植物多糖的研究进展

植物多糖的研究进展
植物多糖的研究进展

植物多糖的研究进展

【摘要】多糖又称多聚糖,是由单糖缩合成的多聚物,广泛分布于自然界中,是一类重要的活性物质。从20世纪50年代对真菌多糖抗癌效果的发现以来,人们开始了对多糖的化学、物理、生物学系列的研究。目前已有报道的天然多糖化合物约有300多种,广泛存在于植物、动物和微生物组织中。近年来,由于植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性、毒副作用小和不易造成残留等优点[1-2],对植物多糖的研究呈现逐渐增多的趋势。中国幅员辽阔,自然条件复杂,孕育着丰富的植物资源,为开发利用植物多糖奠定了深厚的物质基础。目前,对植物多糖的研究多集中在药理作用等方面,而对植物多糖进一步的分离纯化、结构测定、结构和功能关系及在食品、农业、工业方面的开发应用等研究工作较少。笔者参阅了部分资料,对植物多糖的结构、提取方法、药理作用及在保健品、食品、农业等领域的应用作一简要综述,旨在为今后中国植物多糖的综合利用和开发奠定技术和理论基础。

【关键词】多糖;功能;提取纯化

1 植物多糖的组成和结构

多糖是由超过10个以上、通常由几百甚至几千个单糖分子聚合而成的一类化合物。由醛糖或酮糖通过糖苷键连接而成,糖苷键分为α型和β型2种。植物多糖的糖链结合以β-1,3或β-1,6键为主,有的多糖还带有分支,带有分支链的多糖具有抗肿瘤活性。而α型连接的多糖生理活性较弱。但有研究表明[3],α型连接的多糖也具有较强的抗肿瘤活性。多糖与蛋白质一样具有一、二、三、四级结构。一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。三级和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。研究表明,同是β-1,3连接的多糖即使其一级结构完全相同,但由于二级和三级结构不同,其生理活性差异也很大[4-5]。因此,多糖的活性与其高级结构密切相关。

2 多糖提取纯化方法的研究进展

2.1植物多糖的提取方法

2.1.1水煎煮法

水煎煮法是多糖提取的传统方法,是用水作为溶剂煎煮提取多糖。因为多糖在冷水中溶解度较低,一般要在70-90热水中回流提取2~3h,将提取液真空浓缩后加入乙醇将多糖析出。目前多数国内文献采用水煎煮法提取多糖,如盛家荣等[6]采用此法从板蓝根中提取多糖,李志洲等[7]采用该法提取大枣多糖。该法

具有设备简单、操作方便、适用面广等优点。但是这种方法也存在操作时间长,收率低,并需多次反复操作,能耗较高等缺点。黄琳娟等人研究枸杞多糖时,采用水提法先浸泡24h,过滤后残渣再用水浸泡6h,操作周期过长[8]。

2.1.2酶法提取酶技术

近年来广泛应用到有效成份提取中的一项生物技术,使用酶可降低提取条件,在比较温和的条件下分解植物组织,加速有效成分的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等非目的产物。此法可使后续的浓缩和脱蛋白工艺更简易、省时,粗多糖的纯度更高。但会提高生产成本,对提取条件要求较高。杨云[9]等人采用的单酶法和复合酶法提取大枣多糖,单酶法提取多糖含量最高可达44.69%,而复合酶法多糖最高含量可达68.13%。

2.1.3超声法提取超声法

利用超声波对细胞组织的破碎作用来提高多糖浸出率的,具有快速、安全、简便、成本低、多糖提取率高,成分又不被破坏等优点,但对提取设备要求较高。杨云[10]、李小平[11]等采用超声提取大枣多糖,李夏兰[12]等采用超声法提取芥菜多糖。研究表明,超声法与传统的热水浸提法相比,多糖提取率高,并有效地缩短了提取周期,提高了产品质量。

2.1.4超临界萃取法

根据某些气体在超临界状态下具有特殊的液相性质,对一些组分有较好的溶解性,用来提取目的产物。一般采用CO2超临界萃取多糖组分。廖周坤等人采用超临界CO2萃取技术对藏药雪灵芝中多糖进行提取。结果表明,采用不同极性夹带剂的超临界CO2萃取与传统溶剂萃取工艺相比,多糖收率可提高至1.62倍[13]。这种方法对物质的生物活性保存较好,但成本较高,大多用于价值较高的多糖的提取。新型高效的提取分离方法,不仅可以极大地缩短操作周期,而且可提高收率,应用前景广泛;对新技术的作用机理及模型应当作进一步的研究,从而为工业化放大提供依据。在应用新技术的同时,其负效应也不容忽视,如酶法降解副产物对提取的影响;超声波的凝聚作用以及热点作用下多糖的降解问题等。

2.2植物多糖的纯化方法

活性多糖的分离纯化是指获得粗的活性多糖后,除去共存杂质,得到纯度较高多糖产品。分离纯化的方法很多,一般随多糖组成的不同而有所区别。

2.2.1透析法透析法

是利用一定孔目的膜,使无机盐或小分子糖透过,而将大分子的多糖截留下来从而达到纯化多糖的目的。此法的关键是要选择孔目合适的透析膜。纤维膜孔径为2~3nm,可使单糖分子通过,分离效果较好,透析时常需要多次换水,溶液的pH值维持在6.0~6.5范围内。

2.2.2分级沉淀法

一般的单糖和小分子糖是溶于乙醇的,而分子较大的多糖在乙醇中的溶解度较低,因此,根据多糖聚合度和分子量的不同,在低级醇或低级酮中的溶解度不同,一般随着聚合度和分子量增大在醇中的溶解度逐步降低。根据这一性质,在浓缩后的多糖溶液中,分批按比例由小到大加入这些醇,使溶液中含醇量渐增,进行分级沉淀。分取各次析出的沉淀,可以粗略得到分子量不同的多糖。采用此法纯化多糖时,一般应将溶液的pH值调到7.0附近,此时多糖的性质较稳定。这种方法适于分离溶解度相差较大的多糖。除了改变溶剂的组成外,也可利用热的糖溶液逐步冷却,或逐步添加无机盐,如硫酸铵等进行盐析。由于多糖的分子量范围广,有共沉淀现象,此法只能作为多糖的粗略分离方法,实际应用时还需结合其他纯化方法。凝胶柱层析法凝胶柱层析法主要是根据多糖分子的大小和形状不同而达到分离目的。但溶液流经多孔性凝胶柱时,小分子已扩散入孔中,各溶质依分子量大小顺序依次流出。此方法快速、简单、条件温和。常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose),以不同浓度的盐溶液和缓冲溶液作为洗脱剂。此法还可进行多糖相对分子量的测定。

2.2.3纤维素柱层析法

纤维素阴离子交换剂柱层析对多糖的分离是利用pH6时,酸性多糖能吸附于交换剂上,中性多糖不吸

附,用pH相同离子强度不同的缓冲液将酸性强弱不同的酸性多糖分别洗脱出来。常用的阴离子交换纤维素有DEAE-纤维素和ECTEOLA纤维素。张兰杰等就采用DEAE-纤维素柱分离北五味子多糖,分别得到了白色结晶和黄色粉末两种多糖产物。

2.2.4离子交换树脂法

将阴离子交换树脂用碱进行预处理,其可以选择性的吸附还原糖,部分吸附蔗糖,用NaCl溶液进行洗脱,常用的强碱性阴离子交换树脂是Dowex-1。而阳离子交换树脂可对酸性和中性多糖进行较好的分离。尚红伟[14]采用弱碱性离子交换树脂纯化大枣多糖,其产品含量达39.4%。此法具有产物纯度高,污染小的优点,但此法具有洗脱体积大,后处理麻烦等缺点。

