?@A:的基本原理;给出了一种与规则采样?@A等效的=>?@A;提出了在ABCDBEF=GAHDGIJ" />

空间矢量PWM逆变器的仿真

空间矢量PWM逆变器的仿真
空间矢量PWM逆变器的仿真

伺服技术!"""""""""""""""""""""""""""""""""

#$%&’($)*+,-.$空间矢量/01逆变器的仿真

收稿日期23443543534

基金项目2武汉青年科技晨光计划资助634447448439:

程善美;姜向龙;孙文焕;万淑芸

6

华中科技大学;湖北武汉

8<4498:

要2介绍了空间矢量脉宽调制6=>?@A :的基本原理;给出了一种与规则采样?@A 等效的=>?@A ;

提出了在AB C D B E F =G AH D G I J 环境下电压空间矢量?@A 逆变器的实现方法;

最后给出了仿真实验结果K 关键词2空间矢量?@A L 规则采样L AB C D B E F =G AH D G I J L 仿真中图分类号2C A <4M N 3文献标识码2B

文章编号2M 44M 5O P 8P 63443:48544<4548#Q R S T U V Q W XW Y #Z U [\&\[V W ]/01,X ^\]V \]

_‘a I b =c d e 5f g h ;i G B I b j h d e k 5l m e k ;=H I @g e 5c n d e ;@B I =c n 5o n e

6‘n d p c m e kH e h q g r s h t om u =v h g e v g d e wC g v c e m l m k o ;@n c d e 8<4498;_c h e d

:x y z V ]U [V 2C c h s{d {g rh e t r m w n v g st c g|d s h v{r h e v h {l g sm u t c gs {d v g 5q g v t m r{n l s g}h w t cf m w n l d t h m e 6=>?@A :N B =>?@A g ~n h q d l g e tt mr g k n l d r 5s d f {l g w?@A h s{r g s g e t g w N C c gr g d l h p d t h m e sm uq m l t d k gs {d v gq g v t m r?@A h e q g r t g r n e w g r AB C D B E F =G AH D G I J h s {r m {m s g w N B t t c g g e w ;t c g s h f n l d t h m er g s n l t s d r g s c m }e N !\"#W ]$z 2s {d v g q g v t m r ?@A L r g k n l d r 5s d f {l g L AB C D B E F =G AH D G I J L s h f n l d t h m e

%引言AB C D B E 是美国Ad t c@m r &s 公司的产品;是一个高级的数值分析’处理与计算的软件K =G AH D G I J 是AB C D B E 的进一步扩展;比传统的仿真软件包更直观和方便;是基于模型化图形组态的动态系统仿真软件;实现了可视化的动态仿真;其良好的人机界面和周到的帮助功能使得它广为科技

界和工程界的研究人员所应用(M )K

目前已经提出并得到应用的?@A 控制方案不

下M 4种;最常用的?@A 技术为正弦?@A K 与正弦?@A 相比;德国学者‘N @N >d e w g r E r m g &等提出的基于电压空间矢量脉宽调制技术;不仅使得电机转矩脉动降低’电流波形畸变减小;而且与=?@A 技术相比直流电压利用率有很大提高;

并更易于数字化实现(3)

K 电压空间矢量脉宽调制技术在交流传动领域已得到了广泛的应用K 还可以证明电压空间矢量脉宽调制技术可以等效为注入一定零序

分量的正弦?@A (<)K

本文首先介绍了电压空间矢量?@A 的基本原理;给出了一种等效于规则采样的=>?@A ;

详细地介绍了在AB C D B E F =G AH D G I J 环境下实现电

压空间矢量=>?@A 的方法;

最后给出了仿真实验结果K

*电压空间矢量?@A 原理

在图M 所示电路中;三相逆变器实际运行中只

有O 个有效电压空间矢量>+M ,>+O 和3

个零电压空间矢量>+4’>+9

6如图3所示:K 因此;只能用>+4,>+9P 个矢量的线性组合去等效旋转矢量>+r g u ;所产生的

实际的电机气隙磁通轨迹逼近圆形

K

万方数据

如图!所示"设#$%轴的电压分量分别为&’和

&("其合成矢量为)*+,-.即)*+,-/&’01&(23如果)*+,-处在4扇区.即56789:;2内"根据平均值等效原理可得<

)*=>=0)*?>?/)*+,->.@2>/>=0>?0>5

.!2

式中

>AA B CD 周期

>=AA )*=

作用时间

>?AA )*?

作用时间

>5AA )*5或)*E

作用时间

)*=和)*?

的作用时间分别为

<>=/

;

!.&’

(2>:&H I

.

;2

>?/(>:&H I

.=2同样可以计算出)*+,-在其它扇区内空间矢量的作用时间3

为使波形对称"把每个矢量的作用时间都一分

为二"同时把零矢量时间等分给两个零矢量)*5

和)*E 3产生的开关序列为)*5

F )*=F )*?F )*E F )*E F )*?F )*=F )*5"如图;所示3这样可以降低逆变器输出谐波含量3则式.@2

可表示为<>)*+,-/>=J *=0>?J *?

0>5:!K )*50>5:!K )

*E .L 2

;

20U

O W

.Q 2/R S T .Q F !9

;

20U .?2

为了使)*5和)*E 作用时间相等"可得到零序分量如式.E 2所示X ;Y

3U /@!R S TQ

Q ZX F

9?"9?

Y [X L 9?"E

9?Y

@!R S T .Q 0!9;2Q ZX 9?"9!Y [X E 9?";9!Y @!

R S T .Q F !9;2

Q ZX 9!"L 9?

Y [X ;9!"@@9?\]^Y

.E 2

它所对应的调制波及零序分量如图=所示"它

是与M )B CD 等价的"U 实际上就是M )B CD 的零序分量"因此利用式.?2或.E 2采用载波AA 三角波比较方式也可实现与上述方法等效的M )B CD 3在

D_J ‘_a :M b Dc ‘b d e 环境下采用多路开关很

容易实现这种调制方式"具体的实现在此不作论述3

+,-所处扇区"再计算几个公用值g $h $i 以

及根据扇区分配矢量的作用时间>@$>!

