解析几何中设而不求专题练习(含参考答案)

解析几何中设而不求专题练习(含参考答案)
解析几何中设而不求专题练习(含参考答案)

解析几何中设而不求专题练习

设而不求是解析几何的重要解题策略,在许多题目的解答中,常常可以起到简化计算的作用。许多同学会问:什么情况下,可以通过设而不求解答问题呢?

一、利用曲线与方程的关系:

1. 已知两圆221:210240C x y x y +-+-=,222:2280C x y x y +++-=,求两圆的公共弦方程及弦长。

解:两圆方程相减,得240x y -+=,两圆的交点坐标均满足此方程,故此方程即为公共弦所在直线

方程。又圆2C 的圆心2(1,1)C --到公共弦的距离d ==2

2222l d r ??

+= ???

(l 为公共

弦长),l ∴==

注:其中求公共弦的方程时即用到了设而不求思想。

2. 过圆外一点P (a ,b )引圆222r y x =+的两条切线,求经过两个切点的直线方程。

解:设两个切点分别为P 1(11y x ,),P 2(22y x ,),则切线方程为:211PP r by ax :1=+l ,

222PP r by ax :2=+l 。

可见P 1(11y x ,),P 2(22y x ,)都满足方程2r by ax =+,由直线方程的定义得:2r by ax =+,即

为经过两个切点的直线方程。

二、利用圆锥曲线的定义:

1. 已知椭圆2122F F 19y 25x 、,=+为焦点,点P 为椭圆上一点,3

PF F 21π=∠,求21PF F S ?。 1. 解析:由题意知点P 为椭圆上一点,根据椭圆的定义10|PF ||PF |21=+。

再注意到求21PF F S ?的关键是求出|PF ||PF |21?这一整体,则可采用如下设而不求的解法:

设2211r |PF |r |PF |==,

由椭圆定义得10r r 21=+

由余弦定理得643

cos

r r 2r r 212

221=π

-+ ② ①2-②得,12r r 21=

333

sin r r 21S 21PF F 21=π

=∴?

三、利用点差法:

1. 求过椭圆16y 4x 22=+内一点A (1,1)的弦PQ 的中点M 的轨迹方程。

解析:设动弦PQ 的方程为)1x (k 1y -=-,设P (11y x ,),Q (22y x ,),M (00y x ,),则:

16y 4x 2

121=+ ① 16y 4x 2222=+

①-②得:0)y y )(y y (4)x x )(x x (21212121=-++-+ 当21x x ≠时,0x x y y 2y y 42x x 1

21

22121=--?+?++ 由题意知

k x x y y y 2y y x 2x x 1

212021021=--=+=+,,,即0k y 4x 00=+ ③ ③式与)1x (k 1y 00-=-联立消去k ,得0y 4x y 4x 002

020=--+

当21x x =时,k 不存在,此时,0y 1x 00==,,也满足④。 故弦PQ 的中点M 的轨迹方程为:0y 4x y 4x 22=--+。

注:通过将P 、Q 的坐标代入曲线方程,再将两式相减的过程,称为代点相减。这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求的关键。

四、利用韦达定理:

1. 已知椭圆C 1的方程为14

22

=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;

(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6

解:(Ⅰ)设双曲线C 2的方程为12

2

22=-b y a x ,则.1,31422222==+=-=b c b a a 得再由

故C 2的方程为.13

22

=-y x (II )将.0428)41(14

22222

=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得

,0)14(16)41(16)28(22221>-=+-=?k k k

即 .4

12

>k ①

0926)31(13

22222

=---=-+=kx x k y x kx y 得代入将.

由直线l 与双曲线C 2恒有两个不同的交点A ,B 得

.

13

1

.0)1(36)31(36)26(,0312222222

<≠?????>-=-+-=?≠-k k k k k k 且即

)

2)(2(,66319

,3126),,(),,(2

2+++=+<+

A B A B B A A kx kx x x y y x x y y x x k x x k k x x y x B y x A 而得由则设

.1

37

3231262319)1(2

)(2)1(222

222-+=+-?+--?

+=++++=k k k

k

k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得

.3

1

151322<>k k 或 ③

由①、②、③得

.115

13

314122<<<

13()33,21()21,33()1513,1( ----

2. 已知平面上一定点C (4,0)和一定直线P x l ,1:=为该平面上一动点,作l PQ ⊥,垂足为Q ,且

0)2)(2(=-+→

--→--→--→--PQ PC PQ PC .