2.2.5季铵盐沉淀法

采用阳离子型清洁剂,例如在十六烷基三甲铵溴化物中依次加入不同pH的多糖水溶液,就可以在酸性、中性、碱性的溶液中分步沉淀出多糖。根据沉淀物的性质,可分别采用下述三类方法将多糖从沉淀物中游离出来:(1)沉淀溶于无机盐溶液。将沉淀物放入NaCl溶液中溶解,向溶液中加入乙醇使多糖再次沉淀析出;(2)沉淀溶于有机溶剂。将沉淀溶于乙醇,向溶液中加入无机盐,此时多糖生成盐沉淀下来,再加入强酸使多糖变为游离态;(3)沉淀不溶于盐和有机溶剂。将沉淀放入无机盐的醇饱和溶液,振荡,用乙醇洗涤沉淀,再加酸将糖游离出来。李红艳等就采用此法对大枣多糖的粗品进行纯化,得到酸性多糖纯度为53.76%,中性多糖纯度为57.4%。

3 药理作用

3.1免疫调节的作用

研究发现,植物多糖最重要的药理作用为免疫促进作用。黄芪多糖可从多层面发挥免疫增强作用[15-17]:(1)可直接影响细胞内的物质代谢,诱导机体细胞产生相关的体液因子;(2)不仅能增强机体的

特异性免疫,而且还能增强机体的非特异性免疫;(3)既可增强正常机体的免疫功能,又可调节异常机体的免疫功能。牛膝多糖具有明显的增强机体免疫功能作用,能升高血清溶血素和脾脏内抗体形成细胞束,提高血清免疫球蛋白IgG水平,激活网状内皮系统的吞噬功能,激活巨噬细胞促进TNF和IL-2的生长,促进淋巴细胞的增殖[18]。淫羊藿多糖能提高免疫系统组织细胞的活性,具有双向免疫调节功效,使机体紊乱的免疫状态恢复正常,促进抗体生成,提高小鼠淋巴细胞转化率和腹腔巨噬细胞吞噬率[19]。蕨麻多糖能提高正常小鼠和免疫抑制小鼠脾脏指数,表明该多糖体内注射能促进免疫抑制小鼠脾脏和胸腺淋巴细胞的增殖,可对抗环磷酰胺引起的免疫抑制[20]。

3.2抗肿瘤

多糖通过活化巨噬细胞,活化淋巴细胞,促进细胞因子分泌,活化补体而提高宿主抗肿瘤免疫功能,通过影响肿瘤细胞膜生化、抗自由基、诱导肿瘤细胞分化与凋亡,影响肿瘤细胞超微结构而发挥直接的抗肿瘤作用。香菇多糖能恢复或加强宿主对淋巴细胞、激素及其它生物活性因子的反应,通过刺激免疫活性细胞的成熟、分化和繁殖,使机体的淋巴细胞大量增加;它又能激活补体系统的经典途径或变更途径,增加巨噬细胞非特异性细胞毒,并增加中性粒细胞对肿瘤节的侵润,促使宿主因癌症及感染而引起的体内平衡失调的恢复[21]。芦荟多糖能激活巨噬细胞,增加一氧化氮(NO)的合成,刺激巨噬细胞表面分子的表达,具有抗肿瘤作用,而且与化疗药物合用时,均有不同程度的减毒增效作用,且可显著提高荷瘤鼠血清中IL-2、TNF含量[22]。枸杞多糖可提高荷H22瘤小鼠的T淋巴细胞转化能力和人体自然杀伤细胞(NK细胞)活性,提示其抗肿瘤作用可能是通过增强荷瘤小鼠免疫功能间接实现的[23]。

3.3抗衰老

现代研究认为,植物多糖的抗衰老作用主要涉及以下四个方面:加强DNA的复制与合成,提供必须的微量元素与营养来延长动物的生长期,提高动物对非特异性刺激的抵抗能力以达到强壮作用;调节蛋白质和核酸、糖和脂质代谢;抗脂质过氧化与抑制脂褐质作用;提高机体超氧化物歧化酶(SOD)活力,清除机体内脂质过氧化物(LPO)和丙二醛(MDA),抑制MAOB的作用,以抗衰老[24]。枸杞多

糖可明显降低衰老大鼠羰基蛋白含量,增加谷胱甘肽含量和增强谷胱甘肽活性,通过降低蛋白质氧化损伤而发挥抗衰老的作用[25]。此外,芦荟多糖、野甘草多糖、南沙参多糖、牛膝多糖、螺旋藻多糖、山茱萸多糖、玉竹多糖、紫菜多糖、木耳多糖、天门冬多糖、沙棘多糖、板蓝根多糖都具有一定程度的清除自由基及延缓衰老的作用[26-27]。

3.4其他作用

此外,植物多糖还具有抗炎、抗菌、抗病毒、抗寄生虫、抗辐射、降血脂、降血糖、抗感染、抗消化性溃疡、抗凝血及清除体内外氧自由基等作用[28]。

4 植物多糖的应用

4.1在保健食品方面的应用

活性多糖小剂量可防病健身,是增强免疫力、延缓衰老的佳品。所以可将植物多糖作为重要的保健品进行开发。近年来已有灵芝多糖、香菇多糖、甘草多糖、枸杞多糖等被用来开发了多种保健品,取得了较好的效果[29]。在工业化生产中,可直接制成高浓度的多糖粗提液,然后进一步加工制成饮料、口服液,或作为营养强化剂直接加入食品中作为特殊人群的保健食品,使之由药品向功能性食品转化。

4.2在畜牧生产中的应用

植物多糖具有“prebiotic”益生元的特性,能促进动物体内有益菌生长,而对有害菌起抑制作用,能起到调节动物肠道菌群的效果,是一种有效的益生协同剂,例如黄芪多糖和益生菌组成合生元,能协同作用提高雏鸡机体免疫水平[30]。研究发现,在仔猪日粮中添加300mg/kg香菇多糖能够显著提高日增重和采食量,并且生产激素(GH)、三碘甲腺原氨酸(T3)水平显著提高,皮质醇水平显著下降,仔猪生产性能得到改善[31]。黄芪多糖既能促进哺乳仔猪、断奶仔猪免疫系统的免疫功能,增强机体的抗病力,又能降低哺乳仔猪“三痢”、断奶仔猪腹泻的发病率[32]。不同浓度淫羊藿多糖能显著提高雏鸡淋巴细胞转化率、中性粒细胞吞噬力、AI-HI和ND-HI抗体效价、红细胞-C3b花环率,降低红细胞-IC花环率,且中剂量效果较好[33]。研究表明,饲料中添加枸杞多糖能显著增强鲫鱼的溶菌酶活力,提高其非特异性免疫力[34];低浓度β-葡聚糖能显著促进齐口裂腹鱼生长,增强其免疫功能[35]。黄芪多糖可以显著提高仿刺参体腔细胞溶菌酶mRNA表达量,其中5mg/kg剂量组提高显著[36]。云芝多糖对银鲫的吞噬活性、血清溶菌酶活力和超氧化物歧化酶活力有一定的增强作用,还能提高奥尼罗非鱼蛋白酶活性,降低脂肪酶活性,而对淀粉酶活性影响不显著[37-38]。近年来,随着人们生活水平的提高,对畜产品质量的要求也越来越严格,生产无激素、无残留的绿色食品已成为生活的必要。研究表明[39],植物多糖具有促进T细胞增殖、NO产生、白细胞介素生成以及抗炎、抗病毒等作用,且低毒或无毒,不易造成残留,是一种天然的绿色饲料添加剂,在畜牧生产中具有广阔的应用前景。

4.3在其他方面的应用

多糖可作为果蔬的涂膜保鲜剂、可食性的包装材料;以及工业上的絮凝剂、润滑剂和保湿剂等等,例如白芨多糖可作为润滑剂、保湿剂应用于石油和化妆品工业中。此外,由于多糖优越的保湿性、吸附性及粘结性,研究人员认为将价廉易得的植物多糖用于环境治理将是该领域新的研究方向。

5 结语

总之,植物多糖的生物活性日益受到重视,在医药、食品、农业、工业等方面有着较大的潜在应用价值。迄今,对植物多糖的研究、开发应用已取得了飞速的发展,但仍存在着一些问题,如对植物多糖作用机理与结构关系的研究仍是薄弱环节,植物多糖虽具有广泛的生物活性,但真正应用于临床的植物多糖并不多,在这些方面仍需要深入研究。我国资源丰富,但长期以来,由于自然条件和人为的破坏,许多珍贵植物资源已濒临灭绝,如何改进适于工业化生产的提取、分离、纯化方法以提高资源的利用率,

节省能源,也显得极为重要。

参考文献

[1]TaoYW.TianGY.Studiesonthephysicochemicalproperties,structureandantitumoractivityofpolysaccharideYhP S-1fromtherootofCordalisyanhusuoWang[J].ChineseJournalofChemistry,2006,24(2):235-239.