"最后根据扇区确定电压空间矢量切换点>W j k

.l /@"!";2X =Y 3M )B CD 算法首先要知道)*+,-所处的扇区"判断

)*+,-

所处的扇区的模型框图如图L 所示

3不同扇区的!个相邻有效矢量的作用时间可归

纳为;个值g $h $i 的计算"其计算的模型框图如图?所示3

计算出g $h $i 后采用多路开关根据不同扇区

A

@;A 空间矢量B CD 逆变器的仿真

程善美姜向龙

孙文焕"m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 等

万方数据

所处扇区’的模型框图

$%&

万方数据

4’"""4S "O W P )

作者简介Q 程善美O !L W W RP 4男4副教授4主要研究电力电子交流传动控制及微机控制技术\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]

O 上接第’W 页P O ’P 较之6A *D 调制策略46+A *D 调制策略

对系统中的逆变器直流电压的利用率提高!#)N Z ^4K $I A *D 调制策略对系统中的逆变器直流电压的

利用率提高!’)’’^]O S P 较之6A *D 调制策略46+A *D _

K $I A *D 调制策略均减少谐波转矩4

因而降低转矩脉动4K $I A *D 调制策略降低转矩脉动效果最佳]

O N P K $I A *D 是在6A *D 调制波中注入S 次谐波而形成4虽然明显地抑制系统的转矩脉动4但是存在正弦调制波与注入的S 次谐波如何同步的问题4所以6+A *D 应是优先的选择]

参考文献Q

&!(E C R F /0@20X ,-G /:/-/0,8>%/.

‘>=G 2-;>-727=A *D <8E 20>;C X &H ()I J J JK 0,-=)Y -I -.)

)4!L L M O #P Q !"#L R!"Z !)&’(A /03>3<0E 2)<-,89=>=,-.D>->X >%,;>2-2@?>F F 8/

52X F 2-/-;=2@I -F 7;5700/-;,-.+28;,E /2@A *D I -V /0;/0=&H ()I J J J K 0,-=)Y -I -.)

&S (李红梅4李忠杰4杜世俊)6+A *D 逆变器供电异步电

机动态性能仿真)电机与控制学报&H ()’""!O S P )&N (李红梅)

李忠杰)逆变器供电下异步电动机低频振荡现象的研究&H ()电工技术学报4’"""4!#O S P Q !W R!L )&#(熊健)电压空间矢量调制与常规6A *D 的比较研究

&H

()电力电子技术4!L L L O !P Q ’#R’M )作者简介Q 李红梅O !L W L RP 4女4讲师4博士研究生4主要从事电机及控制研究]

李忠杰O !L S M RP 4男4教授4主要研究方向为特种电机及其控制\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

]

电机设计软件

O

南牛软件工作室P 本电机设计系列软件4操作十分简便4不需要专门学习4见过了的都会用]作为一种工程用交互式计算软

件4它继承了上一代同类软件的主要优点4如数据共享_增强逻辑判断_图形辅助等4同时4具有更为广泛的通用性4对操作者的要求大大降低4自动化程度明显提高4计算功能得到加强4与实际联系得更为紧密]无论是电脑高手还是尚未入门4无论是电机设计经验丰富还是昨天刚刚沾边4无论是在N M W 的二手货上还是在新买的奔腾机上4无论是设计标准产品还是客户指定指标4本系列软件均能适用]

软件通过I -;/0-/;发布4在各种*>-.2B =操作系统下均能正常运行]您只要需要就可以到网上下载试用]欢迎联系Q 软件作者刘威卿4手机Q !S "Z S M S #"L Z 电子信箱Q 8>7a -,-/B )-/;8>7B b -/;a!W S )G 2X C ;;F Q c c B B B )-,-/B )-/;

d

S S d 空间矢量A *D 逆变器的仿真

程善美姜向龙

孙文焕4e

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 等

万方数据

电压空间矢量资料

电压空间矢量

电气空间矢量PWM 自动1202 熊立波 20121799 什么是电气空间矢量PWM ,以及怎样用于变频器V/F 控制? 空间矢量的定义:交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,分析时常用时间向量来表示,但如果考虑到他们所在的空间位置,也可以定义为空间矢量。 在图中,A ,B ,C 分别表示在空间静止的电动机定子三相绕组的轴线,它们在空间互差 120,三相定子正弦波相电压0A U 、0B U 、 C U 分别加在三相绕组上。可以定义三个定子 电压空间矢量0A u 、0B u 、0C u ,使它们的方向始终处于各相绕组的轴线上,而大小则随时 间按正弦规律波动,时间相位互相错开的角度也是0 120。 0s A B C u u u u =++ 当定子相电压为三相平衡正弦电压时,三相合成矢量 0s A B C u u u u =++ 1 1 2111224[cos()cos()cos()]333 23 j j m m m j t j t m s t t t U U e U e U e U e γγππωωωωω= +-+-== 合成空间矢量表示的定子电压方程式 s s s s d dt u i R ψ =+ 忽略定子电阻压降,定子合成电压与合成磁链空间矢量的近似关系为

s d dt ψ 或 s s dt u ψ ≈? 三相逆变电路每相上下桥臂开关动作相反,将上桥臂导通而下桥臂关断的状态记为1,反之记为0,则三相逆变电路共对应8种输出电压状态。 PWM 逆变器共有8种工作状态 当 (A S B S C S )=(1 0 0) (A u B u C u )=(2d U 2d U - 2d U -) 242331 22(1)(1) 32 32j j j j d d U U u e e e e ππ γγ = --=-- 224242 [(1cos cos )(sin sin )]323333 3d d j U U ππππ = ---+= 当 (A S B S C S )=(1 1 0) (A u B u C u )=(2d U 2d U 2d U - ) 2423 322(1)(1) 322j j j j d d U U u e e e e ππ γγ=+-=+- 22424[(1cos cos )(sin sin )]323333d j U ππππ = +-+- 322(13)323j d d j U U e π= += 依次类推,可得8个基本空间矢量。 6个有效工作矢量 1 u ~6 u

