外文翻译无线通信基础(Fundamentals_of_wireless_communications_by_David_Tse)顶淘宝(小邓充值)

外文翻译无线通信基础(Fundamentals_of_wireless_communications_by_David_Tse)顶淘宝(小邓充值)
外文翻译无线通信基础(Fundamentals_of_wireless_communications_by_David_Tse)顶淘宝(小邓充值)

附件1:外文资料翻译译文

7.mimo:空间多路复用与信道建模

本书我们已经看到多天线在无线通信中的几种不同应用。在第3章中,多天线用于提供分集增益,增益无线链路的可靠性,并同时研究了接受分解和发射分解,而且,接受天线还能提供功率增益。在第5章中,我们看到了如果发射机已知信道,那么多采用多幅发射天线通过发射波束成形还可以提供功率增益。在第6章中,多副发射天线用于生产信道波动,满足机会通信技术的需要,改方案可以解释为机会波束成形,同时也能够提供功率增益。

这章以及接下来的几章将研究一种利用多天线的新方法。我们将会看到在合适的信道衰落条件下,同时采用多幅发射天线和多幅接收天线可以提供用于通信的额外的空间维数并产生自由度增益,利用这些额外的自由度可以将若干数据流在空间上多路复用至MIMO 信道中,从而带来容量的增加:采用n副发射天线和接受天线的这类MIMO信道的容量正比于n。

过去一度认为在基站采用多幅天线的多址接入系统允许若干个用户同时与基站通信,多幅天线可以实现不同用户信号的空间隔离。20世纪90年代中期,研究人员发现采用多幅发射天线和接收天线的点对点信道也会出现类似的效应,即使当发射天线相距不远时也是如此。只要散射环境足够丰富,使得接受天线能够将来自不同发射天线的信号分离开,该结论就成立。我们已经了解到了机会通信技术如何利用信道衰落,本章还会看到信道衰落对通信有益的另一例子。

将机会通信与MIMO技术提供的性能增益的本质进行比较和对比是非常的有远见的。机会通信技术主要提供功率增益,改功率增益在功率受限系统的低信噪比情况下相当明显,但在宽带受限系统的高信噪比情况下则很不明显。正如我们将看到的,MIMO技术不仅能够提供功率增益,还可以提供自由度增益,因此,MIMO技术成为在高信噪比情况下大幅度增加容量的主要工具。

MIMO通信是一个内容非常丰富的主题,对它的研究将覆盖本书其余章节。本章集中研究能够实现空间多路复用的物理环境的属性,并阐明如何在MIMO统计信道模型中简明扼要地俘获这些属性。具体分析过程如下:首先通过容量分析,明确确定确定性MIMO信道多路复用容量的关键参数,之后介绍一系列MIMO物理信道,评估其空间多路复用性能;根据这些实例的结果,我们认为在角域对MIMO信道进行建模是非常自然地,同时讨论了基于该方法的统计模型。本章采用的方法与第2章的方法是平行的,第2章就是从多径无线信道的几个理想实例着手进行分析,从中了解了基本物理现象,进而研究更适用于通信方案设计与性能分析的统计衰落模型。实际上,在特定的信道建模技术中,我们将会看到大量的类似方法。

我们贯穿始终的研究焦点是平坦衰落MIMO信道,但也可以直接扩展到频率选择性MIMO 信道,这方面的内容会在习题中加以介绍。

7.1确定性mimo信道的多路复用容量

包括n

t 副发射天线和n

t

接受天线的窄带时不变无线信道可以用一个n

t

*n

t

阶确定性矩阵

H描述,H具有哪些决定信道空间多路复用容量的重要属性呢?我们通过对信道容量的分析来回答这个问题。

7.1.1通过奇异值分解分析容量

时不变信道可以表示为:y = Hx+w_

其中x、y与w分别表示一个码元时刻的发射信号、接受信号与高斯白噪声(为简单起见省略了时标),信道矩阵H为确定性的,并假定在所有时刻都保持不变,而且对于发射机和接收机是已知的。这里的h

ij

为发射天线j到接受天线i的信道增益,对发射天线的信号的总功率约束为P。

这就是矢量高斯信道,将矢量信道分解为一组并行的、相互独立的标量高斯子信道就可以计算出该信道的容量。油线性代数的基本原理可知,每个线性变换都能够表示为三种运算的组合:旋转运算、比例运算和另一次旋转运算。用矩阵符号表示,矩阵H具有如下奇异值分解(SVD):

其中,与为(旋转)酉矩阵1,是对角元素为非负实数、

非对角线元素为零的矩形矩阵2。对角线元素为矩阵H的有序奇异值,

其中n

min :=min(n

t

,n

r

)。因为

所以平方奇异值为矩阵HH*的特征值,同时也是矩阵H*H的特征值。注意,奇异值共有n

min 个,可以将SVD重新写成为:

SVD分解可以解释为2个坐标变换:即如果输入用V的各种定义的坐标系统表示,并且输出用U的各列定义的坐标系统表示,那么输入/输出关系是非常简单的。

我们已经在第5章讨论时不变频率选择性信道以及具有完整CSI的时变衰落信道时看到了高斯并并行信道的例子。时不变MIMO信道也是另外一个例子,这里空间维所起的作用与其他问题中时间维和频率维的作用是相同的。大家熟知的容量表达式为:

其中,P

1*,…,P

nmin

*为注水功率分配:

通过选择满足总功率约束,各对应于信道的一个特征模式(也称特征信

道)。各非零特征信道能够支持一路数据流,因此,MIMO信道能够支持多路数据流的空间多路复用。基于SVD的可靠通信结构与第三章介绍的OFDM系统之间存在明显的相似之处,在这2种情况下,都是利用变换将矩阵信道转换为一组并行的独立子信道。在OFDM系统中,矩阵信道由上式中的轮换矩阵C给出,该矩阵由ISI信道和加在输入码元上的循环前缀定义,ISI信道与MIMO信道的重要区别在于,前者的U、V矩阵不依赖与ISI信道的特定实现,而后者的U、V矩阵则依赖与MIMO信道的特定实现。

7.2 MIMO信道的物理建模

通过本节的内容我们将了解到MIMO信道的空间多路复用性能对于物理环境的依赖程度,为此,我们将研究一系列理想化实例并分析骑信道矩阵的秩和条件数,这些确定性实例同时表明了下一节中讨论的MIMO信道统计建模的常规方法。具体地讲,本节的讨论局限于均匀线性天线阵列,即天线一均匀的间隔分布于一条直线上,分析的细节取决于特定的天线结构,但是我们要表达的概念于此无关。

7.2.1 视距SIMO信道

最简单的SIMO信道只有一条视距信道(如下所示),图中为不存在任何反射体和散射体的自由空间,并且各天线对之间仅存在直接信号路径,天线间隔为,其中为

载波波长,为归一化接受天线间隔,即归一化为载波波长的单位,天线阵列的尺寸比发射机与接收机之间的距离小得多。

发射天线与第i副接受天线之间信道的连续时间冲激响应为:

为发射天线与第i副接受天线之间的距离,c为光速,a为路径衰减,假定路径衰其中,d

i

/c《1/W,其中W为传输带宽,则可得基带信道增益为:

减对所有天线对都相同。设d

i

其中,f

c

为载波频率。SIMO信道可以写成:y=hx+w。其中,x为发射码元,w为噪声,y

为接受矢量。有时将信道增益矢量h=[h

1,…h

nt

]t称为信号方向或由发射信号在接收天线阵

列上感应出的空间特征图。

由于发射机与接收机之间的距离远大于接收天线阵列的尺寸,所以从发射天线到各接收天线的路径为1阶并行的,并且

其中,d为从发射天线到第一副接收天线之间的距离,为视距路径到接收天线阵列的入

射角,为在视距方向上接收天线i相对于接受天线1的位移。并且

通常被称为相对于接收天线阵列的方向余弦。因此,空间特征图h=[h

1,…h

nt

]t为

即有相对时延引起的相位差为的连续天线处的接收信号。为了符号表示方便,定义

为方向余弦上的单位空间特征图。

最佳接收机只是将有噪声接收信号投影到该信号方向上,也就是最大比合并或接收波束成形,对不同的时延进行调整,从而使天线的接收信号能够进行相长合并,得到n

t

倍的功率增益,所获取的容量为:

于是,SIMO信道提供了功率增益,但没有提供自由度增益。

在介绍视距信道时,有时将接收天线阵列称为相位阵列天线。

8. MIMO:容量与多路复用结构

本章研究MIMO衰落信道的容量,讨论能够从信道中提取所期望的多路复用增益的收发信机结构,特别是集中研究发射机未知信道的情况。在快衰落MIMO信道中,可以证明:

1 在高信噪比时,独立同分布瑞利快衰落信道的容量有n

min

logSNRb/s/Hz确定,其中

n min 为发射天线数n

t

与接收天线数n

r

的最小值,这是自由度增益。

2 在低信噪比时,容量近似为n

r

SNRlog

2

eb/s/Hz,这是接收波束成形功率增益。

3 在所有信噪比时,容量与n

min

呈线性比例关系,这是由于功率增益与自由度增益合

并造成的。

此外,如果发射机也能够跟踪信道,那么还存在发射波束成形增益以及机会通信增益。

利用确定性时不变MIMO信道的容量获取收发信机,其结构比较简单:在适当的坐标系统中对独立数据流进行多路复用,接收机将接收矢量变换到另一个适当的坐标系统中,分别对不同的数据流进行译码。如果发射机未知信道,那么必须事先固定独立数据流被多路复用所选取的坐标系统。连同联合译码,这种发射机结构实现了快衰落信道的容量,在文献中也将改结构称为V-BLAST结构1。

