虚拟锁相放大器的multisim仿真

虚拟锁相放大器的multisim仿真
虚拟锁相放大器的multisim仿真

虚拟锁相放大器的multisim 仿真

作者注:本文参考自代显智老师的MuItisim 在锁定放大器教学中的应用一文,并在此基础上作出一些改进。该文档仅用做学习参考,请忽用于其他用途。文章难免有错误与不完善之处,敬请原谅。

Multisim13.01是美国国家仪器公司推出的EDA 仿真软件。Multisim 的软件界面友好、功能强大、易学易用,并且提供了虚拟电子元器件以及虚拟仪器仪表,将元器件和仪器集合为一体,可完成原理图设计和电路测试。

一、交流放大与噪声的施加

微弱信号通常被大幅值的噪声信号淹没,需要放大。图1采用了反相加法电路,将被检测信号和噪声信号叠加在一起。噪声采用虚拟仪器——Agilent 函数发生器产生。被检测的信号由交流信号源模拟产生。设置时,将Agilent 函数发生器的噪声峰峰值设为4V ,被检测的信号电压设为0.05V ,频率设为1kHz 。示波器XSC1测量加法器的输出,其输出信号如图2所示。

图1

交流放大与噪声叠加电路

图2交流信号与噪声叠加后的波形

二、带通滤波电路

该电路由一个二阶低通滤波器和一个二阶高通滤波器级联构成,如图3。设计带宽为500-2khz 。使用虚拟仪器波特测试仪结果如下图4所示。

信号输出

图4带通滤波电路幅频特性

三、相敏检测电路

AD630是一款高精度平衡调制器/解调器,AD630用于需要宽动态范围的精密信号处理和仪器仪表应用。当AD630用作采用锁定放大器配置的同步解调器时,可从100dB 干扰噪声中恢复小信号(参见锁定放大器应用部分)。虽然该电路针对高达1kHz 的工作频率进行

优化,但在频率高达几百千赫时也很有用。

图5AD630产品手册中锁定放大器的电路连接图

此处将使用AD630构成相敏检波器,实现的仿真电路如下。

信号输入

图6AD630

相敏检测电路

图7仿真电路中的示波器波形图

输出波形如上图,相敏检波功能已实现。检波后的信号幅度为原来输入信号的2倍。

四、低通滤波电路

信号输出

被测信号输入

参考信号输入

由于锁定放大器既可以检测调制波信号中的微弱信号,也可测量已知特定频率的微弱信号,因而在不同场合下所使用的低通滤波器会不同。当在第二种情况下,低通滤波器就相当于一普通的积分电路,因而其设计就比较简单。仿真电路如图8。

图8低通滤波电路

五、移相与方波驱动电路

移相与方波驱动电路可采用图9所示仿真电路来演示。图9中第一个运放实现了0~180°的移相,第二个运放构成过零比较器,将正弦信号转化为方波信号;后两个反向器是将比较器输出信号整形和转化成两个相位差互为180°的方波,从而使生成的方波更加标准;第三个运放为一2倍减法电路,将两个方波信号合成为一个±5V的驱动方波信号,作为AD630的参考信号。图中XBP1为波特测试仪,用来观察移相前后的相位差。波特测试仪IN输入端应连接移相前的信号,波特仪OUT输出端应连接移相后的信号,这样波特仪才能正常工作。分别调节可变电阻的阻值为0%、50%、100%,能观察波特仪1kHz时的相位差,说明该电路能实现0~180°的移相。

图9移相与方波驱动电路

图10输出参考信号波形-±5V,1KHz方波

六、完整电路仿真

仿真结果:

[1]无噪声输入

图11

锁定放大器的完整电路

图12无噪声输入时的Out1和out2输出波形

out2理论值:交流放大X 2(AD630放大倍数)X

θπCOS V S 2=5x 2x πV S 2(Vs=0.05v ,θ=0°)=0.3183v

out2仿真测量值≈0.283相对误差=11%

误差产生原因:

(1)带通滤波器存在信号衰减现象,应该引入修正系数。

引入修正系数后的修正值:10200.55

-0.283÷=0.3015相对误差=5.3%(0.55为带通滤波器在

1kHz 处的衰减系数)

(2)低通滤波器(积分器)无法将信号进行完全积分且存在一定的衰减作用。

[2]有噪声输入

Out2

Out1

图13有噪声输入时的Out1和out2输出波形

由于仿真所需时间过长,此处无法计算测量信号的有效值,但从相敏检波波形可以看出,加入噪声后的检波波形虽与无噪声时的检波波形有稍许不同(失真),但基本能够将待测信号从4.00Vpp的白噪声中分辨出0.05Vpp,1KHz的微弱信号出来。

七、总结

虽然使用multisim仿真软件能够教直观的展示锁相放大器各部分的工作原理,能够在实际制作锁定放大器时,给出一定的指导作用,如遇到错误,可以清楚知道该在哪些地方进行检测、什么波形是正常波形,从而快速查找错误,较快完成实验制作。但是其缺陷也是不言而喻——电路复杂时的仿真速度慢,导致仿真结果的等待时间过长,一些实验误差计算无法完成,且仿真结果也无法反映实际,这在实际电路的实验中是需要引起注意的。