SVPWM的原理讲解

1空间电压矢量调制SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。下面将对该算法进行详细分析阐述。 1.1SVPWM基本原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。逆变电路如图 2-8 示。 设直流母线侧电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相

的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。假设Um 为相电压有效值,f 为电源频率,则有: ?????+=-==) 3/2cos()()3/2cos()()cos()(πθπθθm C m B m A U t U U t U U t U (2-27) 其中,ft πθ2=,则三相电压空间矢量相加的合成空间矢量 U(t)就可以表示为: θππj m j C j B A e U e U e U U Us 2 3 3/43/2=++= (2-28) 可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,Um 为相电压峰值,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a ,b ,c )上的投影就是对称的三相正弦量。 图 2-8 逆变电路 由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数 Sx ( x = a 、b 、c) 为: ?? ?=下桥臂导通 上桥臂导通 01x S (2-30) (Sa 、Sb 、Sc)的全部可能组合共有八个,包括6个非零矢量 Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量

电压空间矢量研究及Matlab仿真

近年来,电机的空间矢量理论被引入到逆变器及其控制中,形成和发展了空间矢量 PWM(SVPWM)控制思想。其原理就是利用逆变器各桥臂开关控制信号的不同组合,使逆变器输出电压空间矢量的运行轨迹尽可能接近圆形。空间矢量脉宽调制技术,不仅使电机脉动降低,电流波形畸变减小,且与常规正弦脉宽调制(SP-WM)技术相比,直流电压利用率有很大提高,并更易于数字化实现。 1 电压空间矢量调制(SVPWM)算法 SVPWM是以磁链跟踪控制为目标,使逆变器瞬时输出三相脉冲电压合成的空间电压矢量与期望输出三相正弦波电压合成的空间电压矢量相等。对于三相电压型逆变器而言,它有8种工作状态,用矢量表示这8种空间状态,如图1所示。 介绍SVPWM工作原理的相关文献很多,这里不再细述,以下给出算法步骤: (1)判断参考电压矢量Vref所在扇区 引入三个中间变量A,B,C:

则扇区号:S=A+2B+4C。 (2)计算扇区的有效电压空间矢量和零矢量的作用时间Tx,Ty和T0 引入三个中间变量X,Y和Z: 对于不同的扇区,Tx,Ty按表1取值。 饱和判断:Tyout。

计算零电压矢量作用时间:T0=TPWM-Tx-Ty。 (3)开关切换时间分配 先定义空间矢量切换点分别为: 则根据空间矢量所处的扇区不同,晶体管的切换时间Tcm1,Tcm2,Tcm3分别如表2所示。

Simulink仿真环境下可以方便地利用模块和软件编程扩展进行仿真。根据上述实现方法,构造了如图2所示的Simulink仿真模型。

在模型中使用Repeating Sequence模块作为双向定时计数器,与SVPWM调制波进行比较,其输出作为滞环比较器的输入。Matlab语言编写的S函数则作为比较值的计算与分配单元。 2 仿真与分析 仿真对象:SVPWM与永磁同步电机。通过Matlab仿真得到的波形如图3所示。

电压空间矢量

电气空间矢量PWM 自动1202 熊立波 20121799 什么是电气空间矢量PWM ,以及怎样用于变频器V/F 控制? 空间矢量的定义:交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,分析时常用时间向量来表示,但如果考虑到他们所在的空间位置,也可以定义为空间矢量。 在图中,A ,B ,C 分别表示在空间静止的电动机定子三 相绕组的轴线,它们在空间互差0 120 ,三相定子正弦 波相电压0A U 、0B U 、0C U 分别加在三相绕组上。可以定义三个定子电压空间矢量 A u 、 B u 、 0C u ,使 它们的方向始终处于各相绕组的轴线上,而大小则随时间按正弦规律波动,时间相位互相错开的角度也是 120。 0s A B C u u u u =++ 当定子相电压为三相平衡正弦电压时,三相合成矢量 0s A B C u u u u =++ 112111224[cos()cos()cos()]33323 j j m m m j t j t m s t t t U U e U e U e U e γγππωωωωω=+-+-= = 合成空间矢量表示的定子电压方程式 s s s s d dt u i R ψ =+ 忽略定子电阻压降,定子合成电压与合成磁链空间矢量的近似关系为 s d dt ψ 或 s s dt u ψ ≈? 三相逆变电路每相上下桥臂开关动作相反,将上桥臂导通而下桥臂关断的状态记为1,反之 记为0,则三相逆变电路共对应8种输出电压状态。 PWM 逆变器共有8种工作状态 当 (A S B S C S )=(1 0 0) (A u B u C u )=(2d U 2d U - 2d U -)