8.3节讨论比独立数据流的联合最大似然译码更简单的接收机结构,虽然可以支持信道全部自由度的接收机结构有若干种,其中的一种特殊结构是合并使用最小均方误差估计与串行干扰消除,即MMSE-SIC接收机可以获取容量。

慢衰落MIMO信道的性能可以通过中断概率和相应的中断容量来表征。在低信噪比时,

一个时刻利用一副发射天线就可以获取中断容量,实现满分集增益n

t n

r

和功率增益n

r

另一方面,高信噪比时的中断容量还受益于自由度增益,要简洁地刻画其特征更加困难,此问题留到第9章再分析。

虽然采用V-BLAST结构可以实现快衰落信道的容量,但该结构对于慢衰落信道则是严格次最优的,实际上,它甚至还没有实现MIMO信道期望的满分集增益。为了说明这一问题,考虑通过发射天线直接发送独立数据流,在这种情况下,各数据流的分集仅限于接收分集,为了从信道中获取满分集,须对发射天线进行编码。将发射天线编码与MMSE-SIC 结合起来的一种修正结构D-BLAST2不仅能够从信道中获取满分集,而且其性能还接近于中断容量。

8.1 V-BLAST结构

首先考虑时不变信道y[m]=Hx[m]+w[m] m=1,2,…

当发射机已知信道矩阵H时,有7.1.1节可知,最优策略是在H*H的特征矢量的方向上发射独立数据流,即在由矩阵V定义的坐标系统中发射,该坐标系统与信道有关。考虑到要处理发射机未知信道矩阵时的衰落信道,归纳出入如下图所示的结构,图中n

t

个独立的数据流在由酉矩阵Q确定的任意坐标系统中进行多路复用,该酉矩阵未必与信道矩阵H

有关,这就是V-BLAST结构。对数据流进行联合译码,为第k个数据流分配的功率为P

k

(使

得功率之和P

1+…+P

nt

等于P,即发射总功率约束),并利用速率为R

k

的容量获取高斯码进

行编码,总的速率为

几种特殊情况如下:

1 如果Q=V并且通过注水分配的方式确定功率,则得到如图7-2所示的容量获取结构。

2 如果Q=I

nt

,则独立数据流被发送到不同的发射天线。

下面利用与第5章关于球体填充的类似论述,讨论最高可靠通信速率的上界:

其中,K

x

为发射信号x的协方差矩阵,是多路复用坐标系和功率分配的函数:

考虑在长度为N的码元时间块内的通信,长度为n

r

N的接收矢量一高概率位于体积与下式成比例的椭圆体内:

该公式是与并行信道相对应的体积公式的直接推广,并在习题8-2中加以证明。由于必须考虑到各码字周围为非混叠噪声球空间才能却保可靠通信,所以能够填充的码字的最大数量为比值:

现在就可以得出结论,可靠通信速率的上界为上式。

采用V-BLAST结构能够达到该上界吗?注意到独立数据流在V-BLAST结构中多路复用,是否可能需要对数据流进行编码才能达到上界式?为了解决这个问题,考虑MISO信

道的特殊情况(n

t =1),并在该结构中设Q=I

nt

,即独立数据流由各发射天线发送。这恰好

就是6.1节介绍的上行链路信道,发射天线类似于用户,由这一节的内容可知,该上行链路信道的总容量为:

这恰恰是特殊情况下的上界式。因此,数据流独立的V-BLAST结构完全能够达到上界式。在一般情况下,可以将V-BLAST结构与包括n

t

副接收天线、信道矩阵为HQ的上行链路信道进行类比,与一副发射天线的情况相同,上界式就是该上行链路信道的总容量,因此采用V-BLAST结构可以达到。这种上行链路信道的详细研究见第10章。

8.2 快衰落MIMO信道

快衰落MIMO信道为y[m]=H[m]x[m]+w[m] m=1,2,…

其中,{H[m]}为随机衰落过程。为了恰当地定义容量(由随时间变化的信道衰落取平均获得的)的概念,现做出如下(与前几章相同的)假定,即假定{H[m]}为平稳遍历过程,作

|2=1,与前面的研究方法一样,考虑相干通信:接收机准确地跟为归一化处理,设E[|h

ij

踪信道衰落过程。首先研究发射机仅具有衰落信道统计特征的情况,最后研究发射机也能够准确跟踪衰落信道的情况(完整CSI),这种情况非常类似于时不变MIMO信道的情况。

附件2:外文原文

7. MIMO I: spatial multiplexing

and channel modeling

In this book, we have seen several different uses of multiple antennas in wireless communication. In Chapter 3, multiple antennas were used to provide diversity gain and increase the reliability of wireless links. Both receive and transmit diversity were considered. Moreover, receive antennas can also provide a power gain. In Chapter 5, we saw that with channel knowledge at the transmitter, multiple transmit antennas can also provide a power gain via transmit beamforming. In Chapter 6, multiple transmit antennas were used to induce channel variations, which can then be exploited by opportunistic communication techniques. The scheme can be interpreted as opportunistic beamforming and provides a power gain as well.