(1)问点P 在什么曲线上?并求出该曲线的方程;

(2)设直线1:+=kx y l 与(1)中的曲线交于不同的两点A 、B ,是否存在实数k ,使得以线段AB 为直径的圆经过点D (0,-2)?若存在,求出k 的值,若不存在,说明理由. 解:(1)设P 的坐标为),(y x ,由0)2()2(=-?+得

0||4||22=-PQ PC (2分) ∴(,0)1(4)4222=--+-x y x (4分)

化简得

.112422=-y x ∴P 点在双曲线上,其方程为.112

42

2=-y x (6分) (2)设A 、B 点的坐标分别为),(11y x 、),(22y x ,

由?????=-

+=112

412

2y x kx y 得,0132)3(22=---kx x k (7分) 2

21221313

,32k

x x k k x x --=-=+∴,(8分) ∵AB 与双曲线交于两点,∴△>0,即,0)13)(3(442

2>---k k

解得.2

13213<<-k (9分)

∵若以AB 为直径的圆过D (0,-2),则AD ⊥BD ,∴1-=?BD AD k k ,

12

22

211-=+?+x y x y ,

(10分) ∴12121212(2)(2)0(3)(3)0,y y x x kx kx x x +++=?+++=

∴)12.(09323)313)(1(09)(3)1(2

2221212分=+-?+--

+?=++++k

k

k k k x x k x x k 解得)2

13,213(414,872-∈±=∴=k k ,故满足题意的k 值存在,且k 值为414

±.

五、对多元问题,围绕解题目标,通过逐步消元,实现设而不求

1. 抛物线20x y +=与过点(0,1)M -的直线l 相交于A 、B 两点,O 为坐标原点,若直线OA 和OB 斜率之和是1,求直线l 的方程。

解:设点11(,)A x y ,点22(,)B x y ,直线l 的方程为1y kx =-,

则222121122121222

x x y y x x

k x x x x -+

-+=

==---,由已知条件,1OA OB k k +=. 12

12

1y y x x ∴+=,又22

1212,22x x y y =-=-,则12122x x --=,即1212x x +-=,

于是1k =是直线l 的斜率,直线l 的方程为1y x =-.

2.已知点P (3,4)为圆C :64y x 22=+内一点,圆周上有两动点A 、B ,当∠APB=90°时,以AP 、BP

为邻边,作矩形APBQ ,求顶点Q 的轨迹方程。

解析:设A (11y x ,),B (22y x ,),Q (x ,y ) 由题意得:

64y x 2

121=+ ① 64y x 2

222=+

3x x x 21+=+ ③

4y y y 21+=+ ④

13

x 4

y 3x 4y 2211-=--?--,即y 4x 3y y x x 2121+=+。

22④③+22221221)4y ()3x ()y y ()x x (+++=+++

将①②⑤代入上式并整理得103y x 22=+,即为点Q 的轨迹方程。

注:本题的目标是找到x 、y 所满足的方程,而逐步消去无关的2211y x y x 、、、则是解答问题的关键。

补充练习:

1、设1F 、2F 分别是椭圆22

154

x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值;

(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.

解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===

设P (x ,y ),则1),1(),1(2

221-+=--?---=?y x y x y x PF

35

1

1544222+=--

+x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3;

当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4

(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y

由方程组22

22221(54)5012520054

(5)x y k x k x k y k x ?+

=?+-+-=??=-?

,得

依题意2

20(1680)0k k ?=-><<

,得 当5

555<

<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4

5252,455022

2102

221+=+=+=+k k x x x k k x x .4

520)54525()5(22200+-=-+=-=∴k k

k k k x k y

又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

1204204

5251)4520(02

22

222-=-=+-+-

-?=?∴k k k k k k

k k k R

F ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|

2. 已知圆M P N y x M 为圆点定点),0,5(,36)5(:22=++上的动点,点Q 在NP 上,点G 在MP 上,且满足0,2=?=NP GQ NQ NP . (I )求点G 的轨迹C 的方程;

(II )过点(2,0)作直线l ,与曲线C 交于A 、B 两点,O 是坐标原点,设,+= 是否存

在这样的直线l ,使四边形OASB 的对角线相等(即|OS|=|AB|)?若存在,求出直线l 的方程;若不存在,试说明理由.