[2]GeY.DuanYF,FangGZ,etal.StudyonbiologicalactivitiesofPhysalisalkekengivarfranchetipolysaccharide[J].JS ciFoodAgric,2009,89(9):1593-1598.

[3]李璐,毕富勇,吕俊.银耳多糖诱导肝癌HepG-2细胞凋亡的研究[J].实用医学杂志,2009,25(7):1033-1035.

[4]王文平,郭祀远,李琳.生物活性多糖的结构及构效关系研究进展[J].中华实用中西医杂

志,2006,19(19):2363-2367.

[5]张智芳,林文庭,陈灿坤.植物多糖提取工艺的研究进展[J].海峡预防医学杂志,2008,14(3):18-20.

[6] 盛家荣, 李欣, 陈佳伟, 等. 均匀设计优选南板蓝根多糖的提取工艺[ J] . 中药材, 2005, 28( 12): 1105 -1107.

[7] 李志洲, 杨海涛, 邓百万. 大枣多糖的提取工艺[ J]. 食品与发酵工业, 2004, 30( 11) : 127- 129.

[8] 黄琳娟, 林颖, 田庚元, 等. 枸杞子中免疫活性成分的分离, 纯化及物理化学性质的研究[ J] . 药学学报,

1998, 33( 7) : 512- 516.

[9] 杨云. 酶法提取大枣多糖的研究[ J] . 食品科学, 2003, 10( 24): 93- 95.

[10] 杨云, 孟江, 冯卫生, 等. 大枣渣多糖不同提取方法的比较研究[ J]. 中成药, 2004, 26( 10): 860- 861.

[11] 李小平. 红枣多糖提取工艺研究及其生物功能初探[ D ]. 西安: 陕西师范大学, 2004.

[12] 李夏兰, 魏国栋, 王昭晶. 均匀设计法优化芥菜多糖提取工艺的研究[ J]. 食品与发酵工业, 2005, 31( 8):

104- 106.

[13] 廖周坤, 姜继祖, 王化远. 超临界CO2 萃取藏药灵芝中总皂苷及多糖的研究[ J]. 中草药, 1998, 29 ( 9):601- 602.

[14] 张兰杰, 张维华, 赵珊红. 北五味子果实中多糖的提取与纯化研究[ J]. 鞍山师范学院学报, 2002, 4 ( 1):94- 96.

[15] 尚红伟. 大枣多糖提取分离过程研究[ D]. 西安: 西北大学, 2002.

[16]许燕燕.植物多糖的提取方法和工艺[J].福建水产,2006,3:32-36.

[17]龚世伟,游慧珍,胡国元,等.酶法水解香菇工艺的研究[J].武汉工程大学学报,2009,31(9):20-22.

[18]黄小英,刘端勇,赵海梅.黄芪多糖调节免疫作用研究进展[J].江西中医学院报,2008,20(4):75-77.

[19]吕小兰,赖小平,郭惠,等.牛膝多糖研究进展[J].实用临床医学,2005,6(2):137-138.

[20]罗燕,邵永斌,谷新利,等.淫羊藿多糖提取工艺的优化及对小鼠细胞免疫功能的影响[J].黑龙江畜牧兽医,2009,5:104-106.

[21]王谢忠,胡庭俊,马睿麟.蕨麻多糖对免疫抑制小鼠免疫器官作用的组织学观察[J].上海畜牧兽医通讯,2009,5:33-35.

[22]SchepetkinIA,QuinnMT.Botanicalpolysaccharides:macrophageimmunomodulationandtherapeuticpotential [J].IntImmunopharmacol,2006,6(3):317-333.

[23]皮文霞,丁辉,程爱斌,等.芦荟多糖的纯化工艺与体外抗肿瘤活性[J].中国天然药物,2007,5(6):425-427.

[24]朱彩平,张声华.枸杞多糖对肝癌H22荷瘤鼠的抑瘤和免疫增强作用[J].营养学报,2006,28(2):182-183.

[25]罗祖友,吴季勤,吴谋成.植物多糖的抗氧化与抗病毒活性[J].湖北民族学院学报(自然科学

版),2007,25(1):77-81.

[26]李晶,欧芹,孙洁.枸杞多糖对衰老大鼠蛋白质氧化损伤影响的实验研究[J].中国老年学杂

志,2007,27(24):2384-2385.

[27]刘满红,王如阳.植物活性多糖清除羟自由基的抗氧化性能研究[J].云南中医中药杂

志,2009,30(6):57-58.

[28]WangH,ShenWZ,OoiEV,etal.TheantiviralactivityofpolysaccharidesextractedfromLobophoraVariegata[J].A ctaNutrimentaSinica,2007,29(3):271-275.

[29]郑永飞.活性多糖的保健功能及其应用[J].粮食与食品工业,2009,16(4):22-25.

[30]李树鹏,郝艳霜,陈福星,等.黄芪多糖和益生菌对雏鸡免疫机能的影响[J].粮食与饲料工

业,2007(2):33-34,42.

[31]李同洲,薛凌峰,藏素敏,等.香菇多糖对仔猪生产性能、部分血清激素和免疫指标的影响[J].动物营养学报,2009,21(1):101-106.

[32]邓绍基.黄芪多糖防仔猪腹泻促生长的效果研究[J].今日畜牧兽医,2006,12:28-29.

[33]罗燕,邵永斌,谷新利,等.淫羊藿多糖对鸡免疫功能及疫苗免疫效果的影响[J].中国家

禽,2009,31(1):22-26.

[34]王远吉.枸杞多糖对鲫鱼血清溶茵酶活性的影响[J].中国饲料,2004,24:28-31.

[35]张辽,温安祥.β-葡聚糖对齐口裂腹鱼生长及免疫功能的影响[J].动物营养学报,2009,21(5):688-694.

[36]孙永欣,徐永平,汪婷婷,等.黄芪多糖对仿刺参体腔细胞中溶菌酶基因表达量的影响[J].水产科

学,2009,28(10):572-574.

[37]庞素风,吴志新,王艳,等.云芝多糖对银鲫非特异性免疫功能的影响[J].淡水渔业,2008,38(2):17-22.

[38]龚全,许国焕,付天玺,等.云芝多糖对奥尼罗非鱼消化机能的影响[J].饲料工业,2007,28(20):21-23.

[39]王燕,王贤勇.天然植物多糖的生物学功能及其在畜牧生产中的应用[J].广东饲料,2009,18(9):24-26.

浅析植物抗逆性

浅析植物抗逆性 摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件下,绿化植物叶片的生长收到限制。PSII最大光化学效率下降,光合色素发生降解,细胞膜受到伤害。实验证明,根据不同植物在同种污染物作用下的伤害阙值不同,可以确定不同物种对此污染物的抗性等级。由于测定大量植株多项指标的伤害阙值不可行,因此可根据污染点与对照点相对值的大小判断植物抗性。实验数据表明,同一住屋不同生理指标对环境污染的响应不相同,从而,得到的抗性等级不同,本实验中只有少数生理指标反映出相同的抗性等级。大气状况使FV/Fm 等七个分析参数产生极显著差异,说明,大气污染直接影响这7个生理指标,子评价大气污染状况及植物

