_数字信号处理_中循环卷积的简单计算方法

_数字信号处理_中循环卷积的简单计算方法
_数字信号处理_中循环卷积的简单计算方法

2017数字信号处理模拟题a答案

1. 两个有限长序列x1(n),0≤n ≤33和x2(n),0≤n ≤36,做线性卷积后结果的长度是 70 , 若对这两个序列做64点循环卷积,则圆周卷积结果中n= 6 至 64 为线性卷积结果。 2. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 ; 输入为x (n-3)时,输出为 3. 若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 4. 如果一台计算机的速度为平均每次复乘5μS ,每次复加0.5μS ,用它来计算512 点的DFT[x(n)],问直接计算需要多少时间,用FFT 运算需要多少时间。 1、 直接计算 复乘所需时间 62621510510512 1.31072T N s --=??=??= 复加所需时间()6610.51010.5105125110.130816T N N s --=???-=???= 所以12 1.441536T T T s =+= 2、用FFT 计算 复乘所需时间 66122512510log 510log 5120.0115222 N T N s --=?? =??= 复加所需时间662220.510log 0.510512log 5120.002304T N N s --=??=??= 所以120.013824T T T s =+=

6.设系统差分方程 y(n)=ay(n-1)+x(n) 其中x(n)为输入,y(n)为输出。当边界条件选为y(-1)=0时,是判断系统是否线性的、移不变的

7.用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出其中一种的信号流图。 ()() ()() 22 41 1.41()0.50.90.8Z Z Z H z Z Z Z +-+= -++

卷积计算

卷积计算

实验二卷积计算及定理 一、授课目的 利用卷积方法观察分析信号、系统的频谱特性 二、授课内容 1、卷积计算 在MATLAB 中,提供了卷积函数conv,即y=conv(x,h),调用十分方便。 n=1:50; % 定义序列的长度是50 hb=zeros(1,50); % 注意:MATLAB 中数组下标从1 开始 hb(1)=1; hb(2)=2.5; hb(3)=2.5; hb(4)=1; close all; subplot(3,1,1);stem(hb);title('系统hb[n]'); m=1:50; % 定义序列的长度 T=0.001; % 定义序列的采样率 A=444.128; %设置信号有关的参数 a=50*sqrt(2.0)*pi; w0=50*sqrt(2.0)*pi; x=A*exp(-a*m*T).*sin(w0*m*T); %pi 是MATLAB 定义的π,信号乘可采用“.* ”subplot(3,1,2);stem(x);title('输入信号x[n]'); y=conv(x,hb); subplot(3,1,3);stem(y);title('输出信号y[n]');

2、卷积定律验证 (1) n=1:50; % 定义序列的长度是50 hb=zeros(1,50); % 注意:MATLAB 中数组下标从1 开始 hb(1)=1; hb(2)=2.5; hb(3)=2.5; hb(4)=1; m=1:50; % 定义序列的长度 T=0.001; % 定义序列的采样率 A=444.128; %设置信号有关的参数 a=50*sqrt(2.0)*pi;

利用傅立叶变换计算线性卷积

实验一 利用傅立叶变换计算线性卷积 一、实验目的 1. 掌握MATLAB 的使用。 2. 掌握用直接法计算线性卷积的原理和方法 3. 掌握利用FFT 及IFFT 计算线性卷积的原理和方法 二、实验原理及方法 1、线性卷积的定义 序列)1N n 0(),n (x -≤≤和序列)1M n 0(),n (h -≤≤的线性卷积y(n)=x(n)*h(n)定义为: 10),()()(1 0-+≤≤-?= ∑-=M N n m n h m x n y N m 利用直接法计算线性卷积即用线性卷积的定义计算。 2、利用FFT 及IFFT 计算线性卷积的原理和方法 如果将序列x(n)和h(n) 补零,使其成为长度为L 的序列(L>=N+M-1), 则x(n)与h(n)的线性卷积y(n)=x(n)*h(n)与L 点圆周卷积相等,而圆周卷积可采用FFT 及IFFT 完成,即求y(n)=x(n)*h(n)可转化为: 对上式两端取FFT 得: Y(k)=X(k)H(k) 其中:X(k)=FFT[x(n)], H(k)=FFT[h(n)] 则:y(n)=IFFT[Y(k)] 三、实验仪器及材料 ⒈ 计算机,并装有MATLAB 程序 ⒉ 打印机