In this and the next few chapters, we will study a new way to use multiple antennas. We will see that under suitable channel fading conditions, having both multiple transmit and multiple receive antennas (i.e., a MIMO channel) provides an additional spatial dimension for communication and yields a degree-of- freedom gain. These additional degrees of freedom can be exploited by spatially multiplexing several data streams onto the MIMO channel, and lead to an increase in the capacity: the capacity of such a MIMO channel with n transmit and receive antennas is proportional to n.

Historically, it has been known for a while that a multiple access system with multiple antennas at the base-station allows several users to simultaneously communicate with the base-station. The multiple antennas allow spatial separation of the signals from the different users. It was observed in the mid 1990s that a similar effect can occur for a point-to-point channel with multiple transmit and receive antennas, i.e., even when the transmit antennas are not geographically far apart. This holds provided that the scattering environment is rich enough to allow the receive antennas to separate out the signals from the different transmit antennas. We have already seen how channel fading can be exploited by opportunistic communication techniques. Here, we see yet another example where channel fading is beneficial to communication.

It is insightful to compare and contrast the nature of the performance gains offered by opportunistic communication and by MIMO techniques,Opportunistic communication techniques primarily provide a power gain.This power gain is very significant in the low SNR regime where systems are power-limited but less so in the high SNR regime where they are bandwidthlimited. As we will see, MIMO techniques can provide both a power gain and a degree-of-freedom gain. Thus, MIMO techniques become the primary tool to increase capacity significantly in the high SNR regime.

MIMO communication is a rich subject, and its study will span the remaining chapters of the book. The focus of the present chapter is to investigate the properties of the physical environment which enable spatial multiplexing and show how these properties can be succinctly captured in a statistical MIMO channel model. We proceed as follows. Through a capacity analysis, we first identify key parameters that determine the multiplexing capability of a deterministic MIMO channel. We then go through a sequence of physical MIMO channels to assess their spatial multiplexing capabilities. Building on the insights from these examples, we argue that it is most natural to model the MIMO channel in the angular domain and discuss a statistical model based on that approach. Our approach here parallels that in Chapter 2, where we started with a few idealized examples of multipath wireless channels to gain insights into the underlying physical phenomena, and proceeded to statistical fading models, which are more appropriate for the design and performance analysis of communication schemes. We will in fact see a lot of parallelism in the specific channel modeling technique as well.

Our focus throughout is on flat fading MIMO channels. The extensions to frequency-selective MIMO channels are straightforward and are developed in the exercises.

7.1 Multiplexing capability of deterministic MIMO channels

transmit and nr receive A narrowband time-invariant wireless channel with n

t

antennas is described by an nr by nt deterministic matrix H. What are the key properties of H that determine how much spatial multiplexing it can support? We answer this question by looking at the capacity of the channel.

7.1.1 Capacity via singular value decomposition

The time-invariant channel is described by

y = Hx+w_ (7.1)

where x,y and w denote the transmitted signal,

received signal and white Gaussian noise respectively at a symbol time (the time index is dropped for simplicity). The channel matrix H is deterministic and assumed to be constant at all times and known to both the transmitter and the receiver. Here, hij is the channel gain from transmit antenna j to receive antenna i. There is a total power constraint, P, on the signals from the transmit antennas.

This is a vector Gaussian channel. The capacity can be computed by decomposing the vector channel into a set of parallel, independent scalar Gaussian sub-channels. From basic linear algebra, every linear transformation can be represented as a composition of three operations: a rotation operation, a scaling operation, and another rotation operation. In the notation of matrices, the matrix H has a singular value decomposition (SVD):

Where and are (rotation) unitary matrices1 and

is a rectangular matrix whose diagonal elements are non-negative real numbers and whose off-diagonal elements are zero.2 The diagonal elements

are the ordered singular values of the matrix H, where nmin:=min(nt,nr). Since

the squared singular values _2i are the eigenvalues of the matrix HH* and also of H*H. Note that there are n

min

singular values. We can rewrite the SVD as

The SVD decomposition can be interpreted as two coordinate transformations: it says that if the input is expressed in terms of a coordinate system defined by the columns of V and the output is expressed in terms of a coordinate system defined by the columns of U, then the input/output relationship is very simple. Equation (7.8) is a representation of the original channel (7.1) with the input and output expressed in terms of these new coordinates.