酶在植物多糖的提取方面的应用现状

酶在植物多糖的提取方面的应用现状 植物的有效成分大多包裹在细胞壁中,对这些有效成分的提取,传统的热水、酸、碱、有机溶剂浸提法,受细胞壁主要成分纤维素的阻碍,往往提取效率较低,恰当地利用植物精提复合酶处理这些中药材,可改变植物细胞壁的通透性,降解杂质(如蛋白,果胶,鞣质,灰分和粘性物质等)对中药有效成分提取的干扰,沉清提取液,易于滤过,提高药效成分的提取率。本文就植物精提复合酶的作用机理,影响酶促反应的因素及目前用于中药有效成分的提取的研究情况作一概述。 1. 植物精提复合酶水解作用机理 1.1纤维素分子是由许多吡喃型的D-葡萄糖残基通过β-1,4葡萄糖苷键连接而成的多糖链,天然纤维素为直链式结构,链与链之间有晶状结构和排列次序较差的无定形结构;纤维素分子以结晶或非结晶方式组合成微原纤维,微原纤维集束形成微纤维,以微纤维为基本构造构成纤维素。 纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase),又称纤维二糖水解酶(cellobiohydrolase,CBH)或C1酶;(3) β-葡萄糖苷酶(β-glucosidase,EC3-2-1-21),简称BG。 纤维素酶解是一个复杂的过程,其最大特点是协同作用。内切葡聚糖酶首先作用于微纤维素的无定型区,随机水解β-1,4-糖苷键,产生大量带非还原性末端的小分子纤维素,外切葡聚糖酶从这些非还原性末端上依次水解β-1,4糖苷键,生成纤维二糖及其它低分子纤维糊精。 1.2果胶酶可分为作用于甲酯键的果胶脂酶(PE)和分解α-1.4-半乳糖醛键的解聚酶,解聚酶中的内切果胶酶(endo-pl)和内切聚半乳糖醛酸酶(cndo-pl)对中药提取液有极好的澄清效果,彻底分解果胶,降低提取液粘度。 1.3半纤维素酶能裂解植物细胞壁,释放出更多的有效成分,可快速分解果胶和其它阿拉伯糖长键分子,降低果汁粘度。 1.4木聚糖酶作用于戊聚糖链,降解葡聚糖及戊聚糖等高分子粘性物质,其降解产物为糊精,纤维二糖及昆布二糖等。 1.5中温α-淀粉酶能够水解淀粉分子的β-1,4-葡萄糖苷键,任意切割成长短不一的短链糊精及少量的低分子糖类、直链淀粉和支链淀粉,均以无规则形式进行分解,从而使淀粉糊的粘度迅速下降。 夏盛集团技术中心专门开发出植物提取专用复合酶,有SPE-001、SPE-002、SPE-005、SPE-006、SPE-007A、SPE-007B、SPE-008等复合酶以及食品级的纤维素酶、木聚糖酶、β-葡聚糖酶、蛋白酶、淀粉酶等一系列植物提取用单酶。经本研发中心试验及国内大的植提厂家中试及大试表明,植物精提复合酶各酶系之间有极强的协同作用,相互促进,一方面破坏植物细胞壁,使有效成分最大限度溶出,降解植物提取液

植物多糖的研究进展

植物多糖的研究进展 【摘要】多糖又称多聚糖,是由单糖缩合成的多聚物,广泛分布于自然界中,是一类重要的活性物质。从20世纪50年代对真菌多糖抗癌效果的发现以来,人们开始了对多糖的化学、物理、生物学系列的研究。目前已有报道的天然多糖化合物约有300多种,广泛存在于植物、动物和微生物组织中。近年来,由于植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性、毒副作用小和不易造成残留等优点[1-2],对植物多糖的研究呈现逐渐增多的趋势。中国幅员辽阔,自然条件复杂,孕育着丰富的植物资源,为开发利用植物多糖奠定了深厚的物质基础。目前,对植物多糖的研究多集中在药理作用等方面,而对植物多糖进一步的分离纯化、结构测定、结构和功能关系及在食品、农业、工业方面的开发应用等研究工作较少。笔者参阅了部分资料,对植物多糖的结构、提取方法、药理作用及在保健品、食品、农业等领域的应用作一简要综述,旨在为今后中国植物多糖的综合利用和开发奠定技术和理论基础。 【关键词】多糖;功能;提取纯化 1 植物多糖的组成和结构 多糖是由超过10个以上、通常由几百甚至几千个单糖分子聚合而成的一类化合物。由醛糖或酮糖通过糖苷键连接而成,糖苷键分为α型和β型2种。植物多糖的糖链结合以β-1,3或β-1,6键为主,有的多糖还带有分支,带有分支链的多糖具有抗肿瘤活性。而α型连接的多糖生理活性较弱。但有研究表明[3],α型连接的多糖也具有较强的抗肿瘤活性。多糖与蛋白质一样具有一、二、三、四级结构。一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。三级和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。研究表明,同是β-1,3连接的多糖即使其一级结构完全相同,但由于二级和三级结构不同,其生理活性差异也很大[4-5]。因此,多糖的活性与其高级结构密切相关。 2 多糖提取纯化方法的研究进展 2.1植物多糖的提取方法 2.1.1水煎煮法 水煎煮法是多糖提取的传统方法,是用水作为溶剂煎煮提取多糖。因为多糖在冷水中溶解度较低,一般要在70-90热水中回流提取2~3h,将提取液真空浓缩后加入乙醇将多糖析出。目前多数国内文献采用水煎煮法提取多糖,如盛家荣等[6]采用此法从板蓝根中提取多糖,李志洲等[7]采用该法提取大枣多糖。该法

野生植物资源学

一:名词解释 1. 引种驯化:通过人工栽培、自然选择和人工选择,使野生植物、外地或外国的植物适应本地自然环境和栽培条件,成为能满足生产需要的本地植物。 2. 仿生栽培:指利用野生植物的原始生境条件,通过优生抚育、人工播种、营养繁殖、剔除竞争种等人为措施,扩大其生长面积、种群规模和资源产量的一种半人工栽培技术。 3. 生态环境:指对生物生长、发育、生殖行为和分布有直接或间接影响的环境要素的总和。 4. 自然保护区:指在不同的环境区域内划出一定范围,将自然资源和自然历史遗产保护起来的场所。包括陆地、水域和海岸。就地保护:指在其自然原生地通过建立自然保护区进行保护的措施。 5. 野生植物资源: 是指在一定的时间、空间、一定人文背景和经济技术条件下,对人类直接或间接有用的野生植物,是在众多的植物中,经人类长期的生产、生存实践活动,而认识的具有各种特殊使用价值的野生植物。 6. 生态适应:植物在长期适应环境的过程中,形成了自己生长发育的内在规律,并以其自身的变异适应外界条件的变化,成为生态适应。 7. 药用植物资源:是指含有药用成分,具有原料用途,可以作为植物性药物开发的一群植物。药用植物资源还包括人工栽培和利用生物技术繁殖的个体及产生药物活性的物质。 8. 踏查:是对调查地区或区域进行全面概括了解的过程。 9.果树植物资源:指一些能够提供鲜食、干果和作为饮料加工原料的经济植物 10.油脂植物:含油器官的含油量达10%的植物 11.系统研究法:是建立在植物区系和植物地理学研究的基础上,应用植物化学研究的科学积累和技术手段,采用植物分类,分布和植物化学等学科结合的一种开发新植物资源的方法。 12.生物多样性:就是指生命有机体及其赖以生存的生态综合体的多样化和变异性。包括所有的植物、动物和微生物等各种生命形式,以及各种生命形式之间及其与环境之间多种相互作用的生态过程和所形成的各种生态体。 13.引种与驯化:通过人工栽培,自然选择和人工选择,使野生植物、外来(外地或外国)的植物能适应本地的自然环境和栽种条件,成为生产需要的本地植物。 14.野生抚育:根据资源植物生长特性及对生态环境的要求,在其生态或相类似的生境中,人为或自然增加种群数量,使其资源量达到能为人们采集利用,并能继续保持群落生态的平衡的一种资源植物仿生态的生产方式。 二:填空题 1. 在一下植物(银杉、银杏、三尖杉、人参、红豆杉、水杉、金钱松)中属于国家一级保护植物的有银杉、人参、水杉。 2. 地下器官的更新调查需要: 3. 1983 年在中国植物学会 50 周年年会上,吴征镒将植物资源分为5类,分别是:食用植物资源、工业用植物资源、药用植物资源、防护及观赏植物资源、植物种质资源。 4. 野生植物资源的调查的基本方法:现场调查、路线调查,样调查。 5. 芳香油提取的三种方法: 6. 植物资源开发利用的层次按采用的主要方式分为针对发展原料的一级开发、针对发展产品的二级开发、针对发展新资源的三级开发。 7. 自然保护区功能区域可划分为:缓冲区、实验区、旅游区。 8.特种油脂的内涵:a不饱和脂肪酸的结构特殊,b用途特殊,c产地独特,d价值高 9.特种油脂的种类:高亚油酸,高亚麻油酸,高ve油酸,二十五碳五烯酸(EPA),二十二碳六烯酸. 1东北三宝是:人参、鹿茸、乌拉草 2植物资源的特点有可再生性、易受威胁性、成分相似性、利用的时间性、用途的多样性_ 可栽培性、分布的地域性、价值的潜在性。 3在植物资源开发利用中,_中华猕猴桃_被誉为维生素C之王,且现已被驯化。 4野生抚育的基本方法有:禁封、人工管理、人工补种、仿生栽培。 5写出一种我国特有的有着“活化石”之称的植物:银杏、水杉、攀枝花苏铁、银杉等

