A hydroxylamine electrochemical sensor

A hydroxylamine electrochemical sensor
A hydroxylamine electrochemical sensor

Electrochimica Acta 55 (2010) 2835–2840

Contents lists available at ScienceDirect

Electrochimica

Acta

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c t

a

A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nano?lms onto carbon nanotubes ?lms modi?ed electrode

Cuihong Zhang,Guangfeng Wang,Min Liu,Yuehua Feng,Zhidan Zhang,Bin Fang ?

College of Chemistry and Materials Science,Anhui Key Laboratory of Chem-Biosensing,Beijing East Road No.1,Anhui Normal University,Anhui,Wuhu 241000,PR China

a r t i c l e i n f o Article history:

Received 29October 2009Received in revised form 20December 2009

Accepted 22December 2009

Available online 11 January 2010Keywords:MWCNTs ZnO

Modi?ed electrode Electrocatalysis Hydroxylamine

a b s t r a c t

A novel route (electrodeposition)for the fabrication of porous ZnO nano?lms attached multi-walled car-bon nanotubes (MWCNTs)modi?ed glassy carbon electrodes (GCEs)was proposed.The morphological characterization of ZnO/MWCNT ?lms was examined by scanning electron microscopy (SEM)and X-ray powder diffraction (XRD).The performances of the ZnO/MWCNTs/GCE were characterized with cyclic voltammetry (CV),Nyquist plot (EIS)and typical amperometric response (i –t ).The potential utility of electrodes constructed was demonstrated by applying them to the analytical determination of hydroxy-lamine concentration.An optimized limit of detection of 0.12?M was obtained at a signal-to-noise ratio of 3and with a fast response time (within 3s).Additionally,the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.4to 1.9×104?M and higher sensitivity.The ease of fabrication,high stability,and low cost of the modi?ed electrode are the promising features of the proposed sensor.

? 2010 Elsevier Ltd. All rights reserved.

1.Introduction

Hydroxylamine,NH 2OH (abbreviated as HA),a derivative of ammonium,is an intermediate in two important microbial pro-cesses of the nitrogen cycle:it is formed during nitri?cation as well as during anaerobic ammonium oxidation [1,2].Although it is a well-known mutagen,moderately toxic and harmful to human,animals,and even plants [3],which has been known to cause both reversible and irreversible physiological changes [4],it is available commercially and frequently used industrially widely in pharma-ceutical intermediates and ?nal drug substances synthesis,nuclear fuel reprocessing and the manufacturing of semiconductors [5].In recent years,chemists became aware of the potentials of hydroxy-lamine as a result of two major accidents,one occurred in the USA in February 1999,which killed ?ve people,and the other occurred in Japan in June 2000,which killed four people [6,7].Therefore,from the industrial,environmental and health viewpoints,development of a sensitive analytical method for the determination of low levels of hydroxylamine is of signi?cant importance.

The reported methods of the hydroxylamine determination include spectrophotometry [8],high performance liquid chro-matography [9],gas chromatography [10],potentiometry [11],polarography [12]and biamperometry [13].However,the pro-

?Corresponding author.Tel.:+865533869302;fax:+865533869303.E-mail address:binfang 47@https://www.360docs.net/doc/1316525796.html, (B.Fang).cesses involved in many of these methods are extremely complex,and the linear ranges are relatively narrow and have low precision.Fortunately,electrochemical techniques offer the opportunity for portable,cheap and rapid methodologies.However,hydroxylamine cannot be electrooxidized at bare carbon electrodes.One promis-ing approach is the use of chemically modi?ed electrodes (CMEs)containing speci?cally selected redox mediators immobilized on conventional electrode materials.Recently,various chemically modi?ed electrodes (CMEs)have been prepared and applied in the determination of hydroxylamine [14–18],which can signi?-cantly lower the overpotentials and increase the oxidation current response.

In recent years,the II–VI semiconductor zinc oxide (ZnO)nanostructures have drawn many attentions in the application of ef?cient amperometric sensors with many extraordinary proper-ties,including nontoxicity,biological compatibility,chemical and photochemical stability,high electrochemical activities and easy preparation,and so on [19–24].For example,the use of ZnO nanos-tructures to fabricate electrochemical sensor have been reported in the literature [25,26,46–48].Among various fabrication strategies of nano-or microscaled ZnO,such as precipitation [27],thermal decomposition [28]and electrodeposition [29],the one-step elec-trochemical deposition method by treatment of the reactant in different solvents seems to be the simplest and most effective way to prepare nicely crystallized ZnO at relatively low temper-atures,exempted from further calcination.However,as for the electrodeposition,the template strategy (anodic alumina mem-brane or porous polycarbonate membrane)was often used and

0013-4686/$–see front matter ? 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.electacta.2009.12.068

2836 C.Zhang et al./Electrochimica Acta55 (2010) 2835–2840

it is dif?cult to dissolve template completely and undissolved ?lm will in?uence the capability of biosensor,so there are still few studies concerning the electrodeposition of nanostructure ZnO applied to biosensor[30].In order to overcome these draw-backs,a new strategy was introduced by Hrapovic et al.[31] who deposited the Pt nanoparticles onto CNT?lm successfully. Because CNTs have the high accessible surface area,low electrical resistance,extremely high mechanical strength and stiffness,out-standing charge-transport characteristics,high chemical stability, and doughty sorption[32–37],there have been a series of investi-gations to use CNTs for biosensor interface fabrication[38,39].

In this work,we present,for the?rst time,a novel hydroxy-lamine sensor fabricated based on electrodeposition of the loose and porous ZnO nano?lms onto multi-walled carbon nanotubes ?lms using potentiostatic electrodeposition technique.The advan-tages of this architecture are as follows:(1)the MWCNTs have strong physical adsorption ability.What’s more,–COOH and–OH are existent in hydrophilic carboxyl MWCNTs,the H of the–COOH and–OH may form oxygen–hydrogen bonds with O from ZnO. The porous ZnO?lms can be adsorbed on the surface of the GCE by MWCNT?lms very?rmly due to the strong physical adsorp-tion ability and oxygen–hydrogen bonds;(2)MWCNTs not only help to moor the ZnO?lms onto the electrode surface,but also to increase the electron transfer rate;(3)in this paper,the ZnO we electrodeposited is a low density,loose and porous material with good dispersion and uniformity,and higher accessible surface area, which is favorable to a catalytic application.

2.Experimental

2.1.Materials

Hydrophilic multi-walled carbon nanotubes(MWCNTs)were purchased from Chengdu Institute of Organic Chemistry(China). Zn(NO3)2·6H2O(99.5%)was obtained from Shantou Xilong Chem-ical Factory(China).All other chemicals were obtained from Chemical Reagent Company of Shanghai(China),such as hydroxy-lamine,KCl,NaH2PO4,Na2HPO4.All chemicals were of analytical grade and used as received without further puri?cation.Dou-bly distilled water was used throughout this research.Phosphate buffer solutions(PBS,0.1M)were prepared by varying the ratio of NaH2PO4to Na2HPO4and adding0.1M KCl.

2.2.Measurements and apparatus

The electrochemical experiments were performed on a CHI660B electrochemical workstation(Shanghai Chenhua,China).All exper-iments were carried out by a three-electrode system with a bare glassy carbon electrode(GCE)or with modi?ed electrodes as the working electrode,a platinum wire as the auxiliary electrode,and a saturated calomel electrode(SCE)as the reference electrode.Scan-ning electron microscopy(SEM)was performed with a Hitachi S-4300(Japan);X-ray diffraction(XRD)studies were done with an X-ray diffractometer(Shimadzu,Japan)using a Cu K?source (l=0.154060nm)at40kV,30mA in the range of20?<2?<70?at a scan rate of6.0?/min.

2.3.Fabrication of the modi?ed electrode

Prior to the modi?cation,the GCE was polished to a mirror-like surface with alumina slurry followed by rinsing thoroughly with doubly distilled water.The electrode was successively sonicated in nitric acid(1:1),anhydrous ethanol and doubly distilled water (each for5min),and then allowed to dry at room temperature.