四、实验步骤 1、已知两序列: ???>≤≤=3n ; 03n 0;)5/3()n (h n 用Matlab 随机生成输入信号X (n ),范围为0~2; 2、得出用直接法(定义)计算线性卷积y(n)=x(n)*h(n)的结果; 3、用Matlab 编制利用FFT 和IFFT (圆周卷积)计算线性卷积y(n)=x(n)*h(n)的程序; 分别令圆周卷积的点数为L=5,7,8,10,打印结果。 4、对比直接法和圆周卷积法所得的结果。 五、实验说明: 1、实验前复习线性卷积,圆周卷积及FFT 内容。 2、利用FFT 计算线性卷积是将x(n)、h(n)用补零的方法延长到N+M-1,再用圆周卷积完成,因此要求x(n)、h(n)延长后的长度满足L>=N+M-1,才能保证用圆周卷积计算结果与直接法计算结果相同。 六、分析整理实验数据,写出实验报告 实验报告要求: 1、 手工计算两序列的线性卷积,并与计算机的结果比较,以验证手工计算的正确性。 2、 令L=5,用已编制好的程序分别采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n),并打印结果。 3、 令L=7,8,10,用已编制好的程序分别采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n),并对比所得的结果,打印L=7,8,10的结果。 4、 打印程序. 七、思考题 说明为什么L=7,8,10时采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n)的结果相同,而与L=5时计算结果不同? 附录:

数字信号处理课程设计-用FFT实现快速卷积

洛阳理工学院 课程设计报告 课程名称数字信号处理课程设计 设计题目用FFT实现快速卷积 专业通信工程 班级 学号 姓名 完成日期2015.06.15

课程设计任务书 设计题目:用FFT实现快速卷积 设计内容与要求: FFT的出现,使DFT在数字通信、语音信号处理、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、地震及数值分析等各个领域都得到广泛应用。然而,各种应用一般都以卷积和相关运算为依据。在实际应用中,为了分析时域离散LTI系统或者序列滤波时,需要计算两个序列的线性卷积。为了提高运算速度,可以利用FFT来实现。 要求:参考课本上第90页的内容(3.4.1 用DFT计算线性卷积),设计并编写程序来实现重叠相加法计算线性卷积。 课程设计评语 成绩: 指导教师:_______________ 年月日

目录 第1章概述 (1) 1.1Matlab简介 (1) 1.2设计目的 (2) 1.3设计原理 (2) 1.3.1算法产生背景 (2) 1.3.2算法基本思想 (2) 第2章程序设计 (5) 第3章分析与测试 (7) 3.1循环卷积设计 (7) 3.2 线性卷积设计 (9) 3.3 设计结果 (11) 第4章心得体会 (12) 参考文献 (13)

第1章概述 随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域,数字信号处理在通信、语音、图像、自动控制、医疗和家用电器等众多领域得到了广泛的应用。任意一个信号都具有时域与频域特性,信号的频谱完全代表了信号,因而研究信号的频谱就等于研究信号本身。通常从频域角度对信号进行分析与处理,容易从信号的特性获得更加深入的了解。因此,信号的频谱分析是数字信号处理技术中一种较为重要的工具。 1.1 Matlab简介 Matlab语言是当今国际上科学界最具影响力、也是最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它是由美国Math Works 公司于1982年推出的软件产品,取名来源于Matrix Laboratory,简称“Matlab”。Matlab是一个完整的、可扩展的、高性能数值计算的可视化软件,是一种进行科学工程计算的交互式程序设计语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。 Matlab 语言在各国高校与研究单位起着重大的作用,MatLab控制系统仿真软件是当今国际控制界公认的标准计算软件,1999年春MatLab 5.3版问世,使MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。特别是Simulink这一个交互式操作的动态系统建模、仿真、分析集成环境的出现,使人们有可能考虑许多以前不得不做简化假设的非线性因素、随机因素,从而即使学生没有对非线性动态系统进行分析研究的数学基础,仍可通过仿真来认知非线性对系统动态的影响。它的信号处理工具箱包含了各种经典的和现代数字信号处理技术,是一个非常优秀的算法研究与辅助设计工具。