野生动植物宣传单资料

精品文档 . 野生动植物保护宣传单 1、什么是野生动、植物? 野生动物是指在野外自然环境下生活繁衍的动物。也就是说生存于自然状态下,不属人工驯养的各种 哺乳动物、鸟类、爬行动物、两栖动物、鱼类、软体动物、昆虫及其他动物。 野生植物是指原生地天然生长的植物。也就是说生存于自然状态下,不属人工培育的各种植物。 2、为什么要保护野生动植物? 野生动植物是大自然的产物,自然界是由许多复杂的生态系统构成的。有一种植物消失了,以这种植物为食的昆虫就会消失。某种昆虫没有了,捕食这种昆虫的鸟类将会饿死;鸟类的死亡又会对其他动物的食物来源产生影响。所以,大规模野生动植物毁灭会引起一系列连锁反应,并产生严重后果。和谐的自然界是一个完整的生物链,缺了哪一环都会造成可怕的后果。生物多样性也是我们这个地球多彩多姿的标志,由于人类的过度膨胀和科技的发达,现在物种灭绝的速度在加速。可以想象,物种奇少,到最后只剩人类的地球将是一个多么可怕的景象,其实到那时候人类离灭绝也会不远了。野生动植物是生物圈中重要部分,根据物种越多越稳定原理,要保护每一物种,维持生态平衡。因此我们要保护野生动植物。 3、建立自然保护区是保护野生动植物及其赖以生存的栖息环境的根本措施。 建立国家级自然保护区,成立专门的保护区管理机构,履行其主要职能:①宣传贯彻执行国家有关林业和自然保护区的法律、法规和方针政策;②保护和发展国家级自然保护区自然环境和自然资源,做好护林防火工作,依法查处破坏区内生物资源和自然环境的违法行为及其责任人;③编制国家级保护区的总体规划,抓好自然保护区各项建设,制定管理规则和岗位责任制度,统一管理自然环境和自然资源,统一管理和监督区内各项经营活动等。 塞罕坝国家级自然保护区是国务院正式批准建立的专职野生动植物保护管理机构,具有对区内一切资源进行管理、监督和依法查处破坏区内资源和自然环境违法行为的权利、责任和义务。 4、《刑法》规定:非法猎捕、杀害国家重点保护的珍贵、濒危野生动物的,或者非法收购、运输、出售国家重点保护的珍贵、濒危野生动物及其制品的,处五年以下有期徒刑或者拘役,并处罚金;情节严重的,处五年以上十年以下有期徒刑,并处罚金;情节特别严重的,处十年以上有期徒刑,并处罚金或者没收财产。违反狩猎法规,在禁猎区、禁猎期或者使用禁用的工具、方法进行狩猎,破坏野生动物资源,情节严重的,处三年以下有期徒刑、拘役、管制或者罚金。 非法采伐、毁坏珍贵树木或者国家重点保护的其他植物的,或者非法收购、运输、加工、出售珍贵树木或者国家重点保护的其他植物及其制品的,处三年以下有期徒刑、拘役或者管制,并处罚金;情节严重的,处三年以上七年以下有期徒刑,并处罚金。 5、《森林法》规定:林区内列为国家保护的野生动物,禁止猎捕;因特殊需要猎捕的,按照国家有关法规办理。 6、《野生动物保护法》规定:中华人民共和国公民有保护野生动物资源的义务,对侵占或者破坏野生动物资源的行为有权检举和控告。国家保护野生动物及其生存环境,禁止任何单位和个人非法猎捕或者破坏。国家对珍贵、濒危的野生动物实行重点保护。国家重点保护的野生动物分为一级保护野生动物和二级保护野生动物。地方重点保护野生动物,是指国家重点保护野生动物以外,由省、自治区、直辖市重点保护的野生动物。禁止猎捕、杀害国家重点保护野生动物。因科学研究、驯养繁殖、展览或者其他特殊情况,需要捕捉、捕捞国家一级保护野生动物的,必须向国务院野生动物行政主管部门申请特许捕猎证;猎捕国家二级保护野生动物的,必须向省、自治区、直辖市政府野生动物行政主管部门申请特许猎捕证。在自然保护区、禁猎区和禁猎期内,禁止猎捕和其他妨碍野生动物生息繁衍的活动。非法捕杀国家重点保护野生动物的,依照关于惩治捕杀国家重点保护的珍贵、濒危野生动物犯罪的补充规定追究刑事责任。违反《野生动物保护法》规定,在自然保护区、禁猎区破坏国家或者地方重点保护野生动物主要生息繁衍场所的,由野生动物行政主管部门责令停止破坏行为,限期恢复原状,处以罚款。违反《野生动物保护法》规定,出售、收购、运输、携带国家或者地方重点保护野生动物或者其产品的,由工商行政管理部门没收实物和违法所得,可以并处罚款。 7、《野生植物保护条例》规定:国家保护野生植物及其生长环境。禁止任何单位和个人非法采集野生植物或者破坏其生长环境。禁止破坏国家重点保护野生植物和地方重点保护野生植物的保护点的保护设施和保护标志。未取得采集证或者未按照采集证的规定采集国家重点保护野生植物的,由野生植物行政主管部门没收所采集的野生植物和违法所得,可以并处违法所得10倍以下的罚款;有采集证的,并可以吊销采集证。 8、《自然保护区条例》规定:自然保护区内保存完好的天然状态的生态系统以及珍稀、濒危动植物的集中分布地,应当划为核心区,禁止任何单位和个人进入。 核心区外围可以规定一定面积的缓冲区,只准进入从事科学研究观测活动。