3.0mg MWCNTs were dispersed in1mL of dimethylformamide (DMF)solution by using a60min sonication.Then,the mixture

was

Scheme1.The process to prepare ZnO/MWCNTs/GCE.

dropped onto the GCE surface and dried in room temperature to obtain the MWCNTs modi?ed GCE.The MWCNTs/GCE was used as the working electrode in electrodeposition.Electrodeposition[40] of the porous ZnO thin?lms was performed in electrolytic solu-tion containing0.1mol/L KCl,0.05mol/L Zn(NO3)2at?1.2V,room temperature.Porous ZnO nanostructures were obtained on the sur-face of the MWCNT?lms after30min in the solution.The process to prepare ZnO/MWCNTs/GCE illustrated in Scheme1.COOH?and OH?are existent in hydrophilic carboxyl MWCNTs,the H of the COOH?and OH?may form oxygen–hydrogen bonds with O from ZnO.And the MWCNTs have strong physical adsorption ability,so the porous ZnO?lms can be adsorbed on the surface of a GCE by MWCNT?lms very?rmly.At the end of the growth duration,the substrate was removed from the solution and immediately rinsed in?owing deionized water to eliminate any residual salt from the surface and dried at room temperature,and the ZnO/MWCNTs/GCE was obtained.When not in use,the electrode was stored at4?C in

a refrigerator.

3.Results and discussion

3.1.Characterization of the ZnO/MWCNT?lms

Fig.1(A)and(B)shows typical SEM images of the MWCNTs and of the?lms consisting of ZnO and MWCNTs.The pristine MWC-NTs are curved and twisted with each other and have very much smooth surfaces(Fig.1(A)).The SEM image shown in Fig.1(B)con-?rmed the co-existence of MWCNTs and porous ZnO thin?lms, and the ZnO is a low density,loose and porous material that is favorable to a catalytic application.ZnO?lms strongly adhere onto the network structure provided by MWCNTs.The strong physical adsorption ability of MWCNTs and oxygen–hydrogen bonds which are important to tightly attach the ZnO?lms on the surface of the electrode.And there are a few MWCNTs unable to be covered with ZnO?lms,which can increase the electron transfer rate.

The phase of ZnO/MWCNTs was examined by XRD,as shown in Fig.2.The peaks tagged by ring assign to the pure ZnO in the com-posite which agree well with the values on the standard card(JCPDS Card No.36-1451).The peaks(002)of nanocomposite(26?)which re?ect the existence of MWCNTs is similar to that of the pure MWC-NTs[41],which indicates that electrodeposition ZnO thin?lms onto the surface of MWCNTs did not lead to the distortion of MWCNT shells.

3.2.Electrochemical behavior of the ZnO/MWCNTs/GCE

Fig.3exhibited the EIS of the change of the electrode sur-face status with the fabricated procedure,shown as Nyquist plot (Z im vs.Z re).The semicircular portion at higher frequencies

C.Zhang et al./Electrochimica Acta 55 (2010) 2835–2840

2837

Fig.1.SEM image of pure MWCNTs (A)and the ZnO/MWCNT ?lms

(B).

Fig.2.XRD pattern of ZnO/MWCNT ?lms.

represents the electron transfer-limited process,and the electron transfer resistance (R et )is equal to the semicircle diameter.Curve a in Fig.3shows EIS of the bare GCE.There was a very small semicir-cle domain (150±5 )as reported in the literature [42],implying a very low electron transfer resistance to the redox-probe dissolved in the electrolyte solution.In curve b,the EIS of the ZnO ?lms modi?ed electrode displayed a much higher interfacial

electron

Fig.3.EIS of (a)bare GCE,(b)ZnO/GCE and (c)ZnO/MWCNTs/GCE in the presence of 5mmol L ?1Fe(CN)63?/4?with 0.1mol L ?1KCl as the supporting electrolyte.The electrode potential was 0.2V vs.SCE.transfer resistance (2400±50 ),indicating that the ZnO ?lm lay-ers obstructed the electron transfer of the electrochemical probe of [Fe(CN)6]3?/4?.The ZnO/MWNTs/GCE shows a lower interfacial electron transfer resistance (470±10 )than that of the ZnO/GCE,in despite of higher than bare GCE.These facts suggest that the electron transfer is faster at the ZnO/MWCNTs/GCE in comparison with that at the ZnO/GCE,which facilitates the arrival of the electro-chemical probe on the surface of the electrode.This illustrates that MWCNTs not only help to moor the ZnO ?lms onto the electrode surface,but also to increase the electron transfer rate.3.3.Electrocatalytic activity of hydroxylamine on the ZnO/MWCNTs/GCE

In order to investigate the electrocatalytic activity of hydroxy-lamine on the ZnO/MWCNTs/GCE,the response of such electrodes toward the analytical determination of hydroxylamine was explored.The CVs of (a)bare GCE and (b)MWCNTs/GCE in the presence of 1.0×10?3M hydroxylamine are shown in Fig.4.It can be seen that hydroxylamine cannot be electrooxidized on a bare GCE (curve a).Under the same experimental conditions,the oxida-tion of hydroxylamine on MWCNTs/GCE demonstrated increased background current,but no de?ned anodic peaks were observed (curve b).The anodic peak obtained for ZnO/GCE at about 0.83V (curve c),and the current response increased more than that for bare GCE and MWCNTs/GCE.What’s more,the experimental results suggest that in contrast to the bare GCE,ZnO/GCE,and

MWC-

Fig. 4.CVs of the (a)bare GCE,(b)MWCNTs/GCE,(c)ZnO/GCE and (d)ZnO/MWCNTs/GCE with 1.0×10?3M hydroxylamine in N 2-saturated 0.1M PBS (pH 7.4)at 100mV s ?1.

2838 C.Zhang et al./Electrochimica Acta

55 (2010) 2835–2840

Scheme 2.Schematic of hydroxylamine detection by electrochemical method using ZnO/MWCNTs/GCE.

NTs/GCE,a well-de?ned oxidation peak in the ZnO/MWCNTs/GCE (curve d)with 1.0×10?3M hydroxylamine in 0.1M PBS is observed with an E pa (peak potential)of 0.80V and I pa (peak current)of ?1.278×10?4A.The oxidation process begins around 0.2V and electrochemical response is irreversible,as no cathodic current is observed during the reverse sweep.As faster electron transfer leads to a sharper and more well-de?ned peak,the substantial increase in the peak current re?ects a faster electron transfer reaction.There-fore,hydroxylamine is effectively detected by oxidation on the ZnO/MWCNTs/GCE.According to a previous report [43–45],the possible electrochemical reaction for the hydrazine is proposed to be 2NH 2OH +4OH ?→N 2O +5H 2O +4e ?.The schematic diagram as shown in Scheme 2.

Fig.5(A)shows a typical amperometric response of the ZnO/MWCNTs/GCE upon the successive addition of hydroxylamine (4.0×10?7–1.9×10?2M)into continuously stirred 0.1M PBS (pH 7.4)at an applied potential of 0.80V;rotatingrate,4000rpm.The amperometric sensor exhibited a rapid and sensitive response to the change of hydroxylamine concentration,and an obvious increase in the oxidation current upon successive addition of hydroxylamine was obtained.The modi?ed electrode achieved 95%of the steady-state current within 3s.

As can be seen in Fig.5inset,the corresponding calibration curve of the fabricated amperometric hydroxylamine sensor exhibits a linear response in the concentration range from 0.4to 1.9×104?M,which is wider than that of Alizarin red S [43]and rutin

multi-wall

Fig.5.(A)Amperometric response of the ZnO/MWCNTs/GCE with successive addi-tion of hydroxylamine into 0.1M PBS buffer solution (pH 7.4);rotating rate,4000rpm (a →b,4.0×10?7M steps;b →c,8.0×10?5M steps;c →d,3.3×10?4M steps;d →e,6.7×10?4M steps;e →,1.3×10?3M steps).The applied potential was 0.8V.Plot of 1/i vs.1/C ,exhibiting a linear relationship for the steady-state current and hydrazine concentration (inset

B).

Fig.6.Effect of pH on the ZnO/MWCNTs/GCE in PBS with different values of pH 7.0,7.5,8.0,8.5,9.0,9.5for determining 3.0×10?4M hydroxylamine.Scan rate:100mVs ?1.

carbon nanotubes [44]and so on [14,17,45](Table 1).The correla-tion coef?cient of the line R 2=0.99924,and the linear equation is y =?2.52194?0.00745x .Based on signal-to-noise ratio (S/N)of 3,it has a very low detection limit,which was estimated to be 0.12?M.3.4.Effect of pH and scan rate on the oxidation of hydroxylamine The pH of the solution is important to obtain the ef?cient electrocatalytic oxidation of hydroxylamine.Fig.6shows the dependence of the solution pH (from 7.0to 9.5)on the injection of 3.0×10?4M hydroxylamine due to ZnO is not stable in acidic solu-tion.The results indicate that the anodic peak current increased remarkably with pH value increasing until it reached 8.5and then increased indistinctively with pH value increasing.Since the physi-ological pH value is about 7.4,we chose it as the support electrolyte in the electrochemical detection of hydroxylamine.