变频器电压空间矢量脉宽调制

变频器电压空间矢量脉宽调制(SVPWM)控制时间:2011-10-07 来源:未知编辑:电气自动化技术网点击:1071次字体设置: 大中小 经典的正弦脉宽调制(spwm)控制着眼于使变压变频器的输出电压尽量接近正弦波,并未顾及输出电流的波形如何,更未考虑电动机中产生的旋转磁场。然而交流电动机需要输入三相正弦波的最终目的是在电动机气隙形成圆形的旋转磁场,从而产生恒定的电磁转矩。如果对准这一目标,把逆变器和交流电动机视为一体,按照跟踪圆形旋转磁场来控制逆变器的工作,其效果应该更好。这种控制方法称作“磁链跟踪控制”,下面的讨论将表明,磁链轨迹是交替使用不同的电压空间矢量得到的,所以又称“电压空间矢量pwm(space vector pwm,简称svpwm)控制”。 4.1 电压空间矢量 随时间按正弦规律变化的物理量可在复平面上用时间相量表示,而在空间呈正弦分布的物理量也可在复平面上表示为一个空间矢量。图4-1a)绘出了异步电动机定子三相绕组接线图,图中箭头所指为相应物理量的给定正方向。在空间呈正弦分布的三相定子绕组磁动势可用空间矢量f a、f b、f c表示,见图4-1b),它们分别座落在代表三相定子绕组轴线空间位置的a、b、c轴上,而三相绕组合成磁动势的空间矢量为图中的f s。 f s=f a+f b+f c(4-1) 式中,f a、f b、f c的模均在各自的绕组轴线上按正弦规律作脉动变化,时间相位分别差2π/3。它们的合成磁动势空间矢量f s则绕定子参考坐标系的原点o以同步角频率旋转。当三相定子绕组电流为对称的三相正弦电流时,fs的幅值为常数,是各相磁动势幅值的3/2倍,矢量顶端的运动轨迹是一个圆,即通称的圆形旋转磁场。

空间矢量脉宽调制仿真及其谐波分析

文章编号:1005—7277(2005)01—0011—03 V ol.27,N o.12005,27(1):11~13 电气传动自动化 E L ECTRIC D RIVE AUTOMATI O N 2005年第27卷第1期第11页 空间矢量脉宽调制仿真及其谐波分析 康现伟,于克训,刘志华 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:在深入分析空间矢量脉宽调制机理的基础上,通过SIMU LINK 给出了其仿真波形,重点对SVPWM 的仿真结果进行了谐波分析,得到了SVPWM 谐波分布的主要特点及影响其谐波分布的几个主要因素,为更有效消除SVPWM 谐波污染提供了理论基础和指导。关键词:空间矢量脉宽调制;谐波;仿真中图分类号:T M921.52 文献标识码:A Simulation and harmonic anal y sis of SVPWM K ANG Xian-wei ,Y U K e-xun ,LIU Zhi-hua (Huazhon g Univ er sit y o f Science and T echnolo gy ,Wuhan 430074,China ) Abstract :Based on the anal y sis of the characteristics of s p ace vector p ulse w idth m odulation (SVPWM ),a series of sim 2ulation w aveforms are illustrated b y the use of S imulink.T he foundational features of the harm onic distributions of SVPWM and the dom inant factors affectin g the distributions are obtained throu g h the anal y sis on the harm onics of the w aveforms ,which p rov ides us theoretical foundation to elim inate the harm onic p ollution.K e y w ords :SVPWM;harm onic ;simulation 1引言 空间矢量脉宽调制(SVPWM )具有线性调制范围宽,直流电压利用率高,易于微处理器实现等优点,它目前被广泛应用于变频器、UPS 、无功补偿器、有源滤波器、储能系统电力变换器等领域。当控制精度要求较高时,必须考虑其谐波问题。 本文首先阐述了空间矢量调制(SVPWM )的基本原理,然后给出了仿真波形,针对空间矢量调制中出现的谐波问题,文章进行了较为详细的分析和论述,得到了影响SVPWM 谐波分布的几个主要因素,从而为其在实际应用中消除谐波污染提供了可靠的理论依据。 2电压空间矢量脉宽调制(SVPWM )原理 对于理想三相正弦系统,电压空间矢量的定义为: V =2/3(V a +V b e j 2π/3+V c e j 4π/3) (1) 对于三相电压源型逆变桥的6个开关,如图1 所示。假设“1”代表上桥臂导通,“0”代表下桥臂导 通,则一共有8种开关模式,分别为V 0(000),V 1(100),V 2(110),V 3(010),V 4(011),V 5(001),V 6(101), V 7(111)。由变换式(1)可得,这8种开关模式在复 平面上分别产生8种电压矢量,其中V 1~V 66个开关模式产生输出电压,而V 0、V 72个开关模式不产生输出电压,称为零矢量。这8个电压矢量将复平 面分为6个区域,如图2所示,按照平行四边形法则,利用这8个空间矢量可以合成在六变形区域内的任何输出电压矢量 。

电压空间矢量脉宽调制

电压空间矢量脉宽调制技术的原理与特征分 析 收藏此信息打印该信息添加:袁登科陶生桂龚熙国来源:未知 1 引言 自从1964年德国a.schonung等学者率先提出了脉宽调制变频的思想—把通信系统的脉宽调制(pwm)技术应用于交流电气传动以来,至今已经出现了几十种不同的脉宽调制技术[1] [2]。脉宽调制技术控制的逆变器可以输出比传统方波逆变器性能好得多的电压波形,但它们各自的着眼点不同、各次谐波分量不同、引起电机的谐波损耗不同、对中间回路电压的利用率不同。其中电压空间矢量pwm技术中间直流回路电压的利用率较高、输出波形含有较少的谐波分量、引起的电流、转矩的脉动也较小,同时也非常有利于数字化实现,因此是非常有前途并且应用也非常广泛的一种pwm技术。本文对该脉宽调制技术的数学基础、原理、几何特征以及不同的调制区域进行了详细的分析,有助于加深对该技术的理解和对该技术的改进。 2 电压空间矢量的概念 电压空间矢量的定义式为: 由于公式中出现了虚数单位j,所以上式电压矢量是用复数表示的。可以求得其实部与虚部分别为:

根据其对应关系可以求出,采用电压矢量实部与虚部表示的三相电压为: 上面两式(2)与(3)也是在坐标变换中经常见到的3/2与2/3变换。当使用电压矢量来表示三相电压时,则有: 式中的re{z}表示取复数z的实部。 一般情况下,三相电压均是时间的变量。首先考虑某一时刻t=t0,那么此时电压矢量在空间内就是具有某一确定方向和长度的有向线段。在不同时刻,它就对应着不同方向或长度的有向线段。假定三相电压为正弦交流电,即 此时的电压空间矢量为: 可见此时的电压矢量的幅值是恒定的,与相电压峰值相等,而其幅角随时间线性增长,且速度为相电压电角频率。这即是说电压矢量端点的轨迹在空间内是一个圆。