关于卷积计算

这里说到的卷积计算,只是指我们对图像进行某种滤波处理或者是边缘检测、锐化等应用要用到的运算。通常,要进行卷积的话就必须要有一个模板(掩模),这些模板的实际就是在卷积计算是所用到的点乘系数,下面会详细说明。当然,以上说的只是一种理解,而不是卷积本身的概念。下面举例说明一下卷积运算。 假设一图像(矩阵)为: 1 2 3 4 5 6 7 8 9 现在要对其进行锐化,采用用Roberts 算子和Sobel 算子,其中Roberts 算子 采用的计算模板为 ,根据其计算公式,以上述中的图(矩阵)的中间的点(5)为例,该点用Roberts 的模板计算过程如下: g(i,j) = |-5 + 9| + |-6 + 8| = 4 + 2 = 6,也就是说,5 这点通过卷积计算之后的值为6。在计算的时候,只要把矩阵中的点与模板的点一一对应即可: 1 2 3 4 5 6 7 8 9 在要进行处理的点5中,对应模板上的位置,就得出5的系数是-1,6和8的系数是0,9的系数是1(针对x 模板而言,如果是针对y 模板,则5和9的系数是0,6的系数是-1,8的系数是1),然后求两模板运算结果的绝对值之和,参照Robert 算子的公式。 然后到Sobel 算子,它的模板比Roberts 的要复杂一些,但运算的方法是一样的。 采用上面所说的对应方法,根据dx 和dy ,可得1和7的系数是-1, 4的系 数是-2,6的系数是2,3和9的系数是1,其余为0(针对x 模板),Sobel 算子的Roberts 最大的一个不同就是,前者计算的当前位置是模板的中心位置,后者计算的当前位置是左上角,一般来说,模板采取都是m ×m (m 是奇数),所以大部分模板的计算当前位置都是模板的中心位置(我们接触到的模板就只有Robert 算子不是奇数×奇数的)。至于模板,题目应该会给定,但上面所说到的这两个模板,大家最好还是记一记。而在空间平滑滤波增强中,中值滤波和邻域平均,这两者与卷积的计算有相似之处,但卷积是不同的。其中两者同样具有模板的概念,但中值滤波只是在模板覆盖的点里求中值,领域平均则是求平均值,具体参看书本60页到64页。。 (,)|(1,1)(,)||(1,)(,1)| g i j f i j f i j f i j f i j =++-++-+??????????---=101202101x d ??????????---=121000121y d

数字信号处理实验三 卷积

3-1 x = [1,1,2,3,5,8]; nx=length(x) h = [5,7,8,3,3,6,4,2]; nh=length(h) L = nx+nh-1 n = 0:(L-1); y = conv(x,h) stem(n,y,'*'); title('x 与h 的卷积结果') xlabel('n');ylabel('y(n)');grid; 0246 81012020 40 60 80 100 120 140 x 与h 的卷积结果 n y (n ) 3-2 function [y,ny] = convwthn(x,nx,h,nh) ny1 = nx(1)+nh(1); ny2 = nx(end)+nh(end); y = conv(x,h);ny = [ny1:ny2];

3-3 x = [3,11,7,0,-1,4,2]; nx = -3:3 h = [2,3,0,-5,2,1]; nh = -1:4 [y,ny] = convwthn(x,nx,h,nh); stem(y,ny,'*');title('y 的波形'); xlabel('n');ylabel('y(n)');grid; -60-40-200 204060-4-2 2 4 6 8 y 的波形 n y (n )

3-4 nx = -10:10; nh = -10:10; x = 5+3*cos(0.2*pi*nx); ay = [1,-0.5,0.25,0]; ax = [1,2,0,1]; m = impseq(0,-10,10); %输入一个单位冲激函数 h = filter(ax,ay,m); %用filter 函数求系统的系统函数 [y,ny] = convwthn(x,nx,h,nh) %利用卷积的方法求系统的输出 stem(ny,y,'*');title('系统输出y(n)'); xlabel('n');ylabel('y(n)');grid; -20-15-10-50 5101520-50 5 10 15 20 25 30 35 40 45 系统输出y(n) n y (n )

利用FFT计算卷积

利用FFT 计算卷积 一.线卷积的作用及定义 线卷积包括卷积积分和卷积和。 1.线卷积的作用 求解线性系统对任意激励信号的零态响应。 2.卷积积分 ) (*)(d )()()(t h t x t h x t y =-= ? ∞∞ -τττ 3.卷积和 离散系统的时域分析是,已知离散系统的初始状态和输入信号(激励),求离散系统的输出(响应),两种方法:递推解法和离散卷积法。 卷积和:)()()()()(n h n x m n h m x n y m *=-= ∑ ∞ -∞ = 二.圆周卷积的定义 圆周移位:一周期为N 的周期序列, 可视为一主值序列在圆周上的循环移位。周期序列在时间轴上左移 右移m 反时针 转称为圆周移位。 时域圆周卷积(循环卷积) )()()(n h n x n y ?=()()()∑ -=-= 1 )(N m N N n R m n h m x 条件:两序列实现圆卷积的条件是:长度相等,如果不相等, 可通过增补零值来使之相等。 特点:卷积求和范围只在10-≤≤N m 有限区间进行;卷积时不作反褶平移, 而是反褶圆移 步骤:量置换→反褶→圆移→相乘→求和。 三.两者的关系 有限长序列的圆卷积和线卷积的关系 在一般情况下,两序列的圆卷积和线卷积是不相等的,这是因为:线卷积是