The scan rate effect on the cyclic voltammetric response of the ZnO/MWCNTs modi?ed electrode in 0.1M PBS containing 0.1M KCl (pH 7.4)with 5.0×10?4M hydroxylamine is shown in Fig.7.

As

Fig.7.Cyclic voltammograms of ZnO/MWCNTs/GCE at different scan rates in 0.1M PBS containing 0.1M KCl (pH 7.4)with 5.0×10?4M hydroxylamine.Scan rate:10,50,100,150,200,250mV/s from (a)to (f).Inset:the plot of peak current vs.scan rate.

C.Zhang et al./Electrochimica Acta55 (2010) 2835–2840

2839

Fig.8.Amperometric responses of the different electrodepositing times of porous ZnO nano?lms:(a)20min;(b)30min;(c)50min.Operating potential:?1.2V vs. SCE.

the scan rate increases,the oxidation peak current(I pa)increases.

A good linear relationship between I pa and scan rate was obtained over the range of10–250mV/s.The linear regression equation is I pa (?A)=27.9587+0.6055V(V s?1)with a correlation coef?cient(R2) is0.9986.Hence,the peak currents responses of the hydroxylamine on the surface of ZnO/MWCNTs modi?ed electrode is controlled by adsorption.

3.5.Effect of electrodepositing time on the oxidation of hydroxylamine

The electrode response characteristics toward hydroxylamine can be in?uenced by the time of electrodepositing porous ZnO nano?lms.From Fig.8,the current–time curves of the different electrodepositing time of ZnO(a:20min;b:30min;c:50min)for successive addition of1.0×10?4M hydroxylamine in PBS(pH7.4). Obviously,from electrodes(a)to(b),the sensitivity increased with the time of electrodeposition.However,the sensitivity of electrode (c)was depressed,this was because too much ZnO nano?lms cover-ing onto MCWNTs,which reduced the electronic transfer properties of MCWNTs.So,30min was selected as the optimal time of elec-trodepositing.

3.6.Repeatability and stability of the ZnO/MWCNTs/GCE

The modi?ed electrode exhibited high stability.The relative standard deviation(RSD)of8successive scans was3.2%for50.0?M hydroxylamine.Only1.8%loss of current was found even after three weeks,with storage in air at4?C or in phosphate buffer when not in uses.The reproducibility of8independently fabricated elec-trodes showed a satisfactory value of4.2%(RSD).The electrode response was very stable and showed excellent anti-fouling

prop-Fig.9.Interference test protocols of the hydroxylamine biosensor to the heavy metal ions interferences in the absence of hydroxylamine((a and e)1.0×10?4M hydroxylamine;(b)5.0×10?3M Hg2+;(c)5.0×10?3M Cd2+;5.0×10?3M Cu2+).

erties against the oxidation products,which can be related to the MWCNTs binder.

3.7.Interference study

The effect of various substances,as the potential interference compounds,was studied on the determination of hydroxylamine under1.0×10?4M hydroxylamine in PBS(pH7.4).No interference was observed with common cations and anions(500-fold quanti-ties of K+,Na+,Ca2+,Mg2+,Cl?,Br?,I?,SO42?and NO3?ions),and for 50-fold quantities of glucose,fructose,and lactose in determination of1.0×10?4M of hydroxylamine concentration,the deviation of the determination was within3.2%.Fig.9presents the results of the heavy metal ions(Hg2+,Cd2+and Cu2+)interferences test carried out by amperometric measurements with the fabricated biosensor, for50-fold Hg2+,Cd2+and Cu2+in determination of1.0×10?4M of hydroxylamine concentration,the deviation of the determination was within1.8%.

3.8.Application to simulant sample analysis

In order to evaluate the validity of the proposed method for the determination of hydroxylamine,?ve distilled water samples were spiked with different concentrations of hydroxylamine and were analyzed under optimized conditions using the above technique. The data given in Table2shows that the recoveries are appropriate in despite of some deviation.The possible reason of deviation is random error in experiments.Overall the results are satisfactory, showing that the proposed methods could be ef?ciently used for the determination of hydroxylamine.

Table1

Comparison of the responses of some amperometric hydroxylamine sensors constructed based on different modi?ed electrode materials.

Electrode materials Response time(s)Detection limit(?M)Linear range(?M)Sensitivity(?A?M?1)Ref.

Alizarin red S–7.210–800–[43] Rutin multi-wall carbon nanotubes–– 1.0–33.80.0288

––33.8–81.70.025[44] Gold nanoparticle–polypyrrole nanowrie0.211–5000.0639[45]

500–18,0000.0104

Hybrid copper–cobalt hexacyanoferrate?lm0.21 4.6–1800–[17] Coumestan derivative10.7560–1000–[14] This work<30.120.4–19,0000.0075–

2840 C.Zhang et al./Electrochimica Acta55 (2010) 2835–2840

Table2

Results of the recovery test.

Sample(distilled water)Hydroxylamine added(?M)Hydroxylamine found(?M)a Recovery(%)

11010.1±0.4101 25049.8±0.299.6 3100103±0.5103 4150150±0.4100 5200198±0.399

Quantitative determination of hydroxylamine from distilled water sources spiked with known quantity of hydroxylamine.

a Average of three determinations.

4.Conclusions

In this work,we have successfully fabricated an electrochemical hydroxylamine sensor based on electrodeposition of the loose and porous ZnO?lms onto carbon nanotubes?lms.An elegant chemi-cal architecture to construct electrodes using MWCNTs as a binder to stabilize the ZnO?lms onto the surface of a GCE was presented. The ZnO is a low density,loose and porous material with higher accessible surface area,which is favorable to a catalytic application. And MWCNTs not only help to bind the ZnO?lms onto the elec-trode surface because of the great sorption and oxygen–hydrogen bonds,but also to increase the electron transfer rate.The response of such electrodes toward the analytical determination of hydroxy-lamine was studied.A lower detection limit of0.12?M,wide linear range,high sensitivity,good stability and so on,which are provid-ing an opportunity for ZnO/MWCNTs/GCE as a promising method to detect hydroxylamine ef?ciently.

Acknowledgements

We appreciated the support of the National Natural Science Foundation of China(No.20675001),Science Foundation of Of?ce of Anhui Province(No.KJ2009B013z)and the Program for Innova-tive Research Team in Anhui Normal University.

References

[1]D.J.Arp,L.Y.Stein,Crit.Rev.Biochem.Mol.Biol.38(2003)471.

[2]M.S.M.Jetten,Plant Soil230(2001)9.

[3]P.Gross,Crit.Rev.Toxicol.14(1985)87.

[4]R.P.Smith,https://www.360docs.net/doc/1316525796.html,yne,J.Pharmacol.Exp.Ther.165(1969)30.

[5]M.Kumasaki,Y.Fujimoto,T.Ando,J.Loss Prev.Process Ind.16(2003)507.

[6]M.Reisch,Chem.Eng.News77(9)(1999)11.

[7]Business Concentrates,Chem.Eng.News78(25)(2000)15.

[8]A.Afkhami,T.Madrakian,A.Maleki,Anal.Sci.22(2006)329.

[9]W.D.Korte,J.Chromatogr.A603(1992)145.

[10]Y.Seike,R.Fukumori,Y.Senga,H.Oka,K.Fujinaga,M.Okumura,Anal.Sci.20

(2004)139.

[11]R.Christova,M.Ivanova,M.Novkirishka,Anal.Chim.Acta85(1976)301.

[12]D.R.Canterforf,Anal.Chim.Acta98(1978)205.

[13]C.Zhao,J.Song,Anal.Chim.Acta434(2001)261.

[14]H.R.Zare,A.Nasirizadeh,Electroanalysis18(2006)507.[15]A.Salimi,K.Abdi,Talanta63(2004)475.

[16]L.H.Shi,T.Wu,P.He,D.Li,C.Y.Sun,J.H.Li,Electroanalysis17(2005)2190.

[17]X.P.Cui,L.Hong,X.Q.Lin,Anal.Sci.18(2002)543.