We have already seen examples of Gaussian parallel channels in Chapter 5, when we talked about capacities of time-invariant frequency-selective channels and about time-varying fading channels with full CSI. The time-invariant MIMO channel is yet another example. Here, the spatial dimension plays the same role as the time and frequency dimensions in those other problems. The capacity is by now familiar:

where P

1*,…,P

nmin

*are the waterfilling power allocations:

with chosen to satisfy the total power constraint corresponds to an eigenmode of the channel (also called an eigenchannel). Each eigenchannel

can support a data stream; thus, the MIMO channel can support the spatial multiplexing of multiple streams. Figure 7.2 pictorially depicts the SVD-based architecture for reliable communication.

There is a clear analogy between this architecture and the OFDM system introduced in Chapter 3. In both cases, a transformation is applied to convert a matrix channel into a set of parallel independent sub-channels. In the OFDM setting, the matrix channel is given by the circulant matrix C in (3.139), defined by the ISI channel together with the cyclic prefix added onto the input symbols. The important difference between the ISI channel and the MIMO channel is that, for the former, the U and V matrices (DFTs) do not depend on the specific realization of the ISI channel, while for the latter, they do depend on the specific realization of the MIMO channel.

7.2 Physical modeling of MIMO channels

In this section, we would like to gain some insight on how the spatial multiplexing capability of MIMO channels depends on the physical environment. We do so by looking at a sequence of idealized examples and analyzing the rank and conditioning of their channel matrices. These deterministic examples will also suggest a natural approach to statistical modeling of MIMO channels, which we discuss in Section 7.3. To be concrete, we restrict ourselves to uniform linear antenna arrays, where the antennas are evenly spaced on a straight line. The details of the analysis depend on the specific array structure but the concepts we want to convey do not.

7.2.1Line-of-sight SIMO channel

The simplest SIMO channel has a single line-of-sight (Figure 7.3(a)). Here, there is only free space without any reflectors or scatterers, and only a direct signal

path between each antenna pair. The antenna separation is where is the

carrier wavelength and is the normalized receive antenna separation,

normalized to the unit of the carrier wavelength. The dimension of the antenna array is much smaller than the distance between the transmitter and the receiver.

The continuous-time impulse response between the transmit antenna and the ith receive antenna is given by

where di is the distance between the transmit antenna and ith receive antenna, c is the speed of light and a is the attenuation of the path, which we assume to be the same for all antenna pairs. Assuming di/c 1/W, where W is the transmission bandwidth, the baseband channel gain is given by (2.34) and (2.27):

where fc is the carrier frequency. The SIMO channel can be written as y = h x+w where x is the transmitted symbol, w is the noise and y is the received vector.

The vector of channel gains h=[h

1,…h

nt

]t is sometimes called the signal direction

or the spatial signature induced on the receive antenna array by the transmitted signal.

Since the distance between the transmitter and the receiver is much larger than the size of the receive antenna array, the paths from the transmit antenna to each of the receive antennas are, to a first-order, parallel and

where d is the distance from the transmit antenna to the first receive antenna and _ is the angle of incidence of the line-of-sight onto the receive antenna array.

(You are asked to verify this in Exercise 7.1.) The quantity is

the displacement of receive antenna i from receive antenna1 in the direction of the line-of-sight. The quantity

is often called the directional cosine with respect to the receive antenna array.

The spatial signature h=[h

1,…h

nt

]t is therefore given by

i.e., the signals received at consecutive antennas differ in phase by

due to the relative delay. For notational convenience, we define

as the unit spatial signature in the directional cosine .

The optimal receiver simply projects the noisy received signal onto the signal direction, i.e., maximal ratio combining or receive beamforming (cf. Section 5.3.1). It adjusts for the different delays so that the received signals at the antennas can be combined constructively, yielding an nr-fold power gain. The resulting capacity is

The SIMO channel thus provides a power gain but no degree-of-freedom gain.

In the context of a line-of-sight channel, the receive antenna array is sometimes called a phased-array antenna.

8. MIMO II: capacity and multiplexing architectures

In this chapter, we will look at the capacity of MIMO fading channels and discuss transceiver architectures that extract the promised multiplexing gains from the channel. We particularly focus on the scenario when the transmitter does not know the channel realization. In the fast fading MIMO channel, we show the following: ? At high SNR, the capacity of the i.i.d. Rayleigh fast fading channel scales like

n min logSNRb/s/Hz. where n

min

is the minimum of the number of transmit antennas n

t

and

the number of receive antennas nr . This is a degree-of-freedom gain.

? At low SNR, the capacity is approximately n

r

SNR log2 e bits/s/Hz. This is a receive beamforming power gain.