锁相放大器实验报告

锁相放大器实验报告 摘要:本实验利用锁相放大器对信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。 关键词:锁相放大器,微弱信号放大,PSD 输出波形,谐波响应 引言:随着科学技术的发展,微弱信号的检测越来越重要。微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。锁相放大器可以理解为用噪声频带压缩的。方法,将微弱信号从噪声中提取出来。自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。 一、实验原理: 1、 噪声 在物理学的许多测量中,常常遇到极微弱的信号。这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz 市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f 噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。 2、相干检测及相敏检波器 微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。设信号f 1(t )为被检信号V s (t )和噪声V n (t )的叠加,f 2(t )为与被检信号同步的参考信号V r (t ),二者的相关函数为: 由于噪声V n (τ)和参考信号V r (τ)不相关,故R nr (τ)=0,所以R 12(τ)=R sr (τ)。锁相放大器通过直接实现计算相关函数来实现从噪声中检测到被淹没信号。 锁相放大器的核心部分是相敏检波器(phase —sensitive detector,简称PSD),也有称它为混频器(mixer)的,它实际上是一个乘法器。加在信号输入端的信号经滤波器和调谐放大器后加到PSD 的一个输入端。在参考输入端加一个与被测信号频率相同的正弦(或方波)信号,经触发整形和移相变成方波信号,加到PSD 的另一个输入端。 若加在PSD 上的被测信号为u i ,加在PSD 上的方波参考信号u r 幅度为1,若用傅里叶级数展开,则方波的表达式为 ()[]∑∞=++=0r r 12sin 1 21π4n t n n u ω, (n =0,1,2)。 (1) 于是PSD 的输出信号为 从式(2)可以看出,输出信号oPSD u 包含有下列各种频率分量:

虚拟锁相放大器的multisim仿真

虚拟锁相放大器的multisim 仿真 作者注:本文参考自代显智老师的MuItisim 在锁定放大器教学中的应用一文,并在此基础上作出一些改进。该文档仅用做学习参考,请忽用于其他用途。文章难免有错误与不完善之处,敬请原谅。 Multisim13.01是美国国家仪器公司推出的EDA 仿真软件。Multisim 的软件界面友好、功能强大、易学易用,并且提供了虚拟电子元器件以及虚拟仪器仪表,将元器件和仪器集合为一体,可完成原理图设计和电路测试。 一、交流放大与噪声的施加 微弱信号通常被大幅值的噪声信号淹没,需要放大。图1采用了反相加法电路,将被检测信号和噪声信号叠加在一起。噪声采用虚拟仪器——Agilent 函数发生器产生。被检测的信号由交流信号源模拟产生。设置时,将Agilent 函数发生器的噪声峰峰值设为4V ,被检测的信号电压设为0.05V ,频率设为1kHz 。示波器XSC1测量加法器的输出,其输出信号如图2所示。 图1 交流放大与噪声叠加电路 图2交流信号与噪声叠加后的波形 二、带通滤波电路 该电路由一个二阶低通滤波器和一个二阶高通滤波器级联构成,如图3。设计带宽为500-2khz 。使用虚拟仪器波特测试仪结果如下图4所示。 信号输出

图4带通滤波电路幅频特性 三、相敏检测电路 AD630是一款高精度平衡调制器/解调器,AD630用于需要宽动态范围的精密信号处理和仪器仪表应用。当AD630用作采用锁定放大器配置的同步解调器时,可从100dB 干扰噪声中恢复小信号(参见锁定放大器应用部分)。虽然该电路针对高达1kHz 的工作频率进行 优化,但在频率高达几百千赫时也很有用。 图5AD630产品手册中锁定放大器的电路连接图 此处将使用AD630构成相敏检波器,实现的仿真电路如下。 信号输入

锁相放大器设计

C题:锁定放大器的设计 摘要:本设计对于检测微弱信号的锁存放大器进行论述,锁定放大器主要包括交流放大器、带通滤波器、相敏检波器、低通滤波器、直流放大器及液晶显示等几个部分。其中,交流放大器以INA128为主要构成部件,实现交流信号的放大从而作为带通滤波器的输入;带通滤波器用UAF42构成,实现对900Hz到1100Hz频带范围的滤波过程,其误差小于20%;相敏检波器的主要部件采用乘法器MPY634,得到的信号在输入低通滤波器经直流放大器放大后输入显示电路,显示出被测信号的幅度及有效值。另外,在相敏检波器部分的方波驱动信号由参考信道的参考信号经触发整形、移相、比较而来。同时,为了更好的检测出锁定放大器的性能,在信号的输入端增加加法器电路,实现被测信号与干扰信号的1:1叠加,当干扰信号的频率为1050Hz—2100Hz时,输出端的测量误差小于10%。锁定放大器在实际应用中用途广泛,尤其对于微弱信号检测方向站着主导地位,随着科技的发展已渐渐的融入人类的生活之中,拥有很好的发展前景。 关键词:带通滤波器;相敏检波器;显示;方波驱动