[18]M.Ebadi,Electrochim.Acta48(2003)4233.

[19]X.L.Zhu,I.Yuri,X.Gan,I.Suzuki,G.X.Li,Biosens.Bioelectron.22(2007)1600.

[20]F.F.Zhang,X.L.Wang,S.Y.Ai,Z.D.Sun,Q.Wan,Z.Q.Zhu,Y.Z.Xian,L.T.Jin,K.

Yamamoto,Anal.Chim.Acta519(2004)155.

[21]S.P.Singh,S.K.Arya,P.Pandey,B.D.Malhotra,S.Saha,K.Sreenivas,V.Gupta,

Appl.Phys.Lett.91(2007)63901.

[22]Z.W.Zhao,X.J.Chen,B.K.Tay,J.S.Chen,Z.J.Han,K.A.Khor,Biosens.Bioelectron.

23(2007)135.

[23]J.F.Zang,C.M.Li,X.Q.Cui,J.X.Wang,X.W.Sun,H.Dong,C.Q.Sun,Electroanalysis

19(2007)1008.

[24]A.Wei,X.W.Sun,J.X.Wang,Y.Lei,X.P.Cai,C.M.Li,Z.L.Dong,W.Huang,Appl.

Phys.Lett.89(2006)123902.

[25]A.Umar,M.M.Rahman,S.H.Kim,Y.B.Hahn,https://www.360docs.net/doc/1316525796.html,mun.2(2008)166.

[26]A.Umar,M.M.Rahman,Y.B.Hahn,Talanta77(2009)1444.

[27]A.P.A.Oliveira,J.F.Hochepied,F.Grillon,M.H.Berger,Chem.Mater.15(2003)

3202.

[28]M.Yin,Y.Gu,I.L.Kuskovsky,T.Andelman,Y.M.Zhu,G.F.Neumark,S.O.Brien,

J.Am.Chem.Soc.126(2004)6206.

[29]T.Pauporte,T.Yoshida,A.Goux,D.Lincot,J.Electroanal.Chem.34(2002)55.

[30]H.P.Bai,X.X.Lu,G.M.Yang,Y.H.Yang,Chin.Chem.Lett.19(2008)314.

[31]S.Hrapovic,Y.L.Liu,K.B.Male,J.H.T.Luong,Anal.Chem.76(2004)1083.

[32]C.A.Dyke,J.M.Tour,J.Am.Chem.Soc.125(2003)1156.

[33]W.Zhao,C.Song,P.E.Pehrsson,J.Am.Chem.Soc.124(2002)12418.

[34]S.Daniel,T.P.Rao,K.S.Rao,S.U.Rani,G.R.K.Naidu,H.Y.Lee,T.Kawai,Sens.

Actuators B122(2007)672.

[35]Y.Lin,S.Taylor,H.P.Li,K.A.S.Fernando,L.W.Qu,W.Wang,L.R.Gu,B.Zhou,Y.P.

Sun,J.Mater.Chem.14(2004)527.

[36]A.Callegari,S.Cosnier,M.Marcaccio,D.Paolucci,F.Paolucci,V.Georgakilas,N.

Tagmatarchis,E.Vaˇ?zquez,M.Prato,J.Mater.Chem.14(2004)807.

[37]G.Gundiah,https://www.360docs.net/doc/1316525796.html,indaraj,N.Rajalakshmi,K.S.Dhathathreyan,C.N.R.Rao,J.

Mater.Chem.13(2003)209.

[38]R.H.Baughman,A.Zakhilov,W.A.de Heer,Science297(2002)787.

[39]X.Dai,G.G.Wildgoose,C.Salter,A.Crossley,https://www.360docs.net/doc/1316525796.html,pton,Anal.Chem.78

(2006)6102.

[40]F.Xu,Y.N.Lu,Y.Xie,Y.F.Liu,Mater.Des.30(2009)1704.

[41]B.Fang,W.Zhang,G.F.Wang,H.Y.Liu,S.P.Wei,Microchim.Acta162(2008)

175.

[42]B.K.Andrei,A.Lital,K.Eugenii,W.Itamar,J.Electroanal.Chem.487(2000)133.

[43]M.Mazloum Ardakani,M.A.Karimi,S.M.Mirdehghan,M.M.Zare,R.Mazidi,

Sens.Actuators B132(2008)52.

[44]H.R.Zare,Z.Sobhani,M.Mazloum-Ardakani,Sens.Actuators B126(2007)641.

[45]J.Li,X.Q.Lin,Sens.Actuators B126(2007)527.

[46]R.Khan,A.Kaushik,P.R.Solanki,A.A.Ansari,M.K.Pandey,B.D.Malhotra,Anal.

Chim.Acta616(2008)207.

[47]A.Umar,M.M.Rahman,A.Al-Hajry,Y.B.Hahn,Talanta78(2009)284.

[48]A.Umar,M.M.Rahman,M.Vaseem,Y.B.Hahn,https://www.360docs.net/doc/1316525796.html,mun.11

(2009)118.

(完整版)新概念英语青少版(入门级A)StarterA重点知识总结

Unit 6 This is my family. 词汇:family mum dad sister brother friend 句型:This is... 句子:1.This is my mum. Lesson 2 词汇:my your 缩写:What’s=What is my name’s=my name is 句子:①What’s your name? My name’s Pop. Unit 7 Happy birthday? 词汇:bike car doll robot train van 缩写:it’s it’s=it is it isn’t it isn’t=it is not 词汇:a an 句子:①It’s a van. ②It isn’t a car. 短语:a train/van/robot/car An apple/insect/egg/umbrella Lesson 2 句型:Is it...? 句子:㈠Is it an apple? Yes,it is./No,it isn’t. Unit 8 That’s my book. 词汇:book, pen, pencil ,pencil case, rubber, ruler, school bag 缩写:this is this isn’t this isn’t= this is not that is that isn’t that isn’t= that is not 句子:①肯——This is my book. 否——This isn’t my book. ②肯——That’s my book. 否——That’s isn’t my book. Lesson 2 句型:Is this...? Is that...? 句子:①Is this a pencil? Yes,it is./No,it isn’t. ②Is that a school bag? Yes,it is./No,it isn’t. Unit 9 What’s this,Mum? 词汇:bone, hamburger, salad, sausage, tomato, pizza 缩写:What’s=What is 句型:What’s...?

我国第三代核电技术一览

我国第三代核电技术一览 我国的核电技术路线是在上世纪80年代确定走引进、消化、研发、创新的道路的。经过20余年的努力,通过对引进的二代法国压水堆技术的消化吸收,取得了巨大的技术进步,实现了60万千瓦压水堆机组设计国产化,基本掌握了百万千瓦压水堆核电厂的设计能力。目前我国有五种第三代核电技术拟投入应用,他们分别是 AP1000、华龙一号、CAP1400、法国核电技术(EPR)以及俄罗斯核电技术(VVER)。北极星电力网小编整理五种核电技术及特点供核电业界人士参考。 1、AP1000 AP1000是美国西屋公司研发的一种先进的“非能动型压水堆核电技术”。西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。该技术在理论上被称为国际上最先进的核电技术之一,由国家核电技术公司负责消化和吸收,且多次被核电决策层确认为日后中国主流的核电技术路线。 国家核电技术公司的AP1000和中广核集团与中核集团共推的华龙一号被默认为中国核电发展的两项主要推广技术,两者一主一辅,AP1000技术主要满足国内市场建设和需求,华龙一号则代表中国核电出口国外。 作为国内首个采用AP1000技术的依托项目三门核电一号机组原计划于2013年底并网发电,但由于负责AP1000主泵制造的美国EMD公司多次运抵中国的设备都不合格,致使三门一号核电机组如今已经延期2年。 目前,除在建的两个项目(三门、海阳)外,三门二期、海阳二期、广东陆丰、辽宁徐大堡、以及湖南桃花江等内陆核电项目均拟选用AP1000技术。 AP1000技术主要目标工程包括:海阳核电厂1-2号机组、三门核电厂1-2号机组、红沿河核电厂二期项目5-6号机组、三门核电厂二期项目、海阳核电厂二期项目、徐大堡核电厂一期项目以及陆丰核电厂一期项目等。其中海阳核电厂1-2号机组和三门核电厂1-2号机组为正在建设的核电项目,其余五个为有望核准的核电项目。 【三门核电站】浙江三门核电站是我国首个采用三代核电技术的核电项目。三门核电站在全球率先采用第三代先进压水堆AP1000技术,其1号机组是全球首座AP1000核电机组。三门核电站位于浙江南部三门县,一期工程建设2004 年7月获得国务院批准并于2009年4月19日开工建设,总投资250亿元,将首先建设两台目前国内最先进的100万千瓦级压水堆技术机组。这是继中国第一座自行设计、建造的核电站——秦山核电站之后,获准在浙江省境内建设的第二座核电站。三门核电站总占地面积740万立方米,可分别安装6台100万千瓦核电机组。全面建成后,装机总容量将达到1200万千瓦以上,超过三峡电站总装机容量。 AP1000技术特点:

新概念英语青少版starterA期末练习

新概念英语青少版入门级A Listening 听力部分30’ 一、听录音,写单词,并写出单词的中文含义(20’)。 二、听录音,选出你所听到的单词。(10’) 1. ( ) A. skirt B. shirt C. sock D. sweater 2. ( ) A. rabbit B. tortoise C. rubber D. parrot 3. ( ) A. twelve B. twenty C. eleven D. seven 4. ( ) A. a duck B. two ducks C. three ducks D. four ducks 5. ( ) A. evening B. morning C. lunch D. breakfast 6. ( ) A. chair B. shelf C. bed D. wall 7. ( ) A. next to B. bedroom C. bathroom D. between 8. ( ) A. dancer B. nurse C. man D.woman 9. ( ) A. aunt B. uncle C. cousin D. sister 10. ( ) A. this B. that C. those D. the

Writing 笔试部分70’ 三.用“a”或“an”填空(10’) 1. apple 2. book 3. rabbit 4.umbrella 5. mouse 6. __ ice cream 7. ___ little monkey 8. __ big egg 9. __ red apple 10._banana 四、圈出不同(10’) 1. red blue pink banana 2. frog mouse butterfly big 3. shirt anorak short cap 4. seven eight sister eleven 5. father mother uncle driver 五、请写出缩写(10’) I am___ he is___ you are ___ is not___ are not___ it is___ they are____ she is____ that is ____ 六、选择正确的答案(10’) ( )1.--What’s this? A. That’s a book. B. Yes, it is. C. It’s a bus. ( )2.--What colour is it? A. It’s yellow. B. It’s a dog. C. Thank you. ( )3.-- is your name? --I’m Ann. A.What B. Who C. Where

第四代核能系统介绍

目前世界大多数国家电力市场上的竞争日趋激烈,迫使电力生产商和它们的供应商更加关注它们的运行成本和投资的盈利能力。现有的核电系统在这样的市场上显得初投资太高、建设期太长和项目规模太大。核工业要生存下去并保持繁荣,就需要执行商业化的、以利润为导向的方针。从总体上看,核动力在中期和远期的市场中都具有竞争潜力。但是,要使这种潜力变为现实,还要在许多方面付出极大的努力,包括必须能在不危及安全的前提下大幅度降低成本,包括运行和维护费用,并使电厂的可利用率达到较高水平。面对上述挑战,国际核能界正在进行多方面的研究和调整,其中一项举措就是对第四代核能系统的研发。包括有关国家政府、工业界、电力公司、大学、实验室、研究院所都不同程度地关注或参与这个研发。每年的研发费用超过20亿美元。按广泛被接受的观点,已有的核能系统分为三代:(1)上个世纪50年代末至60年代初建造的第一批原型核电站;(2)60年代至70年代大批建造的单机容量在600~1400 MW的标准型核电站,它们是目前世界上正在运行的439座核电站(2002年6月统计数)的主体;(3)80年代开始发展、在90年代末开始投入市场的先进轻水堆(AL WR)核电站。 Gen-IV的概念最先是在1999年6月召开的美国核学会年会上提出的。在当年11月该学会冬季年会上,进一步明确了发展Gen-IV的设想。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛,拟用2~3年的时间完成制定Gen-IV研发目标计划。这项计划总的目标是在2030年左右,向市场上提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的Gen-IV。 2 Gen-IV的研发目标目前Gen-IV先进核能系统的概念还比较模糊,国际上也没有一个确切的定义。但是,这里已经明确的是"先进核能系统",而非"先进反应堆"。其应满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低等基本标准。具体来说,研发Gen-IV的目标有三类: 2.1 可持续能力目标按照比较权威的定义,可持续能力的本质是如何维系地球生存支持系统去满足人类基本需求的能力。对一个特定系统而言,是其在规定目标和预设阶段

新概念英语青少版startera知识点总结

动物:cat 猫 dog 狗 fish 鱼insect昆虫 monkey 猴子 panda 熊猫 zebra 斑马 pig 猪frog 青蛙 mouse 老鼠 parrot 鹦鹉 rabbit 兔子 tortoise 乌龟 食物:apple 苹果 egg鸡蛋hamburger 汉堡包 salad 沙拉 sausage香肠tomato西红柿 pizza比萨jelly果冻 颜色: green绿色 red 红色 blue 蓝色yellow黄色 orange 橙色 身体部位: leg 腿 mouth 嘴 nose 鼻子 玩具:Ball 球 kite 风筝 violin 小提琴xylophone 木琴doll 木偶 robot 机器人 车:bike 自行车 car 小汽车train 火车 van 货车;面包车 家人亲戚:family 家人 mum 妈妈 dad 爸爸 sister 妹妹 brother 弟弟friend 朋友 文具:book 书 pen 钢笔 pencil铅笔 pencil case 笔袋 rubber 橡皮 ruler 尺子 school bag书包 职业:dancer 跳舞者,舞蹈专家 doctor医生 nurse 护士 policeman男警察policewoman 女警察 postman 邮递员 teacher 老师 数字:one two three four five six seven eight nine ten 形容个人体态:tall 高的short 矮的big大的 little 小的fat 胖的thin瘦的 衣物: anorak 带帽子的夹克衫 cap 鸭舌帽 T-shirt T恤Shirt 衬衣sweater毛衣hat有檐帽 方位介词:behind 在…后面 in 在…里面 in front of 在…前面 on 在…上面under 在…下面 其他词汇: girl女孩 boy 男孩 sun 太阳 table 饭桌 umbrella 雨伞 king 国王 queen王后zoo 动物园 window 窗户 bone 骨头 句子: at my yellow leg! 看我黄色的腿! is my brother and sister. 这是我的哥哥和姐姐。(用于介绍某人) ’s a robot. 这是一个机器人。 it an apple? Yes,it is./No,it isn’t.它是一个苹果吗?是的,它是。/不,它不是。 isn’t my schoolbag. 这不是我的书包。 this a schoolbag? Yes,it is. /No,it isn't. 这是一个书包吗?是的,它是。/不,它不是。 ’s this?It’s a hamburger. 这是什么?这是一个汉堡。 What’s that?It’s a salad. 那是什么?那是一盘沙拉。 What is it?It’s an egg. 它是什么?它是一个鸡蛋。 8.How old are you?I’m eleven. 你多大了?我十一岁了。 9.Are you seven?Yes,I am. /No,I’m not.你七岁了吗?是的,我是。/不,我不是。 10.You aren’t five. 你不是五岁。 11.He’s tall.他很高。She isn’t fat. 她不胖。 12.Is she tall?Yes,she is./No,she isn’t.她高吗?是的,她高。/不,她

世界核电发展概述中国核电建设简史

世界核电发展概述中国核电建设简史 中国核电建设历程 (一)世界核电进展概述 1954年6月27日投入使用的世界最早核电站—莫斯科西南110公里的奥布宁斯克核电站,5MW容量。(于2002年4月30日关闭,现改建一所博物馆。) 1960年美国核能发电占总电能的0.1%。(当时只美国有规模核电) 1970年有核电的国家核电量占总电量的百分比:美国1.4%;苏联0.5%;日本1.5%;西德3.7%。 1980年有核电的国家核电量占总电量的百分比:美国11.0%;苏联5.4%;日本16.0%;西德14.2%。 1980年要紧国家核电装机容量:美国5649万千瓦;苏联1230万千瓦;日本1569万千瓦。 1980年全球核电占发电量的16%。 1981年要紧国家核电装机容量:美国6074万千瓦;苏联1450万千瓦;日本1626万千瓦。 1982年11月法国核电装机容量2200万千瓦,占总装机容量的33.8%。法有22台90万千瓦核电机组投入生产。 1982年11月英国核电装机容量占总电量的8.1%。 1983年5月5日签订中法核电合作备忘录,计五条。要紧内容:法国供四座核岛,常规岛英国两套,法选两套,均由法总设计。 1983年10月11日。国际原子能机构27届大会一致通过决议,接纳中华人民共和国为该机构成员国。 1985年12月12日中法广东核电站谈判达成协议。由法国法马通公司向中国提供两座90万千瓦反应堆。