天然植物多糖的结构及活性研究进展

2007年第1期 3月出版 李尔春* (陕西师范大学食品工程系,西安710062) 天然植物多糖的结构及活性研究进展 Rsearchprogressonnaturalplant polysaccharidestructureandbiologicalactivity *李尔春,男,1984年出生,陕西师范大学食品科学与工程系 在读生。 收稿日期:2006-12-14 LiEr-chun* (Departmentoffoodengineering,Shanxinormaluniversity,Xi'an710062,China) 摘要主要介绍了天然植物多糖的结构及生物活性功能,如抗肿瘤、免疫调节、抗疲劳、降血糖、抗病毒、抗氧化等,展望了其发展前景。关键词 植物多糖 结构 生物活性 AbstactsThenaturalplantpolysaccharidestructureandthebiologicalactivityfunctionweremainlyintro-duced,liketheanti-tumor,theimmunoregulation,an-tifatigue,hypoglycemic,theanti-virus,antioxidationandsoon.Itsprospectsfordevelopmentwerealsoforecasted.keywordsPlantpolysaccharidesStructureBiolog-icalactivities 多糖是指由十个以上单糖通过苷键连接而成的聚合物,他们除了作为植物的贮藏养料和骨架成分外,有些植物体内的多糖类化合物还在抗肿瘤、抗心血管疾病、抗衰老等方面具有独特的生理活性。多糖是重要的高分子化合物,但由于其单糖的组成种类和连接位置多,再加上端基碳的构型等问题,使得对多糖类化合物的研究难度加大,长时间以来未受到重视,发展比蛋白质和核酸晚。近年来由于多糖类化合物的特殊生理活性,使得对于糖复合物和多糖类化合物的研究得到了快速发展。 1多糖的结构与测定方法 从自然界分离得到的多糖是非常复杂的大混合 物,包括生物大分子的混合、不同多糖(中性多糖、酸性多糖或杂多糖) 的混合、同种多糖大小分 子的混合,因此必须采取适合特点的方法分离分级纯化,否则结构不易确定。同一样品采用不同分级方法,常有不同结果。植物的不同部位,因功能不同,其中的多糖也是各色各样的,必须分开来研究。例如人参的根、茎、叶、果中的多糖,虽都含有中性杂多糖、酸性杂多糖组分,但其组成与结构却是不同的。 多糖与蛋白质一样也具有一、二、三、四级结构。多糖的一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。多糖的结构测定包括纯度测定、分子量测定、单糖组成的鉴定、糖连接位置的测定、糖链连接顺序的测定、苷键构型及氧环的测定。 多糖一级结构的分析方法很多,主要分为三大 类, 即化学分析法、仪器分析法和生物学方法。① 化学分析方法。主要有:水解法、高碘酸氧化、 Smith降解、甲基化反应等。②仪器分析法。与化 学分析法相比,仪器分析法具有快速、准确、灵敏、操作方便等优点,是糖链分析不可缺少的手段。用于糖链结构分析的仪器方法主要有紫外光谱法、红外光谱法、气相色谱法、高效液相色谱法、质谱法、核磁共振法等。除了传统的分析技术,现代分析技术的出现和发展以及仪器之间的联用,大大推动了糖链结构的研究工作。③生物学分析法。主要包括:酶学方法和免疫学方法。 食品工程FOODENGINEERING 44

植物抗逆性研究进展

植物抗逆性研究进展 V A菌根真菌对植物吸收能力及抗逆性的影响研究进展 接种菌根真菌是一种提高农作物产量和质量的比较经济有效的新方法。V A菌根侵染能扩大寄主植物根系的吸收面积;能够改善水分运输,抵抗水分胁迫,提高植物抗旱性能;能够增强植物对矿物元素和水分的吸收能力,改变菌根根际土壤环境,并在根际生态系统中起重要作用。V A菌根真菌也可通过植物根系获得碳水化合物及其他营养物质,从而形成营养上的共生关系为植物提供生长所必需的氮等矿物营养;增强寄主植物光合作用及水分循环运转;提高植物对各种病虫害的抗性。可见,V A菌根真菌对植物的生长具有极其重要的生态价值和经济价值。 电场处理对毛乌素沙地沙生植物抗逆性影响的研究进展 自2002年以来,将电场技术应用于毛乌素沙地沙生植物抗逆性研究中,结果表明,恰当的电场处理更有利于种子的萌发及苗的生长,增强了其抗旱抗寒能力。 多胺与植物抗逆性关系研究进展 在逆境条件下,植物会改变生长和发育类型以适应环境。许多研究表明,在各种逆境协迫下,植物体中多胺水平及其合成酶活力会大量增加,以调节植物生长、发育和提高其抗逆能力,这种反应对逆境条件下的植物可能有意义。就目前的资料来看,多胺之所以能提高植物的抗逆性其机制可能是:①通过气孔调节和部分渗透调节控制逆境条件下水分的丢失。Liu等的研究表明,多胺以保卫细胞中向内的K+-通道作为靶点,调节气孔的运动[10]。多胺还可作为渗透调节剂,其积累可增加细胞间渗透,部分调节水分丢失。②调节膜的物理化学性质。多胺可与膜上带负电荷的磷脂分子头部及其他带负电的基团结合,影响了膜的流动性,同时也间接地调节膜结合酶的活性。③多胺可影响核酸酶和蛋白质酶特别是与植物抗逆性有关的保护酶活性,保护质膜和原生质不受伤害。④清除体内活性氧自由基和降低膜脂过氧化。⑤调节复制、转录、翻译过程。 尽管多胺对植物抗逆性起积极作用,但植物的各种抗性性状是由多个基因控制的数量性状,很难用转基因的方法将如此众多的外源基因同时转入一种植物中并进行表达调控,更何况还有很多与抗性有关的基因尚未发现,这说明植物抗性机制是复杂的。迄今,多胺合成代谢中的3个关键酶ADC、ODC、SAMDC已在许多植物中得到了纯化和鉴定,它们的基因也从多种植物中克隆,并采用转基因技术获得了一些认为多胺可提高植物抗性的证据,但多胺在植物中的载体是什么,植物对多胺的信号感受和传递途径怎样,多胺通过怎样的信号转导通路作用于植物的抗性基因,作用于哪些抗性基因,进而在转录和翻译水平上调控这些基因的表达,控制胁迫蛋白的水平,都还不清楚。因此,采用各种手段,特别是分子生物学的方法研究多胺对植物作用的多样性和提高植物抗胁迫的分子机制、多胺作用的信号转导是值得考虑的 多效唑提高植物抗逆性的研究进展 多效唑是英国ICI有限公司在20世纪70年代末推出的一种高效低毒的植物生长延缓剂和广谱性的杀菌剂[1],因此它对多种植物都有调节生长的效应。多效唑还能引起植物体内一系列的代谢和结构变化,增强植物的抗逆性[2],并兼有杀菌作用。本文仅就多效唑提高植物的抗逆性方面作一简要综述,以期为该领域的研究提供借鉴。 钙与植物抗逆性研究进展 钙是植物必需的营养元素,具有极其重要的生理功能。植物在缺钙条件下,出现与缺钙有关的生理性病害,如苹果果实缺钙可导致苦痘病、水心病和痘斑病等在采前或贮藏期间的生理病害[1]。早在19世纪,钙就被列为植物必需营养元素,并与氮、磷、钾一起称为“肥料的四要素”。钙有“植物细胞代谢的总调节者”之称,它的重要性主要体现在钙能与作为胞内信使的钙调蛋白结合,调节植物体的许多生理代谢过程[2,3],尤其在环境胁迫下,钙和钙调素参与胁迫信号的感受、传递、响应与表达,提高植物的抗逆性[4]。近十几年来,有关钙素营养生理及钙提高植物抗逆性的研究已取得许多进展,现综述如下。 目前,国内外对钙生理及抗逆性研究已经取得了很大进展,但是前人的工作主要侧重于外源钙对植物的影响,对细胞内钙的作用的细节研究得不够深入细致。以下几个方面的问题亟待深入研究:(1)植物是如何感受到逆境信号以及这些信号是如何由激素传导的;(2)激素是如何把逆境信号通过细胞膜传递给钙信使系统的;(3)钙信使系统如何一步步激活靶酶将逆境信号转变为植物体内的生理生化反应从而使植物适应环境胁迫的;(4)钙信使系统与其它胞内信使是如何一起协调调节植物激素的生理反应的。相信随着植物生理学和分子生物学的发展及研究的一步步深入,人们对以上这些问题一定会有日益透彻的认识。这些问题的解决,将使钙生理及抗逆性的研究更加深入,使钙素营养的研究和应用走向新的辉煌 硅与植物抗逆性研究进展 果聚糖对植物抗逆性的影响及相应基因工程研究进展 果聚糖是一类重要的可溶性碳水化合物,其在植物中的积累可提高植物的抗逆性。本文除了介绍果聚糖的有关知识外,重点综述了果聚糖对植物抗逆性的影响,并从果聚糖对渗透的调节,对膜的保护,在低温、干旱条件下果聚糖相关酶活性变化方面阐述了果聚糖抗旱、抗寒机制。此外,综述了提高果聚糖积累方面的基因工程研究进展及存在的相关问题。

