能使用手册

midas Civil的计算书功能 使用手册 北京迈达斯技术有限公司

目录 1.简介 (1) 2.菜单构成 (1) (1)计算书树形菜单 (1) (2)动态计算书生成器 (1) (3)动态计算书自动生成 (1) 3.菜单功能说明 (2) (1)计算书树形菜单 (2) a.环境设置 (2) b.参考数据库 (2) c.图形 (2) d.表格 (4) e.图表 (7) f.文本 (7) g.页眉和页脚 (8) (2)动态计算书生成器 (10) a.命令位置 (10) b.功能说明 (10) c.生成计算书的方法 (10) (3)动态计算书自动生成 (11) a.命令位置 (11) b.功能说明 (11) 4.操作流程 (11) (1)第一次建立计算书时的流程 (11) (2)调用已经存在的计算书时的流程 (11) 5.安装说明 (12)

简介 计算书从内容上一般由项目信息、分析和设计依据、模型信息(节点和单元信息)、荷载和荷载组合信息、分析结果信息、设计和验算结果信息构成;从内容的格式上一般由文本、图形、表格、图表构成。另外还有封面、目录、页眉和页脚等构成。 各设计单位的计算书格式不尽相同,midas Civil的计算书功能具有开放性、可重复调用等特点,用户可以根据自己的习惯确定计算书的格式,又可以重复调用已确定的格式,提高了制作计算书的效率。 2.菜单构成 midas Civil的计算书功能由计算书树形菜单、动态计算书生成器、动态计算书自动生成等功能菜单构成。 (1)计算书树形菜单 计算书树形菜单由下列功能构成。 a.环境设置 b.参考数据库 c.图形 -用户自定义图形 -外部图形文件 d.表格 -用户自定义表格 -截面信息表格(截面刚度、截面钢筋、施工阶段联合截面) -外部常用表格 e.图表 f.文本 -模型数据文本 -用户自定义文本 g.页眉和页脚 (2)动态计算书生成器 (3)动态计算书自动生成

Midascivil荷载组合详解

M i d a s c i v i l荷载组合 详解 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取 (根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数*PS+*EV+*EH+*(SH+CR)+*B+*STL 永久荷载+1 个可变作用(8 个): *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*(L+IL+CF) *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*LS *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*CRL *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*W *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*SF *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*IP *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*(T+TPG) *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*FR 永久荷载+汽车荷载+1 个其他可变作用(8 个): *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**LS *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**CRL *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**BRK*70% *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**W

MIDAS CIVIL边界非线性分析

MIDAS/Civil的边界非线性分析 北京迈达斯技术有限公司 2008年7月

目录 1. 概要 (9) 2. MIDAS/Civil中结构耗能减震装置的模拟 (9) 1) 铅芯橡胶支座 (9) 2) 摩擦摆隔震支座 (10) 3) 液体粘弹性阻尼器 (14) 4) 固体粘弹性阻尼器 (15) 3. MIDAS/Civil边界非线性分析功能及工程实例应用 (15) 1) 非线性-直接积分法 (16) 2) 非线性-振型叠加法 (19)

1. 概要 根据我国规范提出的结构抗震设计中“小震不坏、中震可修、大震不倒”三个设防水准,以及弹性阶段承载力设计和弹塑性阶段变形验算的两阶段设计理论,进入到大震状态(罕遇地震)是允许结构部分构件进入塑性的,并且需要程序能够进行一定深度的弹塑性分析并给出相关效应的结果。此外,目前很多实际工程中已经开始使用隔振器、阻尼器等保护装置,这些装置一般需要使用边界非线性连接单元去模拟,而线性时程分析不能够考虑非线性连接单元的非线性属性。因此,这些工程需要进行相关条件下结构的非线性动力分析。 2. MIDAS/Civil中结构耗能减震装置的模拟 结构耗能减震装置的效果已经得到了工程实践的验证,目前采用阻尼器、隔震器装置的结构也越来越多。我国2001年新的《建筑结构抗震设计规范》首次将隔震和减震设计作为独立的一章写进规范(见规范第12章),并规定了设计要点和相关设计细节,这也说明了这类结构装置的计算理论和应用逐步成熟。 根据是否存在闭环控制系统,结构耗能减震装置作用于结构的方式可以分为被动控制系统和主动控制系统。MIDAS/Civil程序可以进行结构被动控制系统的分析与设计,隔震器和阻尼器在程序中是以边界非线性连接单元的方式实现的,MIDAS/Civil程序涵盖了目前结构设计中大部分的隔震器和阻尼器,这些单元的基本特征与规范所要求的是基本对应的,下面将介绍几种常用的边界非线性连接单元。 1) 铅芯橡胶支座(Lead Rubber Bearing,LRB) 图1. 铅芯橡胶支座滞回曲线 铅芯橡胶支座是目前桥梁隔震设计中应用的比较多的一种减震支座,对大量的实验结果进行统计分析后得到,其滞回曲线一般为梭形,图形呈反对称,如图1所示。 一般情况下,准确地按实验所得结果建立滞回模型十分困难,为简化起见,可以根据滞回曲线中正反向加载时的初始刚度与卸载时的刚度基本平行以及正反向屈服后刚度也基本