1986年4月26日,苏联基辅北180公里的切尔诺贝利核电站发生严峻事故,放射性物质泄漏,传播到北欧一带,苏要求瑞典关心,大火七天扑灭。其缘故是人为连续违反操作规程而导致,安全壳不能全包容而向外泄漏。 1990年初,宜宾核燃料元件厂开始生产,供秦山核电站核燃料组件。95年1月起,向大亚湾核电站提供更换的燃料组件。 1991年12月大亚湾核电站第一台投产,填补我国核电的空白。 1991年12月31日,中国—巴基斯坦核电站合作合同签字。中国30万千瓦核电站和平利用于巴,同意国际原子能机构监督。 1992年12月18日中俄签订核电站合作协定。关于两台100万级核电机组的核电站项目。 1994年4月我国自行研究、设计和建设的第1座核电站-秦山核电站正式投入商业运行。 1996年12月27日,在莫斯科签订俄罗斯提供两台百万千瓦压水堆(VVER-1000型)核电机组合同。厂址在江苏连云港,称田湾核电站。 1996年世界核电所占比率最高的国家:法国核电占总电量的78.2% 。 1999年各国核发电量(单位:亿千瓦时):美国7778.9、法国3942.4、日本3166.2、德1700.0、俄国1218.8、英国962.8、加拿大734.9、中国149.5。 2001年4月19日报道,核电专用电缆在天津产生,核二院等单位研制1E级K3类电缆通过专家鉴定,国内首家寿命达到50年。 2001年4月19日,日本高濱关西电力公司属下1号核电厂发生泄漏事故,将负荷降至75%,对泄漏详细检查。 2001年5月17日报道,我国新一代、第一座高温气冷核反应堆在京建成。世界最新技术,继美、英、德、日后第五个把握的国家。

核电设备名词及主要系统简介

核电设备名词及系统简介 1、装备制造业名词:RCC-M 来源:发改委 RCC-M是法国《压水堆核岛机械设备设计和建造规则》的简称,由法国核岛设备设计和建造规则协会(AFCEN)为规范法国压水堆核电站机械设备设计和建造而编制,已被法国政府采纳,是法国核电标准RCC系列的一个分支。RCC系列(RCC-C、RCC-E、RCC-M、RCC-MR和RSE-M五部分)规范标准的原始基础是美国轻水堆核电标准,法国在20世纪70年代初期引进了美国西屋公司的90万千瓦级核电机组技术,启动了压水堆核电发展计划,按照美国ASME-III等标准陆续建成一批90万千瓦级核电机组。为适应法国核安全管理的要求并根据工业实践经验和业主(EDF)对制造和检测的要求,法国相关部门对引进的标准增设了相关的附加规定。此后,法国相关部门又把附加规定与设计和建造标准全部收集到一套完整的文件中。这就是RCC系列标准的由来。自1980年10月出版第一版以来,应法国国内及国外项目建设的需要,AFCEN不断对RCC-M进行升级或补遗,截至目前最新版本2007版,共计有7个版本。RCC-M是针对不同核电项目建设而不断进行升级的。在RCC-M标准的使用过程中,世界上任意一家使用方均可提出修改要求。AFCEN定期举行小型会议(每年10~20次),由50~100个会员参加,综合考虑各种情况和问题,如法规和涉及标准的变化、国际范围内管理要求的更新以及工业发展情况等对RCC-M标准进行更新。 RCC-M主要用于安全级设备,在法国和其他国家(如中国)供买卖双方在合同签订时作为依据性文件使用。RCC-M中所给出的规则主要借鉴了"ASME锅炉及压力容器规范"第III卷核动力装臵设备(NB、NC、ND、NG、NF)

广东台山核电站简介

广东台山核电站 来源:中国核工业二三建设有限公司 (2009-12-28) 〖大中小〗 广东台山核电站位于台山市赤溪镇,是迄今为止中法两国在核能领域的最大合作项目,也是我国首座、全球第三座采用EPR三代核电技术建设的大型商用核电站。该核电项目规划建设6台核电机组,一期工程建设2台欧洲压水堆(EPR)机组。 台山核电厂一期工程建设d 2台EPR型压水堆核电机组,单机容量175万千瓦,是目前世界上单机容量最大的核电机组。单台机组建设工期52个月,预计2013年底首台机组投入商业运行。该工程为中法合资项目,总投资约500亿元。台山核电站作为一个中外共同开发建设的第三代核电技术项目,其核岛设计供货由法国阿海珐集团与中广核工程公司、中广核设计公司组成的联合体承担,中方承担的设计工作和供货份额超过50%,主设备本地化比例达到50%;汽轮发电机组由中国东方电气集团与法国阿尔斯通公司(ALSTOM)提供,其中中方份额达到2/3;常规岛设计供货由中广核工程公司牵头,与中广核设计公司、阿尔斯通公司及广东电力设计院组成联合体承担;电站辅助设施的设计供货由中广核工程公司承担。项目业主广东台山核电有限公司承担工程项目管理和生产运营,并联合国内施工单位和中广核工程公司完成建安施工和调试等工作。通过中外双方共同建设模式,台山核电项目将加快实现EPR三代核电机组在设计、设备制造、建安施工、调试和运营等全方位的自主化目标,为积极推进我国核电建设作出新的贡献。 项目建成后,年上网电量可达260亿千瓦时。建设台山核电不仅可有效缓解广东省电力长期紧张局面,促进广东省能源结构优化调整,而且对推进广东省进一步加强国际合作发展核电产业具有重要意义。 台山核电站的建设对于我国加快核电建设步伐,紧密跟踪世界先进核电技术,培养高素质核电人才,加快实现三代核电机组在设计、设备制造、土建、安装、调试和运营等全方位的自主化目标,为推进我国核电建设作出新的贡献。同时,对贯彻落实科学发展观,加快广

台山核电厂廊道土建施工管理的经验反馈_赵葳

台山核电厂廊道土建施工管理的经验反馈 赵葳李龙洪君 台山核电合营有限公司广东省台山市赤溪镇台山核电现场办公室 529228 Management experience feedbacks for civil construction of galleries in Taishan Nuclear Power Plant Zhao Wei, Li Long, Hong Jun Taishan Nuclear Power Joint Venture Co.,Ltd. TSNP Project Site Office, Chixi Town, Taishan City, Guangdong Province 529228 Abstract: The phase one project of Taishan Nuclear Power Plant is built with a third generation EPR nuclear power technology. We have encountered some challenges and got some management experience during excavation, structure construction and backfilling. These challenges brought a certain affection on all aspects of progress, quality, safety and investment of project, which is worth summarizing and sharing. In this paper, based on typical actual construction examples, we summarized important experience feedbacks in all stage of gallery construction, and made some proposals for improvement, which provides an important reference for construction management of underground galleries in subsequent nuclear power plant project. Keywords: Nuclear power, plant, gallery, construction management, experience feedback. 摘要:台山核电厂一期工程采用EPR三代核电技术 建设。在全场廊道负挖、结构施工和回填等土建施 工管理阶段,我们遇到了一些值得总结的施工管理 经验和教训,这些经验教训对工程进度、质量、安 全和投资等各个方面均产生了一定影响。本文结合实际施工的典型事例,对廊道土建施工管理各阶段重要的经验反馈进行了总结,并提出了部分改进建议,从而为后续核电厂地下廊道施工管理提供了重要借鉴。 关键词:核电厂;廊道;施工管理;经验反馈 1 概述 台山核电厂一期工程引进法国AREVA 公司的第三代EPR核电技术,一期工程建设2台核电机组,单机容量175万千瓦,是目前世界上单机装机容量最大的核电机组。 1.1 廊道概况 台山核电厂一期工程廊道数量众多,共布置有18类廊道(详见表1),分别分布于核岛、常规岛及BOP辅助构筑物范围的各个地下区域。除部分廊道竖井外,全厂廊道相对标高均在0m以下,廊道结构最低相对标高为-32.5m,最高相对标高为-0.1m,全厂廊道均采用现浇钢筋混凝土结构。