解:(1)???

?

??=?=02Q 为PN 的中点且GQ ⊥PN

?GQ 为PN 的中垂线?|PG|=|GN|

∴|GN|+|GM|=|MP|=6,故G 点的轨迹是以M 、N 为焦点的椭圆,其长半轴长3=a ,半焦距5=c ,

∴短半轴长b=2,∴点G 的轨迹方程是14

92

2=+y x ………5分 (2)因为+=,所以四边形OASB 为平行四边形 若存在l 使得||=||,则四边形OASB 为矩形0=?∴

若l 的斜率不存在,直线l 的方程为x =2,由??

???±==?????=+

=35221492

22y x y x x 得 0,09

16

=?>=

?∴与矛盾,故l 的斜率存在. ………7分

设l 的方程为),(),,(),2(2211y x B y x A x k y -=

0)1(3636)49(149

)2(222222=-+-+????

??=+-=k x k x k y x x k y 由

4

9)

1(36,49362

2212221+-=+=+∴k k x x k k x x ① )]2()][2([2121--=x k x k y y

4

920]4)(2[22

21212

+-=++-=k k x x x x k ② ……………9分

把①、②代入2

3

02121±==+k y y x x 得

∴存在直线06230623:=-+=--y x y x l 或使得四边形OASB 的对角线相等.

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

解析几何试题库完整

解析几何题库 一、选择题 1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.2 2(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.2 2(1) (1)2x y -+-= D. 22(1)(1)2x y +++= 【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线 1y x =+与圆221x y +=的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 【解析】圆心(0,0)为到直线1y x =+,即10x y -+= 的距离2d = = ,而012 < <,选B 。 【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .2 2(2)1x y +-= B .2 2(2)1x y ++= C .2 2(1) (3)1x y -+-= D .2 2(3)1x y +-= 解法1(直接法):设圆心坐标为(0,)b 1=,解得2b =,故圆的方程为22(2)1x y +-=。 解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为2 2(2)1x y +-= 解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。 【答案】A 4.点P (4,-2)与圆2 24x y +=上任一点连续的中点轨迹方程是 ( ) A.2 2(2)(1)1x y -++= B.2 2(2) (1)4x y -++= C.2 2(4) (2)4x y ++-= D.2 2(2) (1)1x y ++-= 【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:? ??+=-=224 2y t x s ,代入圆方程,得(2x -4)2 +(2y +2)2 =4,整理,得:2 2(2) (1)1x y -++= 【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2

最新-解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )(- 3,3) (B )(-6,6 (C )(3- ,3) (D )() 【答案】A 【解析】由题知12(F F ,2 2 0012 x y -=,所以12MF MF ?= 0000(,),)x y x y -?- =2220 003310x y y +-=-<,解得033 y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 2、(2015年1卷14题)一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24 x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则2 2 2 (4)2a a -=+,解得3 2 a =,故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0) 交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而

解析几何考试试卷与答案_西南大学

西南大学 数学与统计学院 2012级 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是___1 6___. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是 4.点)2,0,1(到平面321x y z ++=的距离是 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_____40π____________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-, 13(0,,)M M b c =-

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

解析几何试卷及答案.doc

《解析几何》期末试卷及答案 一、 填空(每题3分,共30分) 1 1=, 2=?,则摄影= 2 。 2.已知不共线三点)5,2,3(),5,1,2(),3,2,1(--C B A 则三角形ABC 的 BC 边上的高 为 8 。 3., = 时+平分,夹角。 4.自坐标原点指向平面:035632=-++z y x 的单位法矢量为 ? ?? ???32,31,92 。 5.将双曲线?????==-0 1 22 22x c z b y 绕虚轴旋转的旋转曲面方程为 1222 22=-+c z b y x 。 6.直线???=+++=+++00 22221111D z C y B x A D z C y B x A 与X 轴重合,则系数满足的条件为 ?????? ?====00,02 2 1 122 1 1 21A C A C C B C B D D 。 7.空间曲线???=+=-0042 2z x z y 的参数方程为 ?????==-=242t z t y t x 或?? ? ??=-=-=2 4 2t z t y t x 。 8.直纹曲面0222=-+z y x 的直母线族方程为 ???-=-=+) ()()(y w y x u uy z x w ,或 ? ? ?=--=+sy y x t y t z x s )() ()( 。 9.线心型二次曲线0),(=y x F 的渐近线方程为 0131211=++a y a x a 。 10.二次曲线027522=+-++y x y xy x 在原点的切线为 02 1 =+-y x 。 二、选择题(每题3分,共15分) 1. 二次曲线0126622=-++++y x y xy x 的图象为( B )