1 总体方案设计 1.1方案比较与选择 1.1.1微弱信号检测模块方案比较 方案一:采用滤波电路检测微弱信号,通过滤波电路将微弱信号从强噪声中检测出来,但滤波电路中心频率是固定的,而信号的频率是可变的,无法达到要求,由此可见该方案不满足要求。 方案二:采用取样积分电路检测小信号,采用取样技术,在重复信号出现的期间取样,并重复N次,则测量结果的信噪比可改善√N倍,但这种方法取样效率低,不利于重复频率的信号恢复。 方案三:采用锁相放大器检测小信号,锁相放大器由信号通道、参考通道和相敏检波器等组成,其中相敏检波器(PSD)是锁相放大器的核心,PSD把从信号通道输出的被测交流信号进行相敏检波转换成直流,只有当同频同相时,输出电流最大,具有良好的检波特性。由于该被测信号的频率是指定的且噪声强、信号弱,正好适用于锁相放大器的工作情况,故选择方案三。 1.1.2移相网络模块方案比较 方案一:数字法:采用数字相移的方法势必增加电路的难度,所以此法不可取。 方案二:模拟法:由于电路用的是锁相放大,所以要保持输入信号相位的一致,故需要对参考信号做移相处理,移相采用简单的RC电路搭成,可以很容易得到所需效果。所以采用方案二。 1.1.3电阻分压模块方案比较 电阻分压网络有串联分压和π型网络,π型网络的性能较好,适合在高频的条件下工作,而本设计要求的电压范围较小,故采用简单电路串联来作为分压网络就可以达到要求。 1.1.4显示模块方案 方案一:采用数码管显示。数码管只能显示简单的数字,其电路复杂,占用资源较多,显示信息少,不宜显示大量信息。 方案二:采用液晶显示。液晶显示增加了显示信息的可读性,看起来更方便。而QC12864B字符点阵液晶模块有明显的优点:微功耗、尺寸小、显示信息量大、显示清晰、易控制,抗干扰能力强。

锁相放大器技术详解

https://www.360docs.net/doc/1f16696239.html,/st1272/article_22104.html 锁相放大器采用在无线电电路中已经非常成熟的外差式振荡技术,把被测量的信号通过频率变换的方式转变成为直流。 在外差式振荡技术中被称为本地振荡(Local Oscillation)的、用于做乘法运算的信号,在锁相放大器中被称为参照信号,是从外面输入的。锁相放大器能够(从被测量信号中)检测出与这个参照信号频率相同的分量。在被测量的信号里所包含的各种信号分量中,只有与参照信号频率相同的那个分量才会被转换成为直流,因而才能够通过低通滤波器(LPF)。其他频率的分量因为被转换成为频率不等于零的交流信号,所以被低通滤波器(LPF)滤除。在频率域中,如下图所示。 锁相放大器对于噪声的抑制能力,是由上图中低通滤波器(LPF)的截止频率来确定的。例如,在测量10kHz的信号时,如果使用1mHz的低通滤波器(LPF),那么就等效于在使用10kHz±1mHz的带通滤波器时的噪声抑制能力。如果换算成为Q值,就相当于5×106。要想真正制造这样高的Q值的带通滤波器,那是不可能的。但是,使用锁相放大器,这就很容易实现了。 如同前面所解说的那样,在使用通频带非常狭窄的带通滤波器(BPF)时,如果其中心频率与被测量信号的频率有所偏离,那么就会产生测量误差,最糟糕的情况下可能会把被测量信号也滤除了。 与这种情况相比较,对于锁相放大器来说,即使低通滤波器的截止频率多少有些偏离,只要还能够让直流通过,那么对测量结果也不会有大的影响。与带通滤波器相比较,锁相放大器更容易实现通频带非常狭窄的低通滤波器,不管通频带多么狭窄都能实现。由此可见,锁相放大器具有强大的能力从噪声中检测出被掩埋的信号。 那么,实际的锁相放大器又是什么样的呢? ■使用PSD(相敏检波器)作为乘法器。

锁相放大器综述

题目: 锁相放大器的原理及应用 姓名: 单位: 学号: 联系方式:

摘要 锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。本文主要介绍了锁相放大器原理,发展过程,基本组成,重要参数和在各方面的应用。 关键词:锁相放大器,噪声,傅立叶变换

一、锁相放大器的定义 锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。 二、锁相放大器的历史 上世纪六十年代美国公司研制出第一台利用模拟电路实现微弱正弦信号测量的锁相放大器,使微弱信号检测技术突破性飞越,为解决大量电子测量做出贡献,在物质表面组份分析以及表面电子能态研宄方面有重大意义。自上世纪后期开始,国内外越来越多的人开始研宄锁相放大器,随着科技的发展,越来越多性能优良的锁相放大器被研发出来,在各个领域应用广泛,极大程度上推动了各个学科的发展,目前,从提高系统的灵敏度、减小噪声带宽、提高检测精度、改善信噪比上都有了很大的进步。近年来,数字电子技术飞速发展,锁相放大器也在这一契机下,出现了模数混合的锁相放大器与数字锁相放大器,这在一定程度上弥补了由于物理器件造成的模拟锁相放大器的缺点,极大改善了性能,提升了研究层次与扩大了应用范围。国外相较于国内而言,起步要早一些,己研发出一系列锁相放大器。美国公司、美国公司是行业的龙头企业,它们所研制的模拟型:、和数字型:、、、均已有较成熟的发展与应用。其中公司是世界范围内数字锁相放大器研制的佼佼者,该公司的产品在到的频率带宽内可测,具有自动获取、自动补偿功能,具有谐波抑制功能、度的相位分辨率和大于的动态保留,时间常数位从到可调,它的数字信号处理设计使它具有很大的动态存储,这就减少了使用带通滤波器时带进的噪声以及系统的不稳定性。就国内而言,南京大学唐鸿宾等对锁相放大器的研宄起步较早,研发出了系列锁相放大器,该校微弱信号检测中心顺势