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

植物多糖的研究进展

植物多糖的研究进展 11食品科学余勇 11720525 摘要:植物多糖具有多种生物活性,近年来已成为研究热点。本文综述了植物多糖的提取分离、结构鉴定的方法及其主要生物活性,并展望了其发展前景。 关键词:植物多糖提取分离生物活性 多糖是普遍存在于自然界中的由许多相同或不同的单糖通过糖苷键连接在一起的多聚化合物,是维持生命活动正常运转的基本物质之一。根据单糖的组成可分为同多糖和杂多糖。同多糖指由相同单糖构成的多糖,如淀粉、纤维素等;杂多糖由不同的单糖组成,结构上还可能与蛋白质或者核酸等结合形成结合型多糖。植物多糖是多糖的重要组成部分。植物多糖在早期的天然产物化学研究中,因活性不明显,常作为无效成分弃去。由于生物学、化学等学科的飞速发展,自2O世纪8O年代来,人们对植物多糖的生物活性有了新的认识。科学实验研究显示,植物多糖具有许多生物活性功能,包括免疫调节、抗肿瘤、降血糖、降血脂、抗辐射、抗菌、抗病毒、保护肝脏等,且对机体毒副作用小。因此,对植物多糖的研究开发已成为医药保健品行业热门领域。如香菇多糖、灵芝多糖、云芝多糖已在国内临床上广泛应用。而其他一些植物多糖正在深入研究,如桑黄多糖、猪苓多糖、人参多糖、枸杞多糖等。 1 植物多糖的提取、分离和鉴定 1.1 植物多糖的提取 多糖是极性大分子,所以从植物中提取多糖,一般采用不同温度的水稀碱或稀盐溶液提取。由于水提时间长且效率低,酸碱提易破坏多糖的立体结构及活性。因此,发展高效,维持多糖结构和生物活性的方法至关重要。涂国云等采用酶法提取多糖,即采用复合酶一热水浸提相结合的方法,复合酶多采用一定的果胶酶、纤维素酶及中性蛋白酶,此法具有条件温和、杂质易除和提高效率等优点。同一原料,分别用水、酸、碱、盐或酶法提取,所得多糖往往是不同的。 1.2 植物多糖的分离纯化 利用不同多糖分子大小和溶解度不同而分离。常用季铵盐沉淀法和有机溶剂沉淀法。如安络小皮伞粗多糖的纯化方法,在多糖溶液中加入不同浓度乙醇溶液。得到多个多糖;还可用葡聚凝胶(Sephadex)琼脂糖凝胶(Sepharose)以不同浓度的盐溶液和缓冲溶液作为脱色剂,采用凝胶柱层析法使不同大小的多糖分子得到分离纯化,但该方法不适宜粘多糖分离。

植物抗逆性研究进展.

植物抗逆性研究进展 作为生态系统的重要组成部分,植物无时无刻不在自身所处同环境进行着物质,信息和能量的交换。自然生态系统中与植物相关的因子多种多样,且处于动态变化之中,植物对每自然界中的一个因子都有一定的耐受限度,即阈值。一旦环境因子的变化超越了这一阈值,就形成了逆境。因此,在植物的生长过程中,逆境是不可避免的。植物在长期与自然界相抗争的进化过程中,形成了相应的自我保护机制,从感受环境条件的变化到调整体内新陈代谢,直至发生有遗传性的根本改变,并且将抗性遗传给后代。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也为人类控制植物的生长条件提供了可能性。以下从逆境引起的膜伤害、细胞内生化效应等方面探讨植物抗逆生理学的一些重要问题。1逆境引起的膜伤害 1.1影响膜透性及结构 细胞膜作为联系植物细胞与外界的介质,它的组成、性质与细胞所处的环境息息相关,而外界环境对植物的胁迫危害,首先在膜系中有所表现。干旱、低温、冻害、高盐碱度等几种胁迫,无论是直接危害或是间接危害,都首先引起膜通透性的改变。至于膜上酶蛋白的变化以及脂类的组成也可随着胁迫的深化而有所改变,目前,这方面研究最深入的是低温引起膜脂相变的假说[1]。在此之后,大量试验证明,膜脂的组分和结构与抗冷力密切相关。构成膜脂的多种磷脂中,磷脂酰甘油(PG 起主导作用,膜脂相变温度的差异来自饱和度及相变温度较高的PG,抗冷性强的植物膜脂不饱和度高,相变温度低,其膜脂可在较低温度下保持流动性,维持生理活动功能。另外,当植物处于高盐的环境时,植物的水通道蛋白将会产生作用。水通道蛋白是一类特异的、高效转运水及其它小分子底物的整合膜蛋白,在植物中具有丰富的亚型。水通道蛋白通过转录调控、门控机制、聚合调控、重新定位等多种活性调控方式影响细胞膜系统的通透性,参与调节植物的水分吸收和运输。盐害引起渗透胁迫、离子毒害、活性氧胁迫,影响植物生长;水通道蛋白通过多种调控方式,全程参与植物的盐胁迫应答[2]。

植物多糖提取分离检测

植物多糖提取、分离及检测 实验目的 学习并掌握植物多糖提取、分离及检测的原理和方法 实验原理 植物多糖(polysaccharide)是由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖高分子碳水化合物,可用通式(c6h10o5)n表示。由相同的单糖组成的多糖称为多糖,如淀粉、纤维素和糖原;以没的单糖组成的多糖称为杂多糖,如阿拉伯胶是由戊糖和半乳糖等组成。多糖不是一种纯粹的化学物质,而是聚合程度不同的物质的混合物。多糖类一般不溶于水,无甜味,不能形成结晶,无还原性和变旋现象。多糖也是糖苷,所以可以水解,在水解过程中,往往产生一系列的中间产物,最终完全水解得到单糖。多糖普遍存在于自然界植物体中,其分子量一般为数万甚至数百万,是构成生命活动的四大基本物质之一,同维持生命功能密切相关。 多糖的提取分离,含色素较高的根、茎、叶、果实类需进行脱色处理,然用水、盐或稀碱水在不同温度下提取,应避免在酸性条件下提取,以防引起糖苷键的断裂。一般植物多糖提取多采用热水浸提法,所得多糖提取液可直接或离心除去不溶物。在多糖的检测方面采用单糖衍生物的GC/ MS 分析可以对多糖中的具体结构进行定性分析。 实验材料 材料山茶叶片 仪器组织粉碎机、烘箱、超声波提取机、恒温水浴锅、索氏提取器、旋转蒸发仪、冰箱、离心机、分液漏斗、GC/ MS 分析仪 试剂活性炭、95%乙醇、Sevag 试剂、无水乙醇、丙酮、无水乙醚、2mol·L - 1的硫酸、BaCO3 粉末、盐酸羟胺、吡啶、乙酸酐、氯仿 实验步骤 1、多糖提取分离称取粉碎、干燥好的山茶叶150g ,加入1500mL 蒸馏水,超声波提取20min ,于90 ℃恒温浸泡2h ,提取两次;得棕色滤液, 用活性炭对其脱色,活性炭量为活性炭:溶液=0.5%。过滤脱色后的滤液用旋转蒸发仪浓缩至50mL ,抽滤,加入200mL 95 %乙醇沉淀多糖,于冰箱醇析24h ,得棕色絮状物,离心,收集沉淀。 Sevag 法去蛋白Sevag 试剂的配制:用氯仿与正丁醇以4∶1 混合。取上述粗多糖加水溶解,于溶液中加入溶液1/ 3 倍体积的Sevage 试剂,剧烈震荡至无白色絮状物析出,离心15min ,除去水相与有机相交界处的变性蛋白,Sevage 法脱蛋白重复3 次。剩余液体加入200mL 无水乙醇,充分振荡摇匀,于冰箱静置24h ,得棕色絮状物,离心收集沉淀。沉淀经无水乙醇、丙酮、无水乙醚洗涤两次,干燥,得棕色多糖211g。 2 、多糖的检测 (1)、多糖水解称取50mg 山茶叶多糖,加入浓度为2mol·L - 1的硫酸10mL ,封管,超声振荡3~5min 至多糖完全溶解后,在100 ℃恒温水浴振荡水解2h ,然后将试管置于烘箱中于110 ℃反应6h。反应完成后冷却至室温,加BaCO3 粉末中和至中性, 离心, 过滤, 真空干燥, 得到水解后的单糖混合物10.5mg。 (2)糖腈乙酸酯衍生物的制备称取10mg 单糖样品和10mg 盐酸羟胺,用20mL 吡啶溶解,封管,95 ℃恒温水浴振荡30min 后冷却至室温;加入016mL 乙酸酐,封管,95 ℃恒温水浴振荡30min ,反应完成后冷却至室温,得糖腈乙酸酯衍生物。加入2mL 蒸馏水破坏乙酸酐,氯仿萃取,待测。 (3)单糖衍生物的GC/ MS 分析色谱条件:RTX25 石英毛细管柱(30m ×0125mm ×0125μm) ;载气为高纯氦气。柱箱初始温度100 ℃,进样口温度240 ℃,流速0166mL·min - 1 ,分流比30∶1 ,进样量1μL 。程序升温:初始温度为100 ℃,以10 ℃·min - 1升至250 ℃,保持1min。 (4)质谱条件:离子源为EI 源,灯丝电流016mA ,离子源温度200 ℃,电离能量70eV ,接口温度250 ℃,电子倍增管电压1120kV ,扫描周期015s ,扫描范围30100~400100m/ z ,溶剂延迟3min。