平移, 结果长度为121-+=N N L ;而圆卷积是圆移,结果长度为2 1 N N L ==。只有 在两卷积的结果长度相时,二者才有相同的结果。解决方法是:在作圆卷积时,通过加零的方法,使两序列的长度都增加到121-+=N N L ,此时,圆卷积的结果和线卷积同。 四.利用FFT 计算卷积 工程实际需要解决的卷积:)()()(n h n x n y *=,但其计算量很大。 而圆卷积为:)()()(n h n x n y ?=,便于采用FFT 算法, 故计算速度快。若将线卷积的两个序列用增补零的方法将长度取为一致,此时两序列的离散线卷积和圆周卷积结果是相等的,这样就则可以通过圆卷积来快速计算线卷积。 1、 利用FFT 计算卷积的步骤 (1)设两序列原长度分别为:N 和M ,将长度增加到1-+≥M N L (L 为2的整数次幂); (2)用FFT 法求加长序列的DFT 频谱; (3)计算两序列DFT 频谱的乘积; (4)用IFFT 求DFT 频谱乘积的逆变换,便得两序列的离散线卷积。 2、分段快速卷积 设)(n x 为长序列,)(n h 为短序列,长度为M ,则两序列的离散线卷积可以写成如 下 形 式 , ∑∑∑-=-+=-=+-+ +-+ -= *=1 1 )1(1 2)()()()()()()()()(N m n K kN m N N m m N h m x m N h m x m N h m x n h n x n y 上述每个子段长度为N 。为便于圆卷积计算,将长度通过补零加长为:1-+=M N L x (n 0 n h (n 根据各子段()n x k 增补零的部位不一样而分两种算法。

卷积的快速算法++教程文件

《数字信号处理》 课程设计报告 专业:通信工程 班级:通信08-2BF 组次:第10组 姓名: 学号:14082300925

一、 设计目的 卷积运算是一种有别于其他运算的新型运算,是信号处理中一种常用的工具。随着信号与系统理论的研究的深入及计算机技术发展,卷积运算被广泛地运用到现代地震勘测,超声诊断,光学诊断,光学成像,系统辨识及其他诸多新处理领域中。了解并灵活运卷积运算用去解决问题,提高理论知识水平和动手能力,才是学习卷积运算的真正目的。通过这次课程设计,一方面加强对《数字信号处理》这门课程的理解和应用,另一方面体会到学校开这些大学课程的意义。 二、设计任务 探寻一种运算量更少,算法步骤更简单的算法来实现卷积运算,文中主要通过阶梯函数卷积计算方法和斜体函数卷积计算方法对比来得出最终结论。 三、设计原理 1,什么是卷积? 卷积是数字信号处理中经常用到的运算。其基本的表达式为: ()()()∑=-= n m m n x m h n y 0 换而言之,假设两个信号f 1(t)和f 2(t),两者做卷积运算定义为 f(t) d 做一变量代换不难得出: f(t) d =f 1(t)*f 2(t)=f 2(t)*f 1(t) 在教材上,我们知道用图解法很容易理解卷积运算的过程,在此不在赘述。 2,什么是阶梯函数 所谓阶梯函数,即是可以用阶梯函数u(t) 和u(t-1)的线性组合来表示的函数,可以看做是一些矩形脉冲的集合,图1-1给除了两个阶梯函数的例子。

1—1 其中 f(t)=2u(t)+u(t-1)-2u(t-2)-u(t-3), h(t)= 2u(t)-u(t-1)+2u(t-2)-3u(t-3). 以图1—1中两个阶梯函数为例介绍本文提出的阶梯函数卷积算法。 根据卷积的性质(又称为杜阿美尔积分),上述f(t)与h(t)的卷积等于f(t)的导数与h(t)的积分的卷积,即: f(t)*h(t)=* 由于f(t)为阶梯函数,因此其导数也为冲击函数及其延时的线性组合, 如图1—2(a) 所示。