? At all SNR, the capacity scales linearly with n

min

. This is due to a combination of a power gain and a degree-of-freedom gain.

Furthermore, there is a transmit beamforming gain together with an opportunistic communication gain if the transmitter can track the channel as well.

Over a deterministic time-invariant MIMO channel, the capacity-achieving transceiver architecture is simple (cf. Section 7.1.1): independent data streams are multiplexed in an appropriate coordinate system (cf. Figure 7.2). The receiver transforms the received vector into another appropriate coordinate system to separately decode the different data streams. Without knowledge of the channel at the transmitter the choice of the coordinate system in which the independent data streams are multiplexed has to be fixed a priori. In conjunction with joint decoding, we will see that this transmitter architecture achieves the capacity of the fast fading channel. This architecture is also called V-BLAST1 in the literature.

In Section 8.3, we discuss receiver architectures that are simpler than joint ML decoding of the independent streams. While there are several receiver architectures that can support the full degrees of freedom of the channel, a particular architecture, the MMSE-SIC, which uses a combination of minimum mean square estimation (MMSE) and successive interference cancellation (SIC), achieves capacity.

The performance of the slow fading MIMO channel is characterized through the outage probability and the corresponding outage capacity. At low SNR, the outage capacity can be achieved, to a first order, by using one transmit antenna at a time, achieving a full diversity gain of nt nr and a power gain of nr . The outage capacity at high SNR, on the other hand, benefits from a degree-of-freedom gain as well; this is more difficult to characterize succinctly and its analysis is relegated until Chapter 9.

Although it achieves the capacity of the fast fading channel, the V-BLAST architecture is strictly suboptimal for the slow fading channel. In fact, it does

not even achieve the full diversity gain promised by the MIMO channel. To see this, consider transmitting independent data streams directly over the transmit antennas. In this case, the diversity of each data stream is limited to just the receive diversity. To extract the full diversity from the channel, one needs to code across the transmit antennas. A modified architecture, D-BLAST2, which combines transmit antenna coding with MMSE-SIC, not only extracts the full diversity from the channel but its performance also comes close to the outage capacity.

8.1 The V-BLAST architecture

We start with the time-invariant channel (cf. (7.1))

y[m]=Hx[m]+w[m] m=1,2,…

When the channel matrix H is known to the transmitter, we have seen in Section 7.1.1 that the optimal strategy is to transmit independent streams in the directions of the eigenvectors of H*H, i.e., in the coordinate system defined by the matrix V, where H is the singular value decomposition of H. This coordinate system is channel-dependent. With an eye towards dealing with the case of fading channels where the channel matrix is unknown to the transmitter, we generalize this to the architecture in Figure 8.1, where the independent data streams, n

t

of them, are multiplexed in some arbitrary coordinate system given by a unitary matrix Q, not necessarily dependent on the channel matrix H. This is the V-BLAST architecture. The data streams are decoded jointly. The k th data stream is

allocated a power P

t (such that the sum of the powers, P

1

+···+P

nt

, is equal

to P, the total transmit power constraint) and is encoded using a

capacity-achieving Gaussian code with rate R

k

. The total rate is

As special cases:

? If Q = V and the powers are given by the waterfilling allocations, then we have the capacity-achieving architecture in Figure 7.2.

? If Q = I

nr

, then independent data streams are sent on the different transmit antennas.

Using a sphere-packing argument analogous to the ones used in Chapter 5, we will argue an upper bound on the highest reliable rate of communication:

is the covariance matrix of the transmitted signal x and is a function of Here K

x

the multiplexing coordinate system and the power allocations:

Considering communication over a block of time symbols of length N, the received N, lies with high probability in an ellipsoid of volume vector, of length n

r

proportional to

This formula is a direct generalization of the corresponding volume formula (5.50) for the parallel channel, and is justified in Exercise 8.2. Since we have to allow for non-overlapping noise spheres around each codeword to ensure reliable communication, the maximum number of codewords that can be packed is the ratio

We can now conclude the upper bound on the rate of reliable communication in (8.2).

Is this upper bound actually achievable by the V-BLAST architecture? Observe that independent data streams are multiplexed in V-BLAST; perhaps coding across the streams is required to achieve the upper bound (8.2)? To get some insight on this question, consider the special case of a MISO channel (n

= 1) and set Q =

r

in the architecture, i.e., independent streams on each of the transmit antennas. I

rt

This is precisely an uplink channel, as considered in Section 6.1, drawing an analogy between the transmit antennas and the users. We know from the development there that the sum capacity of this uplink channel is

This is precisely the upper bound (8.2) in this special case. Thus, the V-BLAST architecture, with independent data streams, is sufficient to achieve the upper bound (8.2). In the general case, an analogy can be drawn between the V-BLAST architecture and an uplink channel with nr receive antennas and channel matrix HQ; just as in the single receive antenna case, the upper bound (8.2) is the sum capacity of this uplink channel and therefore achievable using the V-BLAST architecture. This uplink channel is considered in greater detail in Chapter 10 and its information theoretic analysis is in Appendix B.9.