中国核电发展概况

中国核电发展概况(截止2010年) 1我国核电产业未来前景 我国目前的电力供应依然以火力发电为主,水电、风电、核电等规模非常小,电力结构极为不合理,一方面带来能源的极大浪费,另一方面也带来了严重的环境问题。为此国家提出了发展新能源发电,鼓励核能等清洁能源的综合利用政策。 中国核电发展进程大约比全球核能发展进程相对滞后约20年。七十年代中国开始对核电的探索,八十年代中国核电开始“起步”,九十年代至2006年为中国核电的“发展期”,至今大约30年时间。中国核电的“发展期”正处于世界核电发展之“低谷期”。尽管如此,中国核电在不利的条件下仍取得了较大的成绩。到2006年底为止中国投运的核电机组共11台,870万千瓦,约占全国发电总装机容量的1.4%。特别是2000年至今中国投运机组8台,占全球同期投运机组数的1/4。与此同时,中国建立了较为完备全面的核电体系,基本掌握了第二代核电技术,并开始了第三代和第四代核电技术的基础研发工作。这一切,为下一步的跨越发展做好了全方位的准备。 2010年,我国正在制定的《新兴能源产业发展规划》着眼于中国新兴能源产业中长期发展目标,在2011年-2020年间,核能、水能以及煤炭的清洁化利用将是政策支持的重点,也将是5万亿投资的重点支持对象。因此,国家有关部门正在积极调整我国的核电中长期发展规划,提出到2020年中国的核电装机容量将由原来的4000万千瓦提高到7000万千瓦以上。而且有消息称,国家能源局正在制定的《核电管理条例》有望于2010年底前上报国务院。《核电管理条例》将重点体现对未来核电开发的支持,其中将大力推动内陆核电站的开发建设。 为实现规划目标,在“十二五”期间提高核电站开工量是核电产业规划的重点任务之一。原因是,核电站的建设周期长达四五年,要实现核电装机容量到2020年达到7000万千瓦以上的目标,必须在2015年开工至少60个100万千瓦的核电站,2010年开始展开前期规划。因此,未来5年,将是核电企业们迎来大量订单的黄金期。

台山核电站施工准备区强夯(试夯)施工方案

目录 一、工程概况及技术要求 (2) (一)、工程概况 (2) (二)、施工准备区配套设施 (2) (三)、强夯主要设计参数为: (2) (四)、夯点间距 (3) 二、强夯施工工艺 (3) 三、强夯试验 (3) 1、试夯步骤 (4) 2、强夯试夯需采集的试验数据 (5) 3、试夯数据处理 (5) 四、施工方法 (5) (一)、施工准备 (5) 五、强夯施工 (6) 1、施工准备 (6) 2、施工作业方法 (6) (3)满夯 (7) (4)强夯工序质量检验及施工监测 (8) 六、施工质量保证措施 (8) 七、施工安全管理措施 (8) 八、施工准备区道路强夯分区平面图 (9) 九、施工准备区道路试夯区域夯点布置平面图 (9) 十、施工准备区道路试夯进度计划 (9)

台山核电施工准备区强夯(试夯) 施工方案 一、工程概况及技术要求 (一)、工程概况 本工程为台山核电施工准备区路网、管网工程,主要包括西北-东南走向道路4条总长约3194m,西南-东北走向道路5条总长约3073.5m。此9条路为12m路宽(含3m硬路肩,路肩做法同路面)。道路施工包含以下内容: 1、路的地基强夯处理,包括铺夯填材料、夯填材料运输、点夯、满夯、强夯后回填补土碾压至设计高程,试验性强夯施工、强夯检测。 本次强夯工作范围的总面积约为115942㎡,其中A区面积约为55053㎡; B 区面积约为32006㎡; C区面积约为28883㎡。根据设计要求强夯后地基承载力特征值fak≥150kPa,变形模量E0≥10MP a;经强夯土层沉降后,从普夯面到设计标高处的高度应分层回填、碾压,压实系数λc≥0.95,土层承载力特征值fak≥150kPa,变形模量E0≥10MPa。 2、路基及路面,包括路基开挖碾压,16cm填隙碎石底垫层,16cm6%水泥石屑基层,22cmC30混凝土路面。 (二)、施工准备区配套设施 1、现浇混凝土电缆沟; 2、道路雨水排水沟(双侧); 3、HDPE双壁波纹管(污水管); 4、PE100(聚乙烯)给水、消防管; 5、道路照明系统; 6、消防系统。 (三)、强夯主要设计参数为: 1) 强夯施工遍数 A区:一遍点夯,一遍满夯。 B区:三遍点夯,一遍满夯。 C区:一遍点夯、一遍满夯。、

国内核电供应商资料教学内容

核电供应商资料一、主要核电上市企业及其产品简介(付重点公司) 子行业 公司 代码 产品制造能力 铸锻件 中国一重 601106 铸锻件、压力容器、蒸发器成套 二重重装 601268 铸锻件、压力容器、蒸发器成套 华锐铸管 002204 核泵壳铸件开发中 核岛管材 宝钢股份 600019 控股宝银公司生产蒸发管 久立特材 002318 后年有望建成蒸发管产能 常宝股份 002478 明年有望立项核电蒸发管 主设备制造 东方电气 600875 核岛常规岛主设备 上海电气 601727 核岛常规岛主设备 哈动力 http://1133.HK 核岛常规岛主设备 海陆重工 002255 堆内构建的吊篮筒体 锆管 东方锆业 002167

开发的核级产业化项目-海绵锆宝钛股份 600456 与国核技术组建镐业公司-海绵锆嘉宝集团 600622 锆管 核燃料 中核国际 http://2302.HK 中核进行海外铀战略的平台HVAC 哈空调 600202 核电空调 上风高科 000967 风机、核电空调 卧龙电气 600580 风机制造 盾安环境 2011 冷水机组 南风股份 300004 HVAC系统解决方案 电气设备 特变电工 600089 核电主变压器,电缆 天威保变 600550 核电主变压器 中国西电 601179 核电主变压器 奥特迅 002227 电力电源 阀门 中核科技 000777 核电1,2,3级阀门

002438 核电2,3级阀门 电缆 宝胜股份 600973 核级电缆 南洋股份 002212 核级电缆 核电控制 自仪股份 600848 核电仪控的设计、集成热缩材料 沃尔核材 002130 核电用热缩材料 长园集团 600525 核电用热缩材料 蓄水储能 浙富股份 002266 蓄水储能电站设备 核级泵 重庆机电 http://6722.HK 各种核级泵 利欧股份 002131 核级泵 湘电股份 600416 与福斯公司共同研发核泵银铟棒 西部材料 002149 接到核电铟合金订单 结构件 大金重工 002487 核电结构部件 压力容器

中国核电项目汇总

中国核电项目汇总 前言 进入新世纪以后,在“积极推进核电进展”方针的指导下,中国政府制定了核电“2020年建成4000万千瓦,在建1800万千瓦”的规划目标,核电进入一个快速进展的时期。 2005年以来,在国家的支持下,广东、浙江、辽宁、福建、山东等沿海地区正在建设一批新的核电站,与此同时,在电力需求的强力推动下,湖北、湖南、江西、安徽、四川、重庆等内陆省市也在竞相成为我国第一批内陆核电站的所在地,过去几十年只能在沿海地区进展核电的格局正在被打破,核电建设正向我国内陆地区迈进。 2018年初,突如其来的冰雪灾难进一步引起政府的摸索,加大了进展核电的决心,且有大大增加原定规划目标的迹象。 鉴于对核电进展的关怀,鄙人收集了大量资料,现将中国内陆的核电项目简单编辑,以供关怀核电进展的同仁参考。 本汇编中,包括已建核电项目、在建及立即开工核电项目、拟建核电项目三部分。由于国家政策(比如电力体制改革)及宏观环境(比如四川地震阻碍)变化,所编项目的准确性不代表最新情形;由于鄙人水平有限及时刻仓促,疏忽、错误之处难免,敬请谅解。 备注:本资料仅凭个人爱好编制,代表个人观点,仅供参阅、交流。 王仁松 二○○八年六月二十七日 目录 第一章已建核电项目 1 1、大亚湾核电站1 2、岭澳一期核电站1 3、秦山核电站(一期)2 4、秦山二期核电站3 5、秦山三期(重水堆)核电站4 6、田湾核电站4