最新专科模板-简易锁相放大器设计-终稿

专科模板-简易锁相放大器设计-终稿

电子科技大学 毕业论文简易锁相放大器设计 指导教师:张萍职称:讲师 学生姓名:文国江专业: 电子信息工程班级:英特尔班学号:V08024843152 2010年 06 月 01 日 电子科技大学成教院制

目录 第一章选题背景 1.1 背景说明 (3) 1.2 选题依据 (3) 1.3 本文工作 (4) 第二章锁相放大器的原理 (5) 第三章研究与分析 (8) 3.1 参考信号产生的方法比较与选择 (8) 3.2 前端放大器的设计 (8) 3.3 移相方法比较与选择 (8) 3.4 相敏检波器的方法比较与选择 (8) 第四章系统设计 (10) 4.1 总体设计 (10) 4.2 硬件设计 (11) 4.2.1 前置放大器的设计 (11) 4.2.2 移相电路的设计 (12) 4.2.3 相敏检波的设计 (13) 4.2.4 低通滤波器的设计 (14) 4.3 软件设计 (15) 第五章系统测试 (16) 第六章附录 (18) 总结 (26) 致谢 (27) 参考文献 (28)

第一章选题背景 1.1背景说明 1962年美国 EG&G PARC(SIGNAL RECOVERY公司的前身 )的第一台锁相放大器 (Lock-in Amplifier,简称 LIA)的发明,使微弱信号检测技术得到标志性的突破,极大地推动了基础科学和工程技术的发展。目前,微弱信号检测技术和仪器的不断进步,已经在很多科学和技术领域中得到广泛的应用,未来科学研究不仅对微弱信号检测技术提出更高的要求,同时新的科学技术发展反过来促进了微弱信号检测新原理和新方法的诞生。 早期的 LIA是由模拟电路实现的,随着数字技术的发展,出现了模拟与数字混合的 LIA,这种LIA只是在信号输入通道,参考信号通道和输出通道采用了数字滤波器来抑制噪声,或者在模拟锁相放大器(简称 ALIA)的基础上多了一些模数转换( ADC)、数模转换( DAC)和各种通用数字接口功能,可以实现由计算机控制、监视和显示等辅助功能,但其核心相敏检波器 (PSD)或解调器仍是采用模拟电子技术实现的,本质上也是 ALIA。直到相敏检波器或解调器用数字信号处理的方式实现后,就出现了数字锁相放大器(简称 DLIA),DLIA 比 ALIA有许多突出的优点而倍受青睐,成为现在微弱信号检测研究的热点,但是在一些特殊的场合中, ALIA仍然发挥着 DLIA不可替代的作用。 1.2选题依据 微弱信号检测技术是一门新兴的技术科学,它运用近年来迅速发展起来的电子学、信息论和物理学方法,分析噪声产生的原因和规律,研究被测信号和噪声的统计特性及其差别,采用一系列的信号处理方法,达到检测被背景噪声覆盖的微弱信号。运用微弱信号检测技术可以测量到传统观念认为不能测量的微弱信号,如弱光、小位移、微震动、微温差、小电容、弱磁、弱声、微电导、微电流等,使微弱信号测量精度得到很大的提高。 “微弱信号"不仅意味着信号的幅度小,而且主要指的是被噪声淹没的信号,“微弱”是相对于噪声而言的。为了检测被噪声覆盖的微弱信号,人们进行了长期的研究工作,分析噪声产生的原因与规律,研究被测信号的特点、相关性及噪声的统计特性,以寻造出从背景噪声中检测出有用信号的方法。微弱信号检测技术大量应用在光谱学、物理、化学、天文、光通讯、雷达、声纳、以及生物医学工程领域。目前的微弱信号检测的方法有窄带滤波、取样积分、

锁相放大器原理

如何测量被噪声埋没了的信号? 在测量各种物理量(温度、加速度等)时,用传感器将其变换成为电信号,然后输入到分析仪器(测量仪器)中去。但是,仅想获得必要的信号是很难做到的。通常是连不必要的信号(也就是噪声)也一起被测量了。在各种情况下,噪声都有可能混进来。 噪声并不仅限于电信号,也有包含在被测量的物理量中的情况。另外,根据不同场合,也出现噪声强度远远高出所需要的目的信号电平的情况。想要测量的信号越微弱,那么噪声就相对地越大。 在这里,让我们来看一下用交流电压表来测量不同电平的1kHz 的正弦波信号的结果。 在信号上叠加了0.1Vmrs 的白噪声。“毫伏计”是一般的交流电压表,“锁相放大器”是一种专门测量微小信号的(特殊的)交流电压表。 信号电平 (正弦波信号) 波 形 (叠加了噪声的波形) 毫伏计的 测量结果 锁相放大器的 测量结果 1Vrms 1Vrms 0.999Vrms 100mVrms 140mVrms 99mVrms