2016《野生植物资源开发利用》复习题

《野生植物资源开发利用》复习题 一、单选题 1.野生植物资源的分布有明显的() (C) P12 A、季节性特点 B、空间性特点 C、地域性特点 D、时间性特点 2.西南区的主要药用植物资源有()(B)P18 A、党参、甘草、半夏 B、黄连、贝母、厚朴 C、枸杞、人参、何首乌 D、雪莲、肉苁蓉、伊犁贝母 3.西洋参的原产地是()(D) P26 A、英国 B、印度 C、芬兰 D、美国 4.野生植物资源开发利用的层次分成()(B)P26 A、2个 B、3个 C 、4 个 D、5个 5. 系统研究法的理论依据是植物体内有用成分在植物界中分布与植物系统发育的() (A) P28 A、相关性 B、相异性 C、排斥性 D、融合性 6.世界上裸子植物最多的国家是()(B) P69 A、巴西 B、中国 C 、美国 D、哥伦比亚 7. 以下不属于野生植物资源特点的是()(C) P21-25 A、易受威胁性 B、成分的相似性 C、不可栽培性 D、可再生性 8. 野生植物资源调查取样数目公式n=V2 /P2中的V代表()(C)P41 A、所需要的样方数 B、要求的标准差 C、所测得的标准差 D、所测得的样方数 9. 以下不属于野生植物资源开发的目标是()(A) P28 A、零级开发 B、一级开发 C、二级开发 D、三级开发 10. 热量条件、降水和生长期内降水的分布、霜冻特征和越冬条件统称()(A) P57 A、气候 B、生境 C、季节 D、环境 11. 世界上应用天然药物最多的国家是()(D) P79

A、南非 B、俄罗斯 C、中国 D、印度 12. 阳坡分布的植物为()(B) P13 A、喜阴冷潮湿植物 B、耐干旱高温植物 C、喜肥植物 D、耐贫瘠植物 13.缓冲区的周围最好划出相当面积的() (D) P69 A、核心区 B、休憩区 C、旅游区 D、实验区 14. 野生植物资源的二级开发主要针对的是()(C) P26 A、发展面积 B、发展原料 C、发展资源产品 D、发展产量 15. 根据资源利用的程度,“常用种类”属于() (A) P52 A、一级 B、二级 C、三级 D、四级 16. 根据资源利用的程度,“较常用种类”属于() (B) P52 A、一级 B、二级 C、三级 D、四级 17. 根据资源利用的程度,“一般民间利用”属于() (D) P52 A、一级 B、二级 C、三级 D、四级 18. 公式“贮藏量×达到采收标准的比率”所计算的是()(B) P44 A、年允收量 B、经济量 C、单株产量 D、单位面积产量 19. 我国闻名世界的三大名花之一是() (B) P390 A、合欢 B、杜鹃 C、茉莉 D、鸢尾 20. 宁夏枸杞的药材商品名是()(C) P128 A、茨果子 B、明目子 C、枸杞子 D、茄果子 21. 野生植物资源的三级开发手段侧重于()( D) P28 A、工业生产方式 B、可持续利用性 C、农学和生物学方面 D、多学科综合性科学研究 22. 阴坡分布的植物为() (A) P13 A、喜阴冷潮湿植物 B、耐干旱高温植物 C、喜肥植物 D、耐贫瘠植物 23. 组织培养技术所利用的原理是() (A) P32(2.3)

植物抗逆性

植物抗逆性 姓名:班级:学号:摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对佛山市不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件

植物多糖的研究现状和发展展望

植物多糖的研究现状和发展展望 摘要:本文阐述了植物多糖提取分离纯化主要的方法,简要叙述了植物多糖生物活性的研究现状,并对植物多糖未来的研究方向进行了建议。 关键词:植物多糖,研究现状,发展展望 Abstract: This paper describes the plant polysaccharide extraction separation purification method, briefly describes theresearch status of biological activities of plant polysaccharide,and some suggestions for future research direction of plant polysaccharides. Keywords: plant polysaccharide,research situation, development prospect 多糖研究开始于20世纪40年代,经过几十年的努力人们对于多糖这一类重要的生命物质有了较为深刻的认识,也使这一学科成为当今生命科学研究最为活跃的领域之一。多糖根据来源可分为动物多糖、植物多糖、微生物多糖,广泛存在于动植物体内和微生物的细胞壁中。植物多糖因其来源广泛,无细胞毒性,应用生命体后毒副作用小、药物质量可通过化学手段进行控制等优点成为当今新药及功能性保健食品和绿色食品添加剂发展的新方向。目前对于植物多糖的研究大体分可分为以下几个方面:植物多糖的测定、植物多糖生物活性的研究、植物多糖的应用。 1、植物多糖的测定 植物多糖的测定包括提取和分离纯化的研究、植物多糖的纯度鉴定及相对分子量的测定、植物多糖的含量测定、植物多糖的结构分析。 1.1提取及分离纯化 1.1.1提取 由于大多数植物多糖都是极性大分子化合物,对于植物多糖的提取通常是用水、盐或者稀酸液、稀碱液在不同温度下进行提取。采用不同溶剂提取的多糖成分不同,其生物活性也有较大差异。 水提醇沉法提取多糖操作简单且效果较佳,在中药有效成分提取中应用已久,大多是作为澄清液体的一种方法,但由于其提取多糖纯度不高,且随着新的活性多糖的发现,水提醇沉法的单独使用已难以满足提取要求。而有些多糖更适合用酸碱溶液进行提取,但是需对酸碱度进行严格的控制以防酸碱度过高使多糖糖苷键被破坏而失去生理活性,且容易引入杂质,这一操作要求提高了提取操作和后续分离的复杂性,限制了应用范围。总体来说,从成本及操作安全方面来看,溶剂提取多糖中水法提取更为简单宜用。 现在随着科学技术的发展,酶法提取、微波提取法、超声提取法等新兴提取方法也开始广泛应用于多糖提取中。 酶提取法是利用酶对细胞结构的破坏作用,是存在于细胞内部的多糖释放出来,从而提高多糖的提取率。在使用酶提取多糖的过程中,酶可降低提取条件,在温和的条件下分解植物组织,加速多糖的释放或提取。植物中除含有多糖外,还含有一定量的蛋白质、淀粉、胶质、粗纤维及脂肪,使用酶还可分解提取液中的这些物质,从而有利于多糖的分离和纯化。酶提取法多糖具有条件温和、杂质易除、提取率高和生物活性高等特点。常用的酶有蛋白酶、纤维素酶、果胶酶等。在实际使用酶对多糖提取操作时,有时根据提取物质的不同和多糖提取难易度将几种酶结合起来共同使用,可大大提高提取率,这种方法称为复合酶提取法。超声波提取法是利用超声辐射产生的空化作用、机械作用和热学作用对植物细胞进行破碎,之后再用水醇沉法对多糖进行提取,这一方法及有效缩短了提取时间又提高了多糖提取率。微波提取法是一种新型萃取技术,利用高频电磁波穿透萃取介质,细胞液吸收微波能,细胞内温度迅速升高,压力增大,使细胞壁破裂,有效成分被释放出来进入溶剂中,从而被提取。

相关文档
最新文档