数字信号处理简答题

数字信号处理简答题

1.举例说明什么是因果序列和逆因果序列,并分别说明它们z 变换的收敛域。 答:因果序列定义为x (n )=0,n<0,例如x (n )=)(n u a n ?,其z 变换收敛域:∞≤<-z R x 。逆因果序列的定义为x (n)=0,n>0。例如x (n )=()1--n u a n ,其z 变换收敛域:+<≤x R z 0 2.用差分方程说明什么是IIR 和FIR 数字滤波器,它们各有什么特性? 答: 1)冲激响应h (n )无限长的系统称为IIR 数字滤波器,例如 ()()()1)(21)(1021-++-+-=n x b n x b n y a n y a n y 。 IIR DF 的主要特性:①冲激响应h (n )无限长;②具有反馈支 路,存在稳定性问题;③系统函数是一个有理分式,具有极点 和零点;④一般为非线性相位。 (2)冲激响应有限长的系统称为 FIR DF 。例如 ()2)1()()(21-+-+=n x b n x b n x n y 。 其主要特性:①冲激响应有限长;②无反馈支路,不存在稳 定性问题;③系统函数为一个多项式,只存在零点;④具有 线性相位。 3.用数学式子说明有限长序列x (n )的z 变换X (z )与其傅里叶变换X )(ωj e 的关系,其DFT 系数X (k )与X (z )的关系。 答: (1)x (n )的z 变与傅里叶变换的关系为()() ωωj e Z e X z X j == (2)x (n )的DFT 与其z 变换的关系为() ()K X z X k N j K N e w Z ===- 2 π 4.设x (n )为有限长实序列,其DFT 系数X (k )的模)(k X 和幅角arg[X (k )]各有什么特点? 答:有限长实序列x (n )的DFT 之模()k x 和幅角[])(arg k X 具有如下的性质: (1))(k X 在0-2π之间具有偶对称性质,即)()(k N X k X -= (2)[])(arg k x 具有奇对称性质,即[]()[]k N X k X --=arg )(arg 5.欲使一个FIR 数字滤波器具有线性相位,其单位取样响应)(n h 应具有什么特性?具有线性相位的FIR 数字滤器系统函数的零点在复平面的分布具有什么特点? 答: 要使用FIR 具有线性相位,其h (n )应具有偶对称或奇对称性质,即 h(n)=h(N-n-1)或h(n)=-h(N-n-1)。具有线性相位的FIR DF 的零点分布的特点 :①互为倒数出现;②若h (n )为实序列,则零点互共轭出现。