三维空间矢量原理说明

三维空间矢量原理说明 0 引言 以往有很多关于不同脉宽调制技术的研究,如正弦波PWM 、跟踪型PWM 和空间矢量调制技术等。但这些只局限在αβ二维,而二维调制技术是无法解决三相四线系统中的中线电流问题。随着用户电力技术的发展,应用于三相四线系统中的UPS 和电能质量补偿器将会得到更多的重视。 本文基于中点引出式三桥臂逆变器,提出一种三维空间矢量脉宽调制(3D SVPWM )方法。这种方法不但可以使中点引出式三桥臂逆变器在应用于三相四线系统时能同时补偿三相谐波和中线电流,还具有开关频率低、补偿效果好等优点。 1 三维空间电压矢量的分布 图1所示是一个并联在三相四线系统中的中点引出式三相电压逆变器。 图1所示逆变器其直流侧零线与系统中线相连接。本文所有关于三维空间适量的讨论都将基于这种中点引出式的三桥臂逆变器结构。 图1中,同一桥臂的2个开关的导通与关断是互补的。若用1表示上半桥臂开关导通,-1表示下半桥臂导通,则可定义开关函数为: ?? ?-=下半桥臂导通 上半桥臂导通1 1j S (1) 假定上半桥臂和下半桥臂的直流电压值相等,dc dc2dc1V V V ==, 此时,每个桥臂的输出电压可以表示为: j dc S V =0U (2) 三维αβ0坐标系中的瞬时电压矢量可以利用下式给出的α-β-0变换得到:

????????????????????-- - =???? ??????c b a v v v v v v 212 12 123232 12 1001 32βα (3) 由此,αβ0座标下的瞬时电压矢量可以表示为: ()00312132dc V v n S n S n S ++=ββα α (4) 式中:2/2/c b a S S S S --=α,c b S S S -=β,c b a S S S S ++=0 表1中列出了三维系统中的电压矢量以及经过αβ0变换后在其直角坐标中的参数。 从图2所示的三维视图中可以更清楚地看出电压矢量的分布。其中矢量},,{642V V V 和},,{531V V V 分别处于不同的水平面上,而2个零矢量分别指向零轴的正方向和负方向。图3是三维空间电压矢量在αβ平面上的分布,可以看出它与传统的二维空间电压矢量的分布是一样的。 2 二维和三维电压矢量的比较 二维的αβ变换实际上是对于三维αβ0变换在不考虑零序分量时的一种简化,可以推想二维的电压脉宽调制也是一种对三维调制的简化。根据表1所给的参数和图2、图3, 传统的二维坐标系中的电压矢量分布应该就是三维电压分布的俯

空间矢量算法计算

啊一直以来对SVPWM原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。未敢私藏,故公之于众。其中难免有误,请大家指正,谢谢! 此文的讲解是非常清楚,但是还是存在一些错误,本人做了一些修正,为了更好的理解整个推导过程,对部分过程进行分解,并加入加入7段和5段时调制区别。 1 空间电压矢量调制SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。下面将对该算法进行详细分析阐述。 1.1 SVPWM基本原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。逆变电路如图2-8 示。设直流母线侧电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。假设Um为相电压有效值,f为电源频率,则有: (2-27) 其中,,则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:(2-28) 可见U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,Um为相电压峰值,且以角频率ω=2πf按逆时针方向匀速旋转的空间矢量,而空间矢量U(t)在三相坐标轴(a,b,c)上的投影就是对称的三相正弦量。 图2-8 逆变电路 由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数Sx ( x = a、b、c) 为: (2-30) (Sa、Sb、Sc)的全部可能组合共有八个,包括6个非零矢量Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量 U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx ( x=? a、b、c)= (100),此时 (2-30) 求解上述方程可得:Uan=2Ud /3、UbN=-U d/3、UcN=-Ud /3。同理可计算出其它各种组合下的空间电压矢量,列表如下: 表2-1 开关状态与相电压和线电压的对应关系

空间矢量PWM算法的理解_Revise

空间矢量PWM算法的理解 姜淑忠 上海交通大学电气工程系(上海200030) 摘要:继正弦波PWM(SPWM)开关算法之后,空间矢量(Space Vector)PWM (SVPWM)已成为三相或多相逆变器的开关算法。本文以SVPWM的基本原理为基础,计算开关时间,讨论开关向量的选择原则,并用数字信号处理器(DSP)实现SVPWM算法。最后根据电压综合向量,推导相电压有效值与交流输入电压有效值的关系。 关键词:SVPWM,开关向量,开关时间,相电压有效值 Understanding of Space Vector PWM Algorithm S.Z. Jiang Department of Electrical Engineering, Shanghai Jiao Tong University (Shanghai 200030) Abstract: Following the SPWM algorithm, SVPWM algorithm has been adopted in three-phase and multi-phase inverters. Based on the principle of SVPWM, the calculation of switch time, the selection of switch vector and the realization on DSP are presented in this paper. Finally the relation between the rms of phase voltage and the rms of ac source is derived from the complex voltage vector. Keywords: SVPWM, Switch vector, Switch time, RMS of phase voltage 1、前言 无论是一般的变频调速,还是磁场定向控制,当计算出静止直角坐标系中的电压综合向量后,都要采用SVPWM算法获得三相逆变器六个开关器件的开关信号。早期