20112017高考全国卷文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编 解 析 几 何 一、选择题 【2017,5】已知F 是双曲线2 2 :13 y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ?的面积为( ) A . 13 B .12 C .23 D .32 【解法】选D .由2 2 2 4c a b =+=得2c =,所以(2,0)F ,将2x =代入2 2 13 y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为13 3(21)22 ??-=,选D . 【2017,12】设A 、B 是椭圆C :22 13x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120° ,则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U 【解法】选A . 图 1 图 2 解法一:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只 需使0120AEB ∠≥. 1.当03m <<时,如图1,03 tan tan 6032AEB a b m ∠=≥=,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,0tan tan 60323 AEB a m b ∠==≥9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 解法二:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只

需使0120AEB ∠≥. 1.当03m <<时,如图1,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 【2016,5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1 4 ,则该椭圆的离心率为( ) A .13 B . 12 C .23 D . 3 4 解析:选B . 由等面积法可得 1112224bc a b ?=???,故1 2 c a =,从而12c e a ==.故选B . 【2015,5】已知椭圆E 的中心为坐标原点,离心率为 1 2 ,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 解:选B .抛物线的焦点为(2,0),准线为x =-2,所以c=2,从而a=4,所以b 2=12,所以椭圆方程为 22 11612 x y +=,将x =-2代入解得y=±3,所以|AB |=6,故选B 【2014,10】10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |= 05 4 x ,则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=0015 44 x x + =,解之得x 0=1. 故选A 【2014,4】4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则a=( ) D A .2 B . 26 C .2 5 D .1 解:2c e a ====,解得a=1,故选D 【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

高二数学解析几何专项测试题

一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.不需要写出解答过程,请把答案直接填在答.题.卡.相.应.位. 置.上. . 1. (2017 年 11 月月考)已知双曲线的方程为22 164x y -= ,则该双曲线的焦距为 . 2. (2018 年 01 月期末)抛物线 x 2 = 2 y 的焦点到其准线的距离为 . 3. (2017 年 11 月月考)已知抛物线 x 2 = 2 py (p > 0)的准线方程为 y = -1,则实数 p 的值为 . 4. (2017 年 11 月月考)已知点 F 为双曲线22 142 x y -=的左焦点,则点 F 到双曲线的右准线的距离为 . 5. (2017 年 11 月月考)已知双曲线22 221x y a b -= (a > 0,b > 0)的一条渐近线方程是y ,它的一个焦点在抛物线 y 2 = 4 x 的准线上,则双曲线的方程是 . 6. (2018 年 01 月期末)已知双曲线22 221x y a b -= (a > 0,b > 0)的右焦点与右顶点到渐近线的距离之比为 2,则该双曲 线的渐近线方程为 . 7. (2017 年 11 月月考)设 F 1 , F 2 分别为椭圆 C : 22 193 x y +=的左、右焦点,若点 P )在椭圆上,则 ?PF 1 F 2 的 面积为 . 8. (2017 年 11 月月考)已知抛物线经过点 P (-2,4),则该抛物线的标准方程是 . 9. (2018 年 01 月期末)已知抛物线 y 2 = 2 px ( p > 0 ) 上一点 p 到焦点的距离为 5,到 y 轴的距离为 3,则 p = . 10. (2016 年 09 月月考)若关于 x = x + b 有两个不同解,则实数 b 的取值范围是 . 11. (2018 年 01 月期末)设 F 1 、 F 2 分别是椭圆 C : 22 12516 x y +=的左、右焦点,点 P 在椭圆 C 上,且点 P 到左焦点的 距离是其到右准线25 倍,则 P F 2 = . 12. (2017 年 11 月月考)已知椭圆的方程为22 1169 x y +=,则椭圆内接正方形的周长为 .