二维矩阵卷积的并行计算方法

第52卷第3期2018年3月浙 江 大 学 学 报(工学版)J o u r n a l o f Z h e j i a n g U n i v e r s i t y (E n g i n e e r i n g S c i e n c e )V o l .52N o .3M a r .2018 收稿日期:20170304.网址:w w w.z j u j o u r n a l s .c o m /e n g /f i l e u p /H T M L /201803013.h t m 基金项目:国家自然科学基金资助项目(60133007,61572025);国家重点研发计划资助项目(2016Y F B 0200401). 作者简介:张军阳(1987 ),男,博士生,从事体系结构二机器学习二嵌入式系统研究.o r c i d .o r g /0000-0002-2993-4494.E -m a i l :z h a n g j u n y a n g 11@n u d t .e d u .c n 通信联系人:郭阳,男,教授.o r c i .o r g /0000-0003-1600-4666.E -m a i l :g u o y a n g @n u d t .e d u .c n D O I :10.3785/j .i s s n .1008-973X.2018.03.013二维矩阵卷积的并行计算方法 张军阳,郭阳,扈啸 (国防科技大学计算机学院,湖南长沙410073 )摘 要:为了提高卷积神经网络模型中二维矩阵卷积的计算效率,基于F T 2000多核向量处理器研究二维矩阵卷积 的并行实现方法.通过使用广播指令将卷积核元素广播至向量寄存器,使用向量L O A D 指令加载卷积矩阵行元素,并通过混洗操作将不易并行化的矩阵卷积操作变成可以向量化的乘加操作,实现了通过减少访存二充分复用已取数 据的方式来提高算法的执行效率.设计卷积矩阵规模变化二卷积核规模不变和卷积矩阵规模不变二卷积核规模变化2种常用矩阵卷积计算方式,并对比分析不同计算方式对算法执行效率的影响.基于服务器级多核C P U 和T I 6678进 行实验对比,实验结果显示,F T 2000比多核C P U 及T I 6678具有更好的计算优势,相比多核C P U 最高可加速11974 倍,相比T I 6678可加速21倍.关键词:矩阵卷积;向量处理器;并行算法;性能优化;卷积神经网络 中图分类号:T P391 文献标志码:A 文章编号:1008973X (2018)03051509 P a r a l l e l c o m p u t i n g m e t h o d f o r t w o -d i m e n s i o n a lm a t r i x c o n v o l u t i o n Z H A N GJ u n -y a n g ,G U O Y a n g ,HU X i a o (C o l l e g e o f C o m p u t e r ,N a t i o n a l U n i v e r s i t y o f D e f e n s eT e c h n o l o g y ,C h a n g s h a 410073,C h i n a )A b s t r a c t :A p a r a l l e l i m p l e m e n t a t i o nm e t h o db a s e do nm u l t i -c o r e v e c t o r p r o c e s s o rF T 2000w a s p r o p o s e d t o i m p r o v e t h e c o m p u t a t i o n a l e f f i c i e n c y o f t w o -d i m e n s i o n a lm a t r i x c o n v o l u t i o n i n c o n v o l u t i o nn e u r a l n e t w o r k m o d e l .T h e c o n v o l u t i o nk e r n e l e l e m e n tw a s b r o a d c a s t t o v e c t o r r e g i s t e r b y u s i n g b r o a d c a s t i n s t r u c t i o n ;t h e r o we l e m e n t s o f t h e c o n v o l u t i o nm a t r i xw e r e v e c t o r l o a d e d .W i t h s h u f f l e o p e r a t i o n ,t h e o p e r a t i o n o fm a t r i x c o n v o l u t i o n ,w h i c h i sh a r dt ob e p a r a l l e l l e d ,c a nb ev e c t o r i z e db y u s i n g m u l t i p l y -a d do p e r a t i o n ,a n dt h e i m p l e m e n t a t i o ne f f i c i e n c y w a s a c h i e v e d t h r o u g h r e d u c t i o n o f a c c e s s ,f u l l r e u s e o f o b t a i n e d d a t a .T w o k i n d s o f c o m m o nm a t r i xc o n v o l u t i o n m e t h o d sw e r ed e s i g n e d :c h a n g i n g c o n v o l u t i o n m a t r i xs c a l ew i t hc o n s t a n t c o n v o l u t i o nk e r n e l s i z e ,a n d c o n s t a n t c o n v o l u t i o nm a t r i x s i z ew i t h c h a n g i n g c o n v o l u t i o nk e r n e l s c a l e .T h e i n f l u e n c e o f d i f f e r e n t c a l c u l a t i o n m e t h o d s o n t h e a l g o r i t h m e x e c u t i o n e f f i c i e n c y w a s a n a l y z e d a n d c o m p a r e d .F i n a l l y ,t h e c o m p a r i s o ne x p e r i m e n t sw e r e t a k e nb a s e do n t h e s e r v e r -l e v e lm u l t i -c o r eC P Ua n d T I 6678.R e s u l t s s h o wt h a tF T 2000h a sab e t t e r c o m p u t i n g a d v a n t a g eo v e rm u l t i -c o r eC P Ua n dT I 6678,w h i c hc a na c c e l e r a t eu p t o 11974t i m e s c o m p a r e d t om u l t i -c o r eC P U ,w h i l e t oT I 6678i t i s 21t i m e s .K e y w o r d s :m a t r i x c o n v o l u t i o n ;v e c t o r p r o c e s s o r ;p a r a l l e l a l g o r i t h m ;p e r f o r m a n c e o p t i m i z a t i o n ;c o n v o l u t i o n n e u r a l n e t w o r k

时域和频域法计算4点卷积

已知x1(n)={2,3,2},x2(n)={1,2,3,4}(1)求出x2(m-n),当m=0,1,2,3时的序列;(2)计算出x1(n)与x2(n)的卷积;(3)用频域方法算出x1(n)与x2(n)的卷积 解:(1)m=0时,x(m-n)=x(-n) , x(-0)=x(-0+4)=1;x(-1)=x(-1+4)=4;x(-2)=3;x(-3)=2; 故x(-n)={1,4,3,2} 同理m=1时;x(m-n)=x(1-n)={2,1,4,3} 同理m=2时;x(m-n)=x(2-n)={3,2,1,4} 同理m=3时;x(m-n)=x(3-n)={4,3,2.1} (2)m=0时 3 =∑[{2,3,2,0}*{1,4,3,2}]=∑{2,12,6,0}=20 n=0 m=1时 3 =∑[{2,3,2,0}*{2,1,4,3}]=∑{4,3,8,0}=15 n=0 m=2时 3 =∑[{2,3,2,0}*{3,2,1,4}]=∑{6,6,2,0}=14 n=0

m=3时 3 =∑[{2,3,2,0}*{4,3,2.1}]=∑{8,9,4,0}=21 n=0 (3) x1(n)={2,3,2=}==> X1(k)={6, -2-2j, 2, 2j-2} x2(n)={1,2,3,4}==>X2(k)={10,-2+2j,-2,-2-2j} X1(k)?X2(k)={60, 8,- 4, 8} 令Y(k)=X1(k)·X2(k) y(n)=x1(n)x2(n) IDFT后 3 3 y(n)=(1/N )∑Y(k)e^(j(2π/4)kn)=(1/N )∑Y(k)(-j)^(kn) k=0 k=0 ={ 18,16,10,21}