1mVrms 105mVrms 1.01mVrms 0.1mVrms 105mVrms 0.107mVrms 毫伏计也同时测量噪声。即使用数字万用表(DMM )来测量,也会得到与毫伏计相同的测量结果。 但锁相放大器,能在比目的信号(1kHz 正弦波)强1000倍的噪声中把目的信号几乎准确无误地检测出来。 在测量埋没在噪声中的信号时,使用锁相放大器最为合适。 为什么锁相放大器具有那么强的抗噪声能力? 锁相放大器不容易受到噪声影响的原因,是因为很好地利用了噪声(白噪声)与目的信号(正弦波)之间在性质上的差别。 在这里,我们一方面整理白噪声的性质和正弦波的性质,一方面解说为什么锁相放大器会具有很强的噪声抑制能力。 噪声的性质 ■平坦的频谱 在宽阔的频率范围内,该信号具有几乎相同的频谱。信号的瞬时电平成为预测不到的随机的值。

TDS用锁相放大器电路设计

研究与设计 电 子 测 量 技 术 ELECTRONIC MEASUREMENT T ECHNOLOGY第35卷第4期2012年4月  TDS用锁相放大器电路设计 蒋 鹏 赵国忠 (首都师范大学物理系THz实验室 北京 100048 )摘 要:小型或微型锁相放大器(lock-in amplifier)目前市场罕有,小型THz时域光谱仪(TDS)需要此种仪器。提出了一种LIA设计方案,用于TDS提取与THz波电场强度相关的信号。将差分探测器的信号进行预滤波和放大,后接带通滤波器,同时斩波器输出的信号经移相与前者分别送入AD630的信号端和同步端。锁相后信号经低通滤波器,送入ADC。ADC采集的数据送至上位机进行二滤波处理。整个LIA系统放大微弱信号1 000倍左右,信噪比700dB以上,电路板面积11cm×5.5cm, 达到基本指标。关键词:锁相放大器;AD630;太赫兹探测;互相关;Multisim中图分类号:TN911 文献标识码:A Design of lock-in amp lifier circuit for TDSJiang  Peng Zhao Guozhong(THz Lab,Department of Physics,Capital Normal University,Beijing  100048)Abstract:A small or miniature lock-in amplifier(LIA)is rare on market,which is used for small Terahertz time domainsp ectrometer(TDS).LIA scheme design is proposed,and it is used for TDS to extract weak signal,which is related toTHz wave field strength.The signal of differential detector is to be pre-filted and amplificated,then it is connected withband-pass filter.While together with the signal from chopper are put into the AD630 s output terminals andsynchronization port respectively.The signal after lock-in amp lifier is put into low-pass filter then to ADC.Then it isp ut into host computer for filtering.The signal after system has 1000times amplification,more than 700db SNR,andsy stem size is 11cmx5.5cm,which meet the basic indicators.Key words:lock-in amplifier;AD630;THz detector;correlation;Multisim 本文于2 012年3月收到。0 引 言 作为一种精密的测试仪器 [1] ,锁相放大器被广泛的用 在科研领域,尤其是在检测微弱小信号方面。但灵活小巧,轻便的小型或微型锁相放大器市场少有,而一些便携式光谱仪则需要用到小型锁相放大器。在THz时域光谱仪(TDS)[2 ],尤其是小型TDS系统里,更需要小型或者微型锁相放大器。太赫兹时域光谱仪已经在各种材料的检测领域应用广泛, 例如爆炸物或者毒品的检测。但是国内目前在小型TDS系统的发展上出现一些瓶颈,系统中需要有小型锁相放大器。 1 原 理 锁相放大器是基于互相关检测原理(见图1)来实现从大背景噪声中提取微弱的有用信号。当输入信号与参考信号频率完全一致的信号在乘法器的输出端得到直流偏量, 其他信号在输出端都是交流信号,要是在乘法器后加一个低通滤波器, 滤除交流分量,那么剩下的直流分量,而这个直流分量只是正比于输入信号中的特定频率的信号分量的幅值。 图1 互相关检测原理 2 实施方案 为实现低成本小体积的锁相放大器,采集太赫兹时域光谱仪中的差分探头产生的信号。通过核心器件AD630 (平衡调制解调器)做锁相放大,以提取被噪声淹没的微弱

锁相放大器的原理实验报告

锁相放大器的原理实验报告 摘要:随着科学技术的发展,微弱信号的检测越来越重要。微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。 关键词:锁相放大器;微弱信号放大;PSD输出波形;谐波响应 一、引言 随着科学技术的发展,科学研究领域向宏观和微观不断深入,常常需要检测极微弱的信号,如物理学中的表面物理特性,光学中的拉曼光谱、光声光谱、脉冲瞬态光谱,生物学中的细胞发光特性、生物电的测量等。在这些测量过程中,待测的微弱信号常常淹没在强大的背景噪声之中,使用常规的检测手段就无法达到目的。而且随着科学的发展,对实验数据的可靠性、准确性、精确性的要求也越来越高,因此,微弱信号的检测就越来越重要,自60年代初开始,关于信号检测与处理的技术开始产生并迅速发展,现已逐渐形成一专门的边缘科学,在物理、化学、生物、天文、地质、医学、材料等学科领域得到广泛应用。 锁相放大器(Lock-In Amplifier,简写为LIA)就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号,能测量到输入信噪比低至10-5的微弱正弦量。自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。目前全世界已有多个厂家生产该仪器 本实验使用由南京微弱信号检测中心研制的微弱信号综合实验仪来介绍锁相放大器的基本工作原理与使用方法,通过本实验可以了解锁相放大器的基本特点和应用方向。 二、实验 (一)实验原理 锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度。