三电平三相逆变器27空间矢量速记法

三相三电平逆变器 空间电压矢量速记法 张庆范 山东大学 二极管中点箝位式NPC(Neutral Point Clamped)三相三电平逆变器,每相桥臂有四个电力电子器件T1、T2、T3、T4,四个续流二极管D1、D2、D3、D4,二个箝位二极管D5、D6。 每相桥臂可以安排三种开关状态,若用S a 、S b 、S c 表示A、B、C三相桥臂的开关状态,则S a 、S b 、S c应是三态开关变量。 用S a 变量表示A相桥臂开关状态。 若T1、T2断,T3、T4通,S a = 0,A接电源负端,V a0、=-V D/2 若T1、T4断,T2、T3通,S a = 0,A接电源0端,V a0、=0 若T3、T4断,T1、T2通,S a = 0,A接电源正端,V a0、=+V D/2 A相桥臂开关S a开关变量状态 a b c a b c 都有三种开关状态0、1、2(或N、O、P,-1、0、1)。 S a = 0、1、2 S b = 0、1、2 S c = 0、1、2

a S b S c)3,每一种开关状态(S a S b S c)都对应一组确定的电压V a0、V b0、 V c0,从而对应一个确定的空间电压矢量V。 对应的27个特定空间电压矢量是V0、V1、…、V26,定义矢量 (S a S b S c)的各个矢量为: V0(000),V1(001),V2(002),V3(010),V4(011),V5(012),V6(020),V7(021) ,V8(022),V9(100),V10(101),V11(102),V12(110),V13(111),V14(112),V15( 120),V16(121),V17(122),V18(200),V19(201),V20(202),V21(210),V22(211 ), V24(220), V25(212),V26(221),V27(222)。 以上用文字叙述的方法记住这27种空间电压矢量,确实是件不 容易的事,不如发明一种新的快速记忆方法——空间电压矢量速记 法。 空间电压矢量速记法 C相3列9行0、1、2 B相9行3列0、1、2 A相9行3列0、1、2。

永磁同步电机空间矢量调制原理与设计

空间矢量调制原理与设计 3.3.1空间矢量调制原理 空间矢量调制技术(SVPWM )是从电机的角度出发,在电机坐标变换理论和电机统一理论的基础上建立电机数学模型,通过逆变器不同开关状态的变化,使电机的实际磁链最大限度的逼近理想磁链圆。SVPWM 的形成是在20世纪80年代,德国科学家H.W.Vanderbroeck 博士在脉宽调制中引入了空间矢量技术,其目标是利用逆变器在不同开关状态下产生的八个基本电压空间矢量(两个零电压空间矢量和六个非零电压空间矢量)合成所需要的电压空间矢量。其主要的思想是在一个PWM 周期内,选择相邻的两个非零电压矢量和零电压矢量,通过合理分配电压矢量的工作时间来合成所需的参考电压空间矢量。跟直接的正弦波调制技术相比,采用SVPWM 算法的逆变器输出电压谐波小,畸变少,从而定子绕组中的电流谐波也少,具有较高的直流电压利用率。SVPWM 的控制方案有三个部分,即三相电压的区间分配、空间矢量的合成和控制算法,一般来说,SVPWM 的算法主要根据以下步骤完成: (1) 判断参考空间电压矢量的所处扇区; (2) 计算所在扇区的开关空间电压矢量的工作时间; (3) 根据电压矢量工作时间合成 PWM 信号。 本文将三相逆变器及永磁同步电机结合起来分析SVPWM 算法的原理,如图2-3所示。其输出电压由三对功率开关器件控制开通,由于逆变器的上桥臂和下桥臂开关状态互补,因此可以用a 、b 、c 三个功率器件的开关状态来描述逆变器的工作状态,共有八种组合,分别对应着八种开关模式下的线电压和相电压,如表2-1所示,其中1代表功率器件的开状态,0代表关状态。与三相电压对应的α-β坐标系下的方程为 ??????????????????????-- -=??????C B A U U U u u 232302121132βα 图2-3 三相逆变器及负载结构图 表2-1中所列的us α、us β电压值为基本空间矢量的α、β分量,其对应着是开关管的开关信号(a, b , c )。根据8种开关序列所产生的2个零电压空间矢量和6个非零基本电压空间矢量可以得到如图2-4所示的SVPWM 空间电压矢量图。 表2-1 功率器件不同开关模式下的相电压和线电压和空间矢量

空间矢量脉宽调制(SVPWM)的开环

采用空间矢量脉宽调制(SVPWM )的开环 VVVF 调速系统的综合实训 一、实验目的 1、理解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 2、熟悉MCKV 电机控制系统的CPU 模块、IPM 模块和机组各部分硬件模块,并确认工作正常。 3、了解SVPWM 变频器运行参数和特性。 二、实验内容: 1、熟悉CCS 编程环境,并在CCS 下编译、下载、运行DSP 软件工程。 2、观察并记录定子磁链周期和频率,并分析他们之间的关系。 3、观测并记录启动时电机定子电流和电机速度波形)(t f i v =与)(t f n =; 三、实验预习要求 1、阅读并掌握三相交流异步电机VVVF 调速系统工作原理。 2、了解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 3、阅读本次实验指导书和实验程序,写好实验预习报告。 4、在MATLAB/Simulinlk 环境中搭好仿真模型,结合本程序LEVEL1功能框图,完成电流速度双闭环系统交流异步电机矢量控制仿真。 四、实验原理 当用三相平衡的正弦电压向交流电动机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转矢量(磁链圆)。SVPWM 就是着眼于使形成的磁链轨迹跟踪由理想三相平衡正弦波电压源供电时所形成的基准磁链圆,使逆变电路能向交流电动机提供可变频电源,实现交流电动机的变频调速。 现在以实验系统中用的电压源型逆变器为例说明SVPWM 的工作原理。三相逆变器由直流电源和6个开关元件( MOSFET) 组成。图1是电压源型逆变器的示意图。 图1 电压源型逆变器示意图