第二章在建及立即开工核电项目 6 1、岭澳核电站二期6 2、阳江核电站一期7 3、台山核电站7 4、红沿河核电站一期7 5、福建宁德核电站8 6、福清核电站9 7、三门核电站一期9 8、秦山核电厂扩建项目(方家山核电工程)10 9、秦山核电站二期扩建10 10、山东海阳核电站11 第三章拟建核电项目12 1、吉阳核电站一期(安徽)12 2、芜湖核电站(安徽)12 3、桂东核电站(广西)13 4、白龙核电站(广西)13 5、海南核电(海南)13 6、大畈核电厂(湖北)14 7、小墨山/九龙山核电站(湖南)14 8、桃花江核电站(湖南)14 9、常德核电站(湖南)14 10、大唐华银核电厂(湖南)15 11、三明核电站(福建)15 12、漳州核电(福建)15 13、吉林核电站(吉林)15 14、辽宁第二核电厂(辽宁)15 15、徐大堡核电站(辽宁)16

新概念英语青少版入门级AStarterA重点知识总结

Unit 6 This is my family. 词汇:family mum dad sister brother friend 句型:This is... 句子:1.This is my mum. Lesson 2 词汇:my your 缩写:What's=What is my name's=my name is 句子:①What's your name? My name's Pop. Unit 7 Happy birthday? 词汇:bike car doll robot train van 缩写:it's it's=it is it isn't it isn't=it is not 词汇:a an 句子:①It's a van. ②It isn't a car. 短语:a train/van/robot/car An apple/insect/egg/umbrella Lesson 2 句型:Is it...? 句子:㈠Is it an apple? Yes,it is./No,it isn't.

Unit 8 That's my book. 词汇:book, pen, pencil ,pencil case, rubber, ruler, school bag 缩写:this is this isn't this isn't= this is not that is that isn't that isn't= that is not 句子:①肯——This is my book. 否——This isn't my book. ②肯——That's my book. 否——That's isn't my book. Lesson 2 句型:Is this...? Is that...? 句子:①Is this a pencil? Yes,it is./No,it isn't. ②Is that a school bag? Yes,it is./No,it isn't. Unit 9 What's this,Mum? 词汇:bone, hamburger, salad, sausage, tomato, pizza 缩写:What's=What is 句型:What's...? 句子:What's this?It's a hamburger. What's that? It's a bone. Lesson 2

中国核电大事记

中国核电大事记 ☆ 1970年12月 周恩来总理指出:“中国建设核电站要采取安全、适用、经济、自力更生的方针”。 ☆ 1974年3月周恩来总理主持中央专委会,审查批准了中国第一座自主建设的30万千瓦核电站的设计方案,决定作为重点科技开发项目,列入国家计划。 ☆ 1980年1月中共中央提出:核电站的研究应加强,和平利用原子能问题应由二机部统一归口,组织协作。 ☆ 1982年5月五届人大常务委员会第23次会议决定,将二机部改名为核工业部。张忱担任核工业部部长。 ☆ 1984年10月国务院批准成立国家核安全局,姜圣阶担任国家核安全局局长。 ☆ 1985年3月中国自行设计、建造和运营管理的首座30万千瓦压水堆秦山核电站开工建设。 ☆ 1986年1月中共中央、国务院决定,核电工作包括建设和生产运行,均由水利电力部移交给核工业部统一管理和经营。☆ 1987年8月中国首座大型商用核电站广东大亚湾核电站开工建设。核电站由广东核电投资有限公司和香港核电投资有限公司合资组建的广东核电合营有限公司负责建设和运行,核电技术引进法国M310技术。 ☆ 1988年9月经国务院批准中国核工业总公司正式成立,蒋心雄担任中国核工业总公司总经理。 ☆ 1991年12月中国第一座自主建成的核电站(秦山)并网发电成功,结束了大陆无核电的历史,实现了核电技术的重大突破。 ☆ 1993年8月中国自行设计、建造的第一座出口商业核电站巴基斯坦恰希玛核电站开工建设。 ☆ 1994年9月经国务院批准中国广东核电集团有限公司成立,昝云龙担任董事长、党组书记兼总经理。 ☆ 1998年6月秦山三期核电站开工建设,这是中国首座商用重水堆核电站,采用了加拿大坎杜6重水堆核电技术。 ☆ 1999年7月中国核工业集团公司和中国核工业建设集团公司在北京成立。李定凡担任中国核工业集团公司党组书记、总经理。穆占英担任中国核工业建设集团公司党组书记、总经理。 ☆ 1999年10月江苏省连云港田湾核电站1号机组开工建设,该项目采用了俄罗斯AES-91型压水堆核电技术。 ☆ 2000年10月中共十五届五中全会,通过了《中共中央关于制定国民经济和社会发展第十个五年计划的建议》,《建议》指出:适当发展核电。 ☆ 2003年9月国务院核电自主化工作领导小组成立,曾培炎副总理担任领导小组组长。 ☆ 2006年2月国务院发布《国家中长期科学和技术发展规划纲要(2006-2020年)》,“大型先进压水堆及高温气冷堆核电站”成为16个重大科技专项之一。 ☆ 2006年3月十届全国人大四次会议批准《国民经济和社会发展第十一个五年规划纲要》。《纲要》指出:积极推进核电建设。 ☆ 2006年3月国务院常务会议审议并原则通过了《核电中长期发展规划(2005年-2020年)》。按照“积极发展核电”战略,到2020年,我国核电装机占全国发电装机的比例将增加到4%,达到4000万千瓦。 ☆ 2006年6月国务院成立了大型先进压水堆及高温气冷堆重大专项领导小组,曾培炎副总理担任领导小组组长。 ☆ 2007年3月中国第三代核电自主化依托项目正式确定选用美国西屋公司的AP1000技术方案。 ☆ 2007年5月由国务院和中国核工业集团公司、中国电力投资集团公司、中国广东核电集团有限公司、中国技术进出口总公司共同出资组建的国家核电技术有限公司在北京成立。王炳华担任党组书记、董事长。 ☆ 2008年8月国家能源局在北京挂牌,核电行业管理重新纳入国家能源局。张国宝担任国家能源局局长。 ☆ 2009年4月浙江三门核电站一期主体工程开工,它将成为全球第一个使用AP1000核电机组的核电站。 ※ 注:《核电大事记》与核电项目列表由本刊记者冯志卿根据公开资料整理 63 中国投资 2009.5

新概念英语青少版STARTERA测试题

NAME_______ SCORE________ 少儿新概念英语STARTER A 阶段测试【UNIT1--UNIT5】 A.口试部分(满分10分) SCORE________ CONTENTS__________________ B.笔试部分(满分90分) SCORE________ 1、请按正确的格式和正确的顺序书写A —Z 这26个字母的大小写。(1×26=26) 2、将下列单词分类。(1×10=10) 3、写出【I 】、【J 】【R 】【U 】【X 】【Y 】对应的字母词。(1×6=6) 4、根据图片写出对应单词。(1×5=5) 【 】【 】【 】【 】【 】 5、根据上下文意思,补全对话。(1×7=7) (1) Robert :_______,Flora! Flora: Hello, Robert! Robert:Hi, Kim! (2) Robert: Oh!An insect! ! Flora:Help! (3) Peg : !An orange! Pop: Look _______ Peg! Max: _____ !Peg!

Flora: ,Dan! dog! 6、英译汉。(1×4+2×2=8) (1)Oops! __________________________________________________________________________________________ (2)Hurray! __________________________________________________________________________________________ (3)Happy birthday! __________________________________________________________________________________________ (4)Bad dog! __________________________________________________________________________________________ (5)Please! Stop my dog! __________________________________________________________________________________________ (6)Look! The zoo! __________________________________________________________________________________________ 7、圈出图片对应英文的正确书写,并连线。(2×4=8) 8、汉译英。(2×10=20) (1)哇哦!一个橙蓝相间的风筝! ______________________________________________________________________________________________ (2)果冻!可口的! ______________________________________________________________________________________________ (3)没有猫,没有鱼! _____________________________________________________________________________________________ (4)一把黄绿相间的伞! ______________________________________________________________________________________________ (5)谢谢你,妈妈! ______________________________________________________________________________________________ (6)看你的红鼻子! _________________________________________________________________________________________________ (7)帮忙呀!帮忙呀! _________________________________________________________________________________________________ (8)你好,Dan!好狗! _________________________________________________________________________________________________ (9)我的帽子!我的风筝! _________________________________________________________________________________________________

相关文档
最新文档