简易锁相放大器

2012年15省赛区大学生电子设计TI 杯竞赛试题 参赛注意事项 (1)2012年8月5日8:00竞赛正式开始。本科组参赛队只能在A 、B 、C 、D 、E 题目中任选一 题;高职高专组参赛队原则上在F 、G 、H 题中任选一题,也可以选择其他题目。 (2)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的 有效证件(如学生证)随时备查。 (3)每队严格限制3人,开赛后不得中途更换队员。 (4)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作, 不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (5)2012年8月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 微弱信号检测装置(A 题) 【本科组】 一、任务 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值,并数字显示出该幅度值。为便于测评比较,统一规定显示峰值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav 文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A 、B 、C 、D 和E 分别为五个测试端点。 图1 微弱信号检测装置示意图 二、要求 1. 基本要求 (1)噪声源输出V N 的均方根电压值固定为1V ±0.1V ;加法器的输出V C =V S +V N ,带宽大于1MHz ;纯电阻分压网络的衰减系数不低于100。 (2)微弱信号检测电路的输入阻抗R i ≥1 M Ω。 (3)当输入正弦波信号V S 的频率为1 kHz 、幅度峰峰值在200mV ~ 2V 范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 2. 发挥部分

锁相放大器实验报告BY陈群

锁相放大器实验报告BY陈群 浙江师范大学实验报告实验名称锁相放大实验班级物理071 姓名陈群学号 07180116 同组人刘懿钧实验日期 09/12/1 室温气温锁相放大实验 摘要: 锁相放大器(Lock-in amplifier,LIA)自问世以来,在微弱信号检测方面显示 出优秀的性能,它能够在较强的噪声中提取信号,使测量精度大大提高,在科学 研究的各个领域得到了广泛的应用。它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。 因此,学生掌握锁相放大技术的原理与应用具有重要的意义。关键词: 锁相放大器微弱信号 PSD信号 引言: 在进展一日千里的现代科技领域中,精密量测技术的发展对于近代工业有关键 性的影响。当我们研究的系统日趋庞大,交互作用复杂,但所欲了解的现象却越来越精细时,如何在一大堆讯号中获得我们真正想要的信息便成为一个重要的课题。一般的线性放大器可以将微弱的电子讯号放大,但若我们所要的信号中伴随着噪声信号,则两者都会一起放大,亦即此伴随的噪声无法滤除。尤其当噪声强度远大于所要的信号时,即必须藉助特殊的放大器以同时放大讯号并滤去噪声。锁相放大器是一种能测量极微弱的连续周期性信号的仪器。这些微弱信号可以小至数奈伏特(nV),甚至隐藏在大它数千倍的噪声当中,亦能精确的测得。连续周期性信号与噪声不同之处,在于前者具有固定的频率及相位,

后者则杂乱无章。锁相放大器便是利用所谓”相位灵敏侦测(phase-sensitive detection,PSD)” 的技术以取得具有特定频率与相位的信号,而不同于此频率 的噪声则被抑制下来,使输出讯号不受噪声影响。 实验方案: 实验原理 锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敏检测器(PSD)和低通滤波器(LPF)等。 信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敏检测器工作的平台,并且要滤除部分干扰和噪声,以提高相敏检测的动态范围。 参考通道对参考输入进行放大和衰减,以适应相敏检测器对幅度的要求。参考通道的另一个重要功能是对参考输入进行移相处理,以使各种不同的相移信号的检测结果达到最佳。 锁相放大器的核心部件是PSD,它以参考信号r(t)为基准,对有用信号x(t)进行相敏检测,从而实现频谱迁移过程。将x(t)的频谱由ω=ω0处,再经LPF滤除噪声,输出直流信号,其幅度与两路输入信号幅度及它们的相位有关。其输出 u0(t)对x(t)的幅度和相位都敏感,这样就达到了既鉴幅又鉴相的目的。因为LPF 的频带可以做得很窄,所以可使锁相放大器达到较大的SNIR。下图为不同相位时 相敏检测器的输出波形

锁相放大器(Lock-in-Amplifier)的原理与应用

lock-in D y T nV?C a A i H μq C Lock-in-Amplifier D n u I ”ˉe ”?A q S v P A L o i q o C Lock-in-Amplifier ]PSD(phase sensitive detector)?A q S v B A L o L q H C Lock-in q n v A A O i A v f 1G )2sin(1111φπ+=f E e P )2sin(2222φπ+=f E e q L V (mixer)2V o μG G )2sin()2sin(221121213φπφπ++=×=f f E E e e e )]()(2cos[2 )]()(2cos[2212121212121φφπφφπ+++??+?= f f E E f f E E (difference frequency component) (sum frequency component) PSD AC A p q L C q o i A AC o C p G f 1μ¥f 2?éA difference frequency component DC A o p U PSD )cos(2 212 13φφ?= E E e )1)(cos(21≈?φφ