8.2 Fast fading MIMO channel

The fast fading MIMO channel is

y[m]=H[m]x[m]+w[m] m=1,2,…

Where {H[m]} is a random fading process. To properly define a notion of capacity (achieved by averaging of the channel fading over time), we make the technical assumption (as in the earlier chapters) that {H[m]} is a stationary and

|2=1. As in our ergodic process. As a normalization, let us suppose that E[|h

ij

earlier study, we consider coherent communication: the receiver tracks the channel fading process exactly. We first start with the situation when the transmitter has only a statistical characterization of the fading channel. Finally, we look at the case when the transmitter also perfectly tracks the fading channel (full CSI); this situation is very similar to that of the time-invariant MIMO channel.

企业成本控制外文翻译文献

企业成本控制外文翻译文献(文档含英文原文和中文翻译)

译文: 在价值链的成本控制下减少费用和获得更多的利润 摘要: 根据基于价值链的成本管理理念和基于价值的重要因素是必要的。首先,必须有足够的资源,必须创造了有利的价值投资,同时还需要基于客户价值活动链,以确定他们的成本管理优势的价值链。其次,消耗的资源必须尽量减少,使最小的运营成本价值链和确保成本优势是基于最大商业价值或利润,这是一种成本控制系统内部整个视图的创建和供应的具实践,它也是一种成本控制制度基于价值链,包括足够的控制和必要的资源投资价值的观点,创建和保持消费的资源到合理的水平,具有价值的观点主要对象的第一个因素是构造有利的价值链,从创造顾客价值开始;第二个因素是加强有利的价值链,从供应或生产客户价值开始。因此它是一个新型的理念,去探索成本控制从整个视图的创建和供应的商品更盈利企业获得可持续的竞争优势。 关键词:成本控制,价值链,收益,支出,收入,成本会计 1、介绍 根据价值链理论,企业的目的是创造最大的顾客价值;和企业的竞争优势在于尽可能提供尽可能多的价值给他们的客户,作为低成本可能的。这要求企业必须首先考虑他们是否能为顾客创造价值,和然后考虑在很长一段时间内如何创造它。然而,竞争一直以“商品”(或“产品”)作为最直接的载体,因此,传统的成本控制方法主要集中在对“产品”和生产流程的过程。很显然,这不能解决企业的问题,企业是否或如何能为客户创造价值。换句话说,这至少不能从根本上解决它。 因此,企业必须首先投入足够的资源,以便他们能够创建客户值取向,然后提供它以最少的资源费用。所以在整个视图中对价值创造和提供整体的观点来控制成本,它可以为客户提供完美的动力和操作运行机制运行成本的控制,也可以从根本上彻底克服了传统的成本控制方法的缺点,解决了无法控制的创造和供应不足的真正价值。基于此,本文试图从创作的整体观讨论成本控制提供价值并探讨实现良性循环的策略,也就是说,“创造价值投资成本供应价值创造价值”。 2、成本及其控制的基于价值链理念 2.1基于价值链的成本观念 根据价值链理论,如果企业是要被客户接受,它必须创造和提供能满足其客户的价值。因此,成本(价值或资源支付费用)这不离为创造和提供顾客价值的活动,其活动的价值链。因此,我们应该从价值链角度看成本的重要。