卷积运算

卷积运算 信号的卷积运算是信号处理领域中最重要的运算之一。随着对信号与系统理论研究的深入,特别是计算机技术的不断发展,不仅使卷积方法在很我领域得到了很广泛的应用,而且卷积运算的逆运算---反卷积的问题也受到了越来越大的重视和应用。 比如,在语音识别、地震勘探、超声诊断、光学成像、系统辨识及其他诸多信号处理领域中,甚至可以说卷积与反卷积的问题无处不在,而且很多的问题,都是有待深入研究的课题。 所以,大家要切实理解和掌握好卷积分运算的各个方面,打好牢固的基础。下面,我们来看看卷积的定义是怎样的。 信号的卷积积分(简称卷积),定义为: 简记为,其中的星号是卷积运算符。注意不要与我们在编写计算机程序时所用的乘法的表示符号搞混了。在信号处理课程里,乘法往往是用居中的点来表示的,或者干脆不写居中的点,而直接将要进行乘积运算的信号(包括直流信号---它是一个常数)连在一起写。 信号的卷积运算对应着一定的物理背景,这要在我们进一步学习了关于系统的激励与响应的关系之后,才能更深入地理解。 不仅如此,信号的卷积运算还对应着一定的几何解释。从定义式我们可以看出:(1) 在积分式中,信号自变量改变了符号,这对应在几何波形上,就是将信号进行了反褶变换;(2) 并且,信号f2的波形 位置与积分变量的取值有关,积分变量在积分限内的不断变化,将导致信号的波形发生移动,即是对它不断进行平移操作;(3) 最后,每当信号处在一个新位置,都要与信号f1相乘,且依据积分的定义,要将这些乘积加起来,而其结果实际上对应着两信号波形相交部分的面积。所以,卷积运算可以用几何图解方式来直观求解。 下面我们来说明如何用它的几何意义来求解两信号的卷积。 将信号的自变量改为,信号变为。对任意给定的,卷积的计算过程为: (a) 将关于r进行反褶得到; (b) 再平移至t0得到; (c) 与相乘得到; (d) 对r进行积分得,即; 不断变化,就可以得到s(t)。

数字信号处理

第一章 数字信号处理概述 简答题: 1. 在A/D 变换之前和D/A 变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D 变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A 变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 ( ) 答:错。需要增加采样和量化两道工序。 第二章 离散时间信号与系统分析基础 填空题: 1.设)(z H 是线性相位FIR 系统,已知)(z H 中的3个零点分别为1,0.8,1+j ,该系统阶数至少为( )。 解:由线性相位系统零点的特性可知,1=z 的零点可单独出现,8.0=z 的零点需成对出现,j z +=1的零点需4个1组,所以系统至少为7阶。 简答题: 3.何谓全通系统?全通系统的系统函数 ) (Z H ap 有何特点? 解:一个稳定的因果全通系统,其系统函数)(Z H ap 对应的傅里叶变换幅值1)(=jw e H ,该单位幅值的约束条件要求一个有理系统函数方程式的零极点必须呈共轭倒数对出现,即 ∏∑∑=-* -=-=---= - = = N k k k N k k k M r r r ap Z Z Z a Z b Z Q Z P Z H 1 1 1 1 11) ()()(α α。因而,如果在k Z α=处有一个极点,则在其共轭倒数点 * =k Z α1 处必须有一个零点。 4.有一线性时不变系统,如下图所示,试写出该系统的频率响应、系统(转移)函数、差分方程和卷积关系表达式。 () n h () n x () n y 解:频率响应:∑∞ ∞ --= n j j e n h e H ωω )()( 系统函数:∑∞ ∞ --= n Z n h Z H )()( 差分方程:?? ????-)()(1 Z X Z Y Z 卷积关系:∑∞ ∞ -*= )()()(n x n h n y