Lock-in lock-in i1V q A q I+P I- S C H q eμn u C B p U G 1.q e A i q q q A A P q q y p A o B n A P A q y a C 2.q(q u p)A i q(1M[B 10M[B100M[B1G[)M q y K q10K[(]q 10K[) 3. lock-in (1) ¥lock-in sensitivity A A lock-inμu(p G) μu C (2) °10-7A A i q10M[A q A A lock-in sensitivity A(1mV)A qμ 10V(q O lock-in q10μG)C (3) ?(OSC LvL)]1V A v(OSC F)P60 (p G23)A K P A(REF PH)Aμ(90o)μ0-V Bμê(270 o)μ0+V A(0 o B180 o)10V C p U G Lock-in A lock-inμq C 1.lock-in sensitivity A o i BP A time constant]1s A A lock-in I qμu(p)μu C 2. °10-7A A i q10M[A q A A lock-in sensitivity A(1mV)A qμ10V C

锁相放大器实验简介

.::锁相放大器实验简介::. 在物理学的许多测量中,常常遇到极微弱信号。通常的方法是采用选频放大技术心频率与待测信号频率相同,从非线性器件直接产生的或外部引入的(干扰等)众多出有用分量,滤除其它无用分量。但此方法存在中心频率不稳定、带宽不能太窄及对力等缺点。 锁相放大器(Lock-in amplifier,LIA)自问世以来,在微弱信号检测方面显示出能够在较强的噪声中提取信号,使测量精度大大提高,在科学研究的各个领域得到了用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪的检测和跟踪[10]。因此,学生掌握锁相放大技术的原理与应用具有重要的意义。 锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敏检测器(PS (LPF)等。 信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敏检并且要滤除部分干扰和噪声,以提高相敏检测的动态范围。 参考通道对参考输入进行放大和衰减,以适应相敏检测器对幅度的要求。参考功能是对参考输入进行移相处理,以使各种不同的相移信号的检测结果达到最佳。 锁相放大器的核心部件是PSD,它以参考信号r(t)为基准,对有用信号x(t)进实现频谱迁移过程。将x(t)的频谱由ω=ω0处,再经LPF滤除噪声,输出直流信号入信号幅度及它们的相位有关。其输出u0(t)对x(t)的幅度和相位都敏感,这样就达相的目的。因为LPF的频带可以做得很窄,所以可使锁相放大器达到较大的SNIR。相敏检测器的输出波形:

不同相位时相敏检测器的波形 当两输入信号的振幅一定时,相敏检波器的输出与输入信号的相位差的余弦成检波后输出最大;而反相时为负最大;相差900或2700时为零。相敏检波器的原理比是输入信号与参考信号的乘积。 出信号 式中: 为被测信号频率;为随机噪声频率。通过PSD后,输出 加低通滤波器,其输出 若大于低通滤波器截止带宽,后一项不通过低通滤波器输出;反之输出。

精品 锁相放大器实验报告

锁相放大器实验报告【摘要】?随着科学技术的发展,微弱信号的检测越来越重要。微弱 信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。【关键词】锁相放大器;微弱信号放大;PSD输出波形;谐波响应一实验原理 1.1 噪声 在物理学的许多测量中,常常遇到极微弱的信号。这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。 1.2 相干检测及相敏检波器 微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。设信号f1(t)为被检信号V s(t)和噪声V n(t)的叠加,f2(t)为与被检信号同步的参考信号V r(t),二者的相关函数为: 由于噪声V n(?)和参考信号V r(?)不相关,故R nr(?)=0,所以 R12(?)=R sr(?)。锁相放大器通过直接实现计算相关函数来实现从噪声中检测到被淹没信号。 锁相放大器的核心部分是相敏检波器(phase—sensitive detector,简称PSD),也有称它为混频器(mixer)的,它实际上是一个乘法器。加在信号输入端的信号经滤波器和调谐放大器后加到PSD 的一个输入端。在参考输入端加一个与被测信号频率相同的正弦(或方波)信号,经触发整形和移相变成方波信号,加到PSD的另一个输入端。

锁相放大器的工作原理

检测微弱信号的核心问题是对噪声的处理,最简单、最常用的办法是采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。后来发展了锁相放大技术。它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。目前,锁相放大技术已广泛地用于物理、化学、生物、电讯、医学等领域。因此,培养学生掌握这种技术的原理和应用,具有重要的现实意义。 1.锁相放大器的工作原理 1.相关检测及相关检测器。所谓相关,是指两个函数不相关(彼此独立); 如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。 如果f1(t)和f2(t-τ)为两个功率有限信号,刚可定义它们的互相关函数为 (3.1.1) 令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则式(3.1.1)可写成 (3.1.2) 式中Rsr(τ),Rr2(τ),Rr1(τ),R12(τ)分别是两信号之间,信号对噪声及噪声之间的函数。由于噪声的频率和相位都是随机量,他们的偶尔出现可用长时间积分使它不影响信号的输出。所以,可认为信号和噪声、噪声和噪声之间是互相独立的,他们的互相关函数为零。于是式(3.1.2)可写成 (3.1.3) 上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。根据此原理设计的相关检测器见图(3.1.1)所示。它是锁相放大器的心脏。