对于每个桥臂而言,它的上下开关元件不能同时打开,否则会因短路而烧毁元器件。其中A 、B 、C 代表3 个桥臂的开关状态,当上桥臂开关元件为开而下桥臂开关元件为关时定义其状态为1 ,当下桥臂开关元件为开而上桥臂开关元件为关时定义其状态为0。这样A 、 B 、 C 有000 、001 、010 、011 、100 、101 、110 、111共 8种状态。逆变器每种开关状态对应不同的电压矢量,根据相位角不同分别命名为U 0(000)、U 1(100)、U 2(110)、U 3(010)、U 4(011)、U 5(001)、U 6(101)、U 7(111)如图2所示。 图2 基本电压空间矢量 其中U 0(000)和U 7(111)称为零矢量,位于坐标的原点,其他的称为非零矢量,它们幅值相等,相邻的矢量之间相隔60°。如果按照一定顺序选择这六个非零矢量的电压空间矢量进行输出,会形成正六边形的定子磁链,距离要求的圆形磁链还有很大差距,只有选择更多的非零矢量才会使磁链更接近圆形。 SVPWM 的关键在于用8个基本电压空间矢量的不同时间组合来逼近所给定的参考空间电压矢量。在图3中对于给定的输出电压U ,用它所在扇区的一对相邻基本电压x U 和60 x U 来等效。此外当逆变器单独输出零矢量时,电动机的定子磁链矢量是不动的。根据这个特点,可以在载波周期内插入零矢量,调整角频率,从而达到变频目的。 图3 电压空间的线性组合

两电平电压源逆变器空间矢量调制方案

任务2:两电平电压源逆变器空间矢量调制方案 周乐明 学号:S1******* 电气2班 摘要 提出了三相两电平逆变器的空间矢量调制方法,详细讨论了两 电平逆变器的工作原理及空间矢量调制的基本原理,并给出一个具体的仿真实例,通过仿真 ,可以得出实际运行中的电压、电流的波形,而且在文中给出了实例的电路原理图,使得对 于空间矢量调制的原理得以更加清楚的认识。 1. 两电平电压源逆变器空间矢量调制 1.1 结构试图 三相电压型逆变器电路原理图如图2.1所示。定义开关量a ,b ,c 和a ',b ',c '表示6个功率开关管的开关状态。当a ,b 或c 为1时,逆变桥的上桥臂开关管开通,其下桥臂开关管关断(即a ',b '或c '为0);反之,当a ,b 或c 为0时,上桥臂开关管关断而下桥臂开关管开通(即a ',b '或c '为1)。由于同一桥臂上下开关管不能同时导通,则上述的逆变器三路逆变桥的组态一共有8种。对于不同的开关状态组合(abc ),可以得到8个基本电压空间矢量。各矢量为: 22j j dc 33out 2()3 U U a be ce ππ-=++ (2-1) 则相电压V an 、V bn 、V cn ,线电压V ab 、V bc 、V ca 以及out ()U abc 的值如下表2-1所示(其中U dc 为直流母线电压)。 a c' b' a'b c U dc A B C N Z 图2.1 三相电压型逆变器原理图 表2-1 开关组态与电压的关系 a b c V an V bn V cn V ab V bc V ca out U 0 0 0 0 0 0 0 0 0 0 1 2U dc /3 -U dc /3 -U dc /3 U dc -U dc dc 23 U

SVPWM空间矢量脉宽调制

SVPWM 空间矢量脉宽调制(Space Vector Pulse Width Modulation) SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。 普通的三相全桥是由六个开关器件构成的三个半桥。这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态. 其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。因此称其为零矢量。另外6种开关状态分别是六个有效矢量。它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。 当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。用电压矢量按照不同的时间比例去合成所需要的电压矢量。从而保证生成电压波形近似于正弦波。 在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。为了计算机处理的方便,在合成时一般是定时去计算(如每0.1ms计算一次)。这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。由于计算出的两个时间的总合可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。由于在这样的处量时,合成的驱动波形和PWM很类似。因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。 需要明白的是,SVPWM本身的产生原理与PWM没有任何关系,只是像罢了。SVPWM的合成原理是个很重要的东东,它并不只用在SVPWM,在其它一些应用中也很有用的。当你见到时就明白了。具体可以参看IEEE的很多论文。 当然,SVPWM与SPWM的原理和来源有很大不同,但是他们确实殊途同归的。SPWM由三角波与正弦波调制而成,而SVPWM却可以看作由三角波与有一定三次谐波含量的正弦基波调制而成,这点可以从数学上证明。 SVPWM特点: 1.在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。 2.利用电压空间矢量直接生成三相PWM波,计算简单。 3.逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15%

空间矢量脉宽调制SVPWM控制法

第三节空间矢量脉宽调制SVPWM控制法 1.3.1 电压空间矢量SVPWM技术背景 我们先来回顾一下交流异步电机的工作机理:三相平衡的交流电压在电机定子绕组上产生三相平衡的交流电流;三相平衡的交流电流在定子内腔产生一个幅值恒定的磁链,该磁链在定子内腔旋转,旋转的角速度与电源(电流)的角速度相同;旋转的轨迹形成一个圆形的空间旋转磁场;旋转磁场通过电磁力矩带动转子旋转,在电动机状态下,转子旋转的角速度低于旋转磁场的角速度:转差,转差提交流异步电机产生力矩的根本原因。 前面所讨论的SPWM技术是从电源的角度出发,来合成电机的激励源。由交流异步电机的工作机理我们想到:可不可以直接从动力源出发,来直接合成一个圆形的旋转磁场呢?如果可以,这样的控制方法显然更直接,效果应更好。 如何直接合成一个圆形的旋转磁场呢? 对于交流电机,我们注意到以下的事实: 电机定子是固定的,不旋转的; 施加在定子上的电压是三相平衡的交流电:幅度相同,相位上彼此偏差120o; 自然地,我们想到:定义异步电机的三相定子绕组上的电压为平面上的一静止坐标系的三个轴,电机的相电压在各自的轴向上依正弦规律变化。见图2-1-10。 图2-1-10:相电压空间矢量图 由图2-1-10知,三个电压轴向量不同线性组合可以合成该平面上的任一个电压矢量u,即:

ππ34332201***j j j e A e A e A ++= 当三个电压轴向量对应于三相平衡交流电时,即:t U A m ωsin 1=, )32sin(2πω+=t U A m ,)3 4sin(3πω+=t U A m ,不难得到,所合成的电压矢量为: )sin (cos 2 3t j t U m ωω+= jwt m e U 2 3= 式(2-3-1) 由式(2-3-2)知,所合成的电压空间矢量具有以下特征: 电压矢量模(幅值)恒定; 电压矢量绕中性点旋转,旋转的轨迹是一个圆; 电压矢量绕中性点匀速旋转,旋转的角速度为ω; 电压矢量旋转的角速度与交流电源(电流)的角速度相同。 我们来看看电压空间矢量与空间旋转磁链之间的关系。 根据电机学理论,空间电流矢量,空间磁通矢量,电压空间矢量之间的关系为: dt d r i u ψ+=* 其中r *是电机绕组上的阻抗压降,在电机转速不是很低的情况下,通常可以忽略。于是上式可以写成: dt d ≈ 我们知道是一个空间旋转磁场:jwt m e ψ=, 于是=ψ=ψ≈+ππωωωω21)21(***)(j t j m t j m e e dt e d 式(2-3-2) 很明显,电压空间矢量,空间磁通矢量存在一维的线性关系,电压空间矢量的幅值(模)只与电机的角速度ω(转速)有关;相位上超前 π2 1。不难理解,这是由电机的电感属性引起的。 于是空间旋转磁场的特性可以用空间电压矢量的特性来等效。

电压空间矢量PWM控制

文章编号:1009-0193(1999)04-0086-05 电压空间矢量(磁链追踪)PWM控制 研究与仿真 翁颖钧,吴守箴 (上海铁道大学电气工程系,上海200331) 摘要:为了提高电机的功率因数,降低开关损耗,基于气隙磁通控制原理,以电压矢量组合来逼近圆形磁链轨迹,而电压矢量的选择对应不同开关模式,因此构成电压矢量控制PWM逆变器。利用C语言仿真,该法输出电压较一般SPWM 逆变器提高15%,每次状态切换只涉及一个元件,开关损耗降低,且模型简单,适用于各种PWM调速装置。 关键词:电机;空间矢量;PWM控制 中图分类号:TM301.2 文献标识码:A 1 基本原理 由电机学可知,在由三相对称正弦电压供电时,电机的定子磁链的幅值是恒定的,并以恒速ω 1 旋转。磁链矢量顶端运动轨迹形成圆形的空间旋转磁场(简称磁链圆),我们可以用定子磁链的矢量式来表述: 式中,λ m 为的幅值,ω 1 为旋转角速度。当转速不是很低时,定子电阻压降较 小,可以忽略不计,则定子电压与磁链的近似关系可表示成:

上式表明,电压矢量V 1的大小等于λ 1 的变化率,而其方向则与λ 1 的运动方向一 致。由式(1),(2) 可得: 由(3)式可见,当磁链幅值λ m 在运动过程中一定时,的大小与ω 1 (或供电电压 频率f 1 )成正比,其方向为磁链圆轨迹的切线方向。当磁链矢量在空间旋转一周时,电压空间矢量也连续地按磁链圆的切线方向运动经过2π弧度,其轨迹与磁链圆是重合的。这时,我们就把气隙旋转磁场的轨迹与电压空间矢量联系起来。从三相逆变器—异步电机原理图(见图1)可知,为了使电动机对称工作,必须三 相同时供电,从逆变器的拓扑结构以及式(2)来看,每个输出电势V ao ,V bo ,V co 都具有二个值,例如±V d /2,如此线性组合即可得到矢量23=8种电压类型。图(2) 表示了电压空间矢量的放射状分布。每个矢量标注了 0(000)~ 7 (111),0表 示同一桥臂的二个晶闸管的下面一个导通,1表示上侧的导通,k表示对应二进制数的十进制数。一旦开关方式确定,那么对应的k也就唯一确定。由式(4)可知: λ 为磁链矢量的初始值(4) 图1 三相逆变器—异步电动机原理图图2 电压空间矢量的分布 利用逆变器的这8种电压矢量的线性组合,就可获得更多的与V 1~V 8 相位不同的 新的电压空间矢量,最终构成一组等幅不同相的电压空间矢量,由式(4)知最终迭加形成尽可能逼近圆形旋转磁场的磁链圆,这就形成了电压空间矢量控制的PWM逆变器。由于它间接控制了电机的旋转磁场,所以也可称为磁链追踪控制的PWM逆变器。

DSP空间矢量脉宽调制技术

第6章空间矢量脉宽调制技术 例1、CLARK变换的DSP实现 图CLARK变换实现波形图 /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换相关变量定义 ----------------------------------------------------------------------------------------------------------------------------------------*/ typedef struct { float32 As; // 输入:A相定子电流 float32 Bs; // 输入:B相定子电流 float32 Alpha; // 输出:静止坐标系d轴定子电流 float32 Beta; // 输出:静止坐标系q轴定子电流 void (*calc)(); // 计算函数指针 } CLARKE; typedef CLARKE *CLARKE_handle; /*---------------------------------------------------------------------------------------------------------------------------------------- 定义CLARKE变换初始化参数 ----------------------------------------------------------------------------------------------------------------------------------------*/ #define CLARKE_DEFAULTS { 0, \ 0, \ 0, \ 0, \ (void (*)(Uint32))clarke_calc } /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换函数原型CLARKE.C ----------------------------------------------------------------------------------------------------------------------------------------*/ void clarke_calc(CLARKE_handle); #include "dmctype.h"

相关文档
最新文档