用友成本卷积计算规则等

成本卷积相关规则及操作说明等 品种法或分步法,启用生产制造数据来源 来源于存 货核算系统,出库类别:生产材料领 入库类别:半成品入库/产成品入库计入入库数 来源于总帐系统 来源于总帐系统 来源于总帐系统 2、 定义费用明细与总帐接口 制造费用-折旧 FS ("510103",月,"借","888",2010) 制造费用-管理人员工资FS ("510102",月,"借","888",2010) 制造费用-水电费 FS ("510101",月,"借","888",2010) 直接人工 FS ("500102",月,"借","888",2010) 3、 定义分配率 共用材料分配率: 直接人工分配率: 制造费用分配率: 在产品分配率: 材料成本 4、 存货核算模块 选项: A 核算方式:零出库成本选择、入库单成本选择、红字出库单 成本选择等,均不能选择“手工输入”,建议选择上次出库或上次入 库成本。 二、 卷积操作功能: 1、 卷积计算检查: 包含对存货核算的检查。计算检查按范围进行分类,计算结果 可按检查范围分类查询。检查完成后,自动保存计算结果,每次计 算后覆盖前次数据。 2、 卷积计算: 一次性按顺序由低层到高层完成所有 BOM 层次成本计算,包含 各层入库单、出库单记账、期末处理、材料及外购半成品耗用表取 数、成本计算、产成品成本分配,中间没有任何交互。其中所有核 算型仓库的出入库单据类型进行记账,所有仓库进行期末处理。 一、 基础设置: 1、成本选项: 成 本核算方法: 存货数据来源: 用计入直接材 料, 量 人工费用来 源: 产品权重系数 产品权重系数 产品权重系数

数字信号处理实验线性卷积圆周卷积

大连理工大学实验报告 学院(系):电信专业:生物医学工程班级:**1101 姓名:**** 学号:201181*** 组:___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验一线性卷积和圆周卷积 一、实验程序 1.给出序列x=[3,11,7,0,-1,4,2],h=[2,3,0,-5,2,1];用两种方法求两者的线性卷积y,对比结果。 a)直接调用matlab内部函数conv来计算。 b)根据线性卷积的步骤计算。 clear; clc; x=[3 11 7 0 -1 4 2];n1=0:1:length(x)-1; h=[2 3 0 -5 2 1];n2=0:1:length(h)-1; y=conv(x,h);n3=0:1:length(x)+length(h)-2; figure(1); subplot(121);stem(n1,x,'.');axis([0 6 -15 15]);title('x(n)序列');grid; subplot(122);stem(n2,h,'.');axis([0 5 -10 10]);title('h(n)序列');grid; figure(2); subplot(121);stem(n3,y,'.');axis([0 12 -60 60]);title('调用conv函数的线性卷积后序列');grid; N=length(x);M=length(h);L=N+M-1; for(n=1:L) y1(n)=0; for(m=1:M)

k=n-m+1; if(k>=1&k<=N) y1(n)=y1(n)+h(m)*x(k); end; end; end; subplot(122);stem(n3,y1,'*');axis([0 12 -60 60]);title('按步骤计算的线性卷积后序列');grid; 结果 2.卷积后结果y=[ 6 , 31 , 47 , 6 , -51 , -5 , 41 , 18 , -22 , -3 , 8 , 2]。 将函数conv 稍加扩展为函数conv_m ,它可以对任意基底的序列求卷积。格式如下: function [y,ny]=conv_m(x,nx,h,nh) x(n)序列 h(n)序 列 调用conv 函数的线性卷积后序列 按步骤计算的线性卷积后序列

实验一序列`卷积运算

实验一 离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 )()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 上式的运算关系称为卷积运算,式中*代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。 (2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。

最新《数字信号处理》期末试题库(有答案)

一. 填空题 1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为: fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是 (N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。12.对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm(n)= x((n-m))NRN(n)。

13.对按时间抽取的基2-FFT 流图进行转置,并 将输入变输出,输出变输入 即可得到按频率抽取的基2-FFT 流图。 14.线性移不变系统的性质有 交换率 、 结合率 和分配律。 15.用DFT 近似分析模拟信号的频谱时,可能出现的问题有混叠失真、 泄漏 、 栅栏效应 和频率分辨率。 16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型, 串联型 和 并联型 四种。 17.如果通用计算机的速度为平均每次复数乘需要5μs ,每次复数加需要1μs ,则在此计算机上计算210点的基2 FFT 需要 10 级蝶形运算,总的运算时间是______μs 。 二.选择填空题 1、δ(n)的z 变换是 A 。 A. 1 B.δ(w) C. 2πδ(w) D. 2π 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f s 与信号最高频率f max 关系为: A 。 A. f s ≥ 2f max B. f s ≤2 f max C. f s ≥ f max D. f s ≤f max 3、用双线性变法进行IIR 数字滤波器的设计,从s 平面向z 平面转换的关系为s= C 。 A. 1111z z z --+=- B . 1111z z z ---=+s C. 11211z z T z ---=+ D. 11 211z z T z --+=- 4、序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 B ,5点圆周卷积的长度是 。 A. 5, 5 B . 6, 5 C. 6, 6 D. 7, 5 5、无限长单位冲激响应(IIR )滤波器的结构是 C 型的。

相关文档
最新文档