midas civil总结心得

midascivil心得;1、今天同事发现midas中当张拉钢束时当前阶段;2、时间依存材料(徐变收缩)中28天龄期混凝土立;3、对于新手初次使用midas,一定要注意单位,;4、在进行抗震分析时,如果阵型始终达不到质量的9;5、静力荷载工况中除了温度和温度梯度,其他荷载都;6、预应力钢束特性值中导管直径如果输入错误(我曾;7、移动荷载分析控制数据中计算位置midas civi l心得 1、今天同事发现midas中当张拉钢束时当前阶段灌浆即下0个阶段灌浆(默认是这样),计算出来的等效面积和惯距是考虑钢束转化成混凝土后的面积,所以应该输入下1个阶段灌浆。 2、时间依存材料(徐变收缩)中28天龄期混凝土立方体抗压强度标准值单位一定要看好,否则输入小了,总是提示你约束有误,我就犯了两回这样的错误,在边界条件上找了半天没有发现错误,其实是这个标号输入太小。 3、对于新手初次使用midas,一定要注意单位,记得一次有个同事在cad 里划分好单元(单位mm),导入midas中用的单位是mm,导入后就是什么也没有,找了半天发现是单位不对,像用spc计算截面特性同样应该注意这个问题。 4、在进行抗震分析时,如果阵型始终达不到质量的90%,建议在特征值分析控制中采用多重ritz向量法。 5、静力荷载工况中除了温度和温度梯度,其他荷载都使用施工阶段荷载!! 6、预应力钢束特性值中导管直径如果输入错误(我曾经给输入大了100倍,主梁断面给扣了所剩无几),结果计算出恒载反力出现负值!!

7、移动荷载分析控制数据中计算位置杆系单元应点选内力(最大值+当前其他内力)及应力。 变截面组定义时的注意 本人在学习中有所体会,写出来供大家一起学习讨论,也避免其他人和我一样走一些弯路。 1、PSC数值形截面(即从CAD中导入的截面)不能定义为变截面组,若将 其指定为变截面组则不能作分析且不能转变为变截面.所以对于变截面问题要直接输入截面,不能导入。 2、从CAD中导入截面时,应注意: a.单位要正确,即导入前在cad中定义的单位,和导入时要统一。 b.所绘制的截面不能包含面域,否则在截面特征管理器中就无法显示定义为面域的那块,而且图形要是封闭的。 c.导入的步骤,首先用generate命令选中图形,在进行计算划分网格,最后输出保存,即可在截面对话框中导入数值型截面。地基弹簧的模拟问题? 地基弹簧只能受压,根据其特点,用只受压的弹性连接是最合适的,但是在有限元计算过程中会出现一个自由度奇异的问题。其原因在于,在地下结构的有限元模型中,Z方向只有只受压的弹性连接的边界条件,在水浮力作用下,整个结构就没有约束,会无限向上移动,所以会出现自由度奇异的问题。 如果改用节点弹性支撑,它既可受拉,又可受压,计算完全没有问题,但是它的结果是不准确的,有些节点处弹性支撑必然会受拉,而地基弹簧是不能受拉的。

Midascivil荷载组合详解

M i d a s c i v i l荷载组合详 解 Revised by Jack on December 14,2020

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。 b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取 (根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数 *PS+*EV+*EH+*(SH+CR)+*B+*STL 永久荷载+1 个可变作用(8 个): *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*(L+IL+CF) *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*LS *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*CRL *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*W *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*SF *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*IP *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*(T+TPG) *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL +*FR 永久荷载+汽车荷载+1 个其他可变作用(8 个): *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**LS *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**CRL *D+*PS+*EV+*EH+*(SH+CR)+*B+*STL+*(L+IL+CF) +**BRK*70%

相关主题
相关文档
最新文档