锁相放大器

锁相放大器实验 锁相放大器实验(Lock-in amplifier),简称LIA。它是一个以相关器为核心的检测微弱信号仪器,它能在强噪声情况下检测微弱正弦的幅度和相位。学习本实验的目的是使同学了解锁相放大器的基本组成,掌握锁相放大器的正确使用方法。 一、锁相放大器的基本组成 结构框图如图1所示。它有四个主要部分组成:信号通道、参考通道、相关器(即相关检测器)和直流放大器。 图1 锁相放大器的基本结构框架 1.信号通道 信号通道包括:低噪音前置放大器、带通滤波器及可变增益交流放大器。 前置放大器用于对微弱信号的放大,主要指标是低噪音及一定的增益(100~1000倍)。 可变增益放大器是信号放大的主要部件,它必须有很宽的增益调节范围,以适应不同的信号的需要。例如,当输入信号幅度为10nV,而输出电表的满刻度为10V时,则仪器总增益为10V/10nV =109若直流放大器增益为10倍,前置放增益为103,则交流放大器的增益达105。 带通滤波器是任何一个锁相放大器中必须设置的部件,它的作用是对混在信号中的噪音进行滤波,尽量排除带外噪音。这样不仅可以避免PSD(相敏检波器)过载,而且可以进一步增加PSD输出信噪比,以确保微弱信号的精确测量。常用的带通滤波器有下列几种:

图2为一个高通滤波器和一个低通波滤 波器组成的带通滤波器,其滤波器的中心频 率f0及带宽B由高低滤波器的截止频率f c1 决定和f c2决定。锁相放大器中一般设置几种 截止频率,从而根据被测信号的频率来选择 合适的频率f0及带宽B。但是带宽滤波器带 宽不能过窄,否则,由于温度、电源电压波 动使信号频谱离开带通滤波器的通频带,使 输出下降。 为了消除电源50Hz的干扰,在信号通道 中常插入组带滤波器。 (2)同步外差技术 上述高低通滤波器的主要缺点是随着被 测信号频率的改变,高低通滤波器的参数也 要改变,高低通滤波器的参数也要改变,应 用很不方便。为此,要采用类似于收音机的 同步外差技术,原理框图如图3所示。这是一种单外差技术,PSD1实际上是一个混频器, 图2 高低通频滤波器原理,具有频率f0信号经放大滤波后进入混频PSD,其输出为和频项(f i+2f0)及差频f i,再经具有中心频率为f i带通滤波后,输出变为中频信号f i , (幅度仍与被测信号的幅度成正比)再后,通过PSD2完成相敏检波后,得到解调输出U0,达到了对信号幅度的测量。外差方式的优点是采用固定中频f i 的带通滤波器,因而对不同被测信号频率均能适用;其次,由于采用固定中频带通滤波器,故滤波器的带宽及形状可以专门设计,所 以本电路具有很强的抑制噪音的能力。 图 3 同步外差技术原理框图 (3)同步积分技术

锁相放大器的工作原理

锁相放大器的工作原理 一.什么是锁相放大器 锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。 锁相放大器实物图 二.锁相放大器的构成 锁相放大器采用在无线电电路中已经非常成熟的外差式振荡技术,把被测量的信号通过频率变换的方式转变成为直流。在外差式振荡技术中被称为本地振荡(Local Oscillation)的、用于做乘法运算的信号,锁相放大器中被称为参照信号,是从外面输入的。锁相放大器能够(从被测量信号中)检测出与这个参照信号频率相同的分量。在被测量的信号里所包含的各种信号分量中,只有与参照信号频率相同的那个分量才会被转换成为直流,因而才能够通过低通滤波器(LPF)。其他频率的分量因为被转换成为频率不等于零的交流信号,所以被低通滤波器(LPF)滤除。在频率域中,如下图所示。 锁相放大器的基本组成 三.锁相放大器的应用

锁相放大器可用于检测到在杂噪信号中被埋没的微弱的信号。采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。后来发展了锁相放大技术。它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。目前,锁相放大技术已广泛地用于物理、化学、生物、电讯、医学等领域。 应用一:用于测量现场尘粒浓度。尘粒浓度测量仪采用光电收发对称式探测头,能够对温度、振动、器件老化等因素进行抑制。光信号在烟道中的衰减与烟道中尘粒浓度关系遵从朗伯-比尔定律。当烟道内尘粒浓度增大到一定程度,使得光信号大幅衰减,环境杂散光等成为不可忽视的噪声信号。 应用二:用于红外线温度传感器的低温范围拓展。 红外探测器易受杂散光,环境辐射,内部噪声等影响,尤其是低温时热辐射信号微弱,信噪比较低,信号将淹没在噪声中,这就限制了红外温度传感器的应用。锁相放大器可以将微弱的热辐射信号噪声中检测出来,从而拓展了红外线温度传感器在低温范围的应用。 应用三:相敏检波器组成的锁相环在电力系统同步谐波检测中的应用。红外探测器易受杂散光,环境辐射,内部噪声等影响,尤其是低温时热辐射信号微弱,信噪比较低,信号将淹没在噪声中,这就限制了红外温度传感器的应用 四.锁相放大器的工作原理 锁相放大器是以相干检测技术为基础,利用参考信号频率与输入输入信号频率相关,与噪声信号不相关,从而从较强的噪声中提取出有用信号,使得测量精度大大提高。所谓相关,是指两个函数不相关(彼此独立);如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。

相关文档
最新文档