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何测试题

解析几何测试题 一、选择题 1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 2.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或- 2 3 D 、1或-3 3.直线经过点A (2,1),B (1,m 2 )两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4, 0[πππ ? C .]4 ,0[π D .),2 ()2,4[ ππ π π? 4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、0 53=-+y x 5.若直线42y kx k =++ k 的取值范围是 A .[1,+∞) B . [-1,-. .(-∞,-1] 6.椭圆1322=+ky x 的一个焦点坐标为)10(,, 则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 7.一动圆与圆O :x 2 +y 2 =1外切,与圆C :x 2 +y 2 -6x +8=0内切,那么动圆的圆心的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 8.如右图双曲线122 22=-b y a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P 点,且2130PF F ∠=?,则双曲线的渐近线是( ) A x y ±= B x y 2±= C x y 2±= D x y 4±= 9.设抛物线 x y 82 =的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的

全国卷真题汇总之解析几何小题

全国卷真题汇总:解析几何小题姓名________班级____ 1.(2018·全国卷I文)已知椭圆C:+=1的一个焦点为,则C的离心率为() A.B.C.D. 2.(2018·全国卷II高考理科·T12)已知F1,F2是椭圆C:+=1(a>b>0)的左,右焦点,A是C 的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为() A.B.C.D. 3.(2018·全国卷II高考文科·T11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为() A.1- B.2- C.- D.-1 4.(2018·全国卷II高考理科·T5) 同(2018·全国卷II高考文科·T6)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为() A.y=±x B.y=±x C.y=±x D.y=±x 5.(2018全国Ⅲ理科T11)设F1,F2是双曲线C:-=1(a>0,b>0)的左,右焦点,O是坐标原点. 过F2作C的一条渐近线的垂线,垂足为P.若=,则C的离心率为() A.B.2 C.D. 6.(2018·全国Ⅲ高考文科·T10)已知双曲线C:-=1(a>0,b>0)的离心率为,则点到C的渐近线的距离为() A.B.2 C.D.2 7.(2018全国卷I理科T11)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则= () A.B.3 C.2D.4 8.(2018·全国卷I高考理科·T8)设抛物线C:y2=4x的焦点为F,过点-且斜率为的直线与C交于M,N两点,则·= () A.5 B.6 C.7 D.8 9.(2018·全国Ⅲ高考理科·T16)已知点M-和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=.

解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (2) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (3) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在抛物 线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求的。对于 一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为 或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。 (1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 (2)求面积 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材没 有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

解析几何2014-2015期末试卷(A卷)

杭州师范大学理学院2014-2015 学年第一学期期末考试

(A )(6,24,8)-- (B)(6,24,8) (C)(6,24,8)-- (D) (6,24,8) - 4、 直线 12101x y z +-==与平面10x y +-=的夹角为 ( ) (A )3π (B )3π或23π (C )6π (D )6 π或56π 5、 平面12(22)(342)0x y z x y z λλ+++++-=,如在z 轴上的截距为2,则12:λλ=( ) (A ) 2:3 (B )3:2 (C )-2:3 (D )-3:2 6、 点(2,1,1)M -和坐标原点在平面1:3210x y z π+-+=和2:31120x y z π+++=的( ) (A )同一个二面角内; (B )相邻二面角内; (C )对顶二面角内; (D )不能确定。 7、 曲线22 2201 y z b c x -=????=? 绕y 轴旋转所得到的曲面叫做 ( ) (A )单叶双曲面 (B )双叶双曲面 (C )圆锥面 (D )圆柱面 三、计算题(共50分) 1、已知四面体ABCD 的三个顶点为(1,0,1)A ,(1,1,5)B -,(1,3,3)C ---,(0,3,4)D ,求此四面体的体积。 (7分) 2、求通过直线5040 x y z x z ++=??-+=?且与平面4820:1x y z π--+=成4π 角的平面方程。(7分)

3、已知向量3a b + 与75a b - 垂直,4a b - 与72a b - 垂直,求向量,a b 的夹角。(6分) 4、已知异面直线120 :1,00:10x y l z x y l z -?+==??=+-??=? ,求1l 和2l 间的距离及公垂线方程。(8分) 5、求单叶双曲面222 14916 x y z +-=的过点(2,3,4)M - 的直母线方程。 (8分) 6、过点(2,1,3)A -与直线12 10:2 l x y z --==-相交且垂直的直线方程。(7分)

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

相关文档
最新文档