无线通信基础知识-复习总结.doc

无线通信基础知识 1、什么是无线通信 利用电磁波的辐射和传播,经过空间传送信息的通信方式称为无线电通信(radio communication),简称无线通信。 2、简述无线通信的特征(特点) 1)、电波传播条件复杂。电波会随传播距离的增加而发生弥散损耗,会受到地形、地物的遮蔽而发生阴影效应,会因多径产生电平衰落和吋延扩展;通信中的快速移动引起多普勒频移。2)、噪声和干扰严重。除外部干扰,如天电干扰、工业干扰和信道噪声外,系统本身和不同系统之间,还会产生各种干扰,如邻道干扰、互调干扰、共道干扰、多址干扰以及远近效应等。3)、要求频带利用率高。无线通信可以利用的频谱资源非常有限,而通信业务量的需求却与日俱增。解决方法:要开辟和启用新的频段;要研究各种新技术和新措施,以压缩信号所占的频带宽度和提高频谱利用率。 4)、系统和网络结构复杂。根据通信地区的不同需要,网络可以组成带状、面状或立体状,可单网运行,也可多网并行并互连互通。为此,通信网络必须具备很强的管理和控制功能。5)、可同吋向多个接收端传送信号。 6)、抗灾害能力强。 7)、保密性差。 3、无线通信的分类 4、按使用对象分为:军用和民用 5、按使用环境分为:陆地、海上和空中 6、按多址方式分为:频分多址、时分多址和码分多址、空分多址等 7、按覆盖范围分为:城域网、局域网和个域网 8、按业务类型分为:话务网、数据网和综合业务网 9、按服务对象分为:专用网和公用网 10、按工作方式分为:单工、双工和半双工 11、按信号形式分为:模拟网和数字网 无线通信的传播特性 1、通信系统的信道按信道特性参数随外界因素影响而变化的快慢可以分为儿种?无线通信的 信道属于哪种? 信道分类1、恒参信道;2、随参(变参)信道:无线通信信道 2、地形可以分为几种?地物呢? 1)、为了计算移动信道中信号电场强度中值(或传播损耗中值),可将地形分为两大类,即中等起伏地形和不规则地形。 1、所谓中等起伏地形是指在传播路径的地形剖面图上,地面起伏高度不超过20m,且起伏 缓慢,峰点与谷点之间的水平距离大于起伏高度。以中等起伏地形作传播基准。 2、其它地形如丘陵、孤立山岳、斜坡和水陆混合地形等统称为不规则地形。 2)、不同地物环境其传播条件不同,按照地物的密集程度不同可分为三类地区: 1、开阔地。在电波传播的路径上无高大树木、建筑物等障碍物,呈开阔状地面,如农田、 荒野、广场、沙漠和戈壁滩等; 2、郊区。在靠近移动台近处有些障碍物但不稠密,例如,有少量的低层房屋或小树林等;

外文文献翻译ZigBee:无线技术-低功耗传感器网络

ZigBee:无线技术,低功耗传感器网络 加里莱格 美国东部时间2004年5月6日上午12:00 技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难。例如,在家庭安全系统方面,无线传感器相对于有线传感器更易安装。而在有线传感器的装置通常占无线传感器安装的费用80%的工业环境方面同样正确(适用)。而且相比于有线传感器的不切实际甚至是不肯能而言,无线传感器更具应用性。虽然,无线传感器需要消耗更多能量,也就是说所需电池的数量会随之增加或改变过于频繁。再加上对无线传感器由空气传送的数据可靠性的怀疑论,所以无线传感器看起来并不是那么吸引人。 一个低功率无线技术被称为ZigBee,它是无线传感器方程重写,但是。一个安全的网络技术,对最近通过的IEEE 802.15.4无线标准(图1)的顶部游戏机,ZigBee的承诺,把无线传感器的一切从工厂自动化系统到家庭安全系统,消费电子产品。与802.15.4的合作下,ZigBee提供具有电池寿命可比普通小型电池的长几年。ZigBee设备预计也便宜,有人估计销售价格最终不到3美元每节点,。由于价格低,他们应该是一个自然适应于在光线如无线交换机,无线自动调温器,烟雾探测器和家用产品。 (图1)

虽然还没有正式的规范的ZigBee存在(由ZigBee联盟是一个贸易集团,批准应该在今年年底),但ZigBee的前景似乎一片光明。技术研究公司 In-Stat/MDR在它所谓的“谨慎进取”的预测中预测,802.15.4节点和芯片销售将从今天基本上为零,增加到2010年的165万台。不是所有这些单位都将与ZigBee结合,但大多数可能会。世界研究公司预测的到2010年射频模块无线传感器出货量4.65亿美量,其中77%是ZigBee的相关。 从某种意义上说,ZigBee的光明前途在很大程度上是由于其较低的数据速率20 kbps到250 kbps的,用于取决于频段频率(图2),比标称1 Mbps的蓝牙和54的802.11g Mbps的Wi - Fi的技术。但ZigBee的不能发送电子邮件和大型文件,如Wi - Fi功能,或文件和音频,蓝牙一样。对于发送传感器的读数,这是典型的数万字节数,高带宽是没有必要,ZigBee的低带宽有助于它实现其目标和鲁棒性的低功耗,低成本。 由于ZigBee应用的是低带宽要求,ZigBee节点大部分时间可以睡眠模式,从而节省电池电源,然后醒来,快速发送数据,回去睡眠模式。而且,由于ZigBee可以从睡眠模式过渡到15毫秒或更少主动模式下,即使是睡眠节点也可以达到适当的低延迟。有人扳动支持ZigBee的无线光开关,例如,将不会是一个唤醒延迟知道前灯亮起。与此相反,支持蓝牙唤醒延迟通常大约三秒钟。 一个ZigBee的功耗节省很大一部分来自802.15.4无线电技术,它本身是为低功耗设计的。802.15.4采用DSSS(直接序列扩频)技术,例如,因为(跳频扩频)另类医疗及社会科学院将在保持一样使用它的频率过大的权力同步。 ZigBee节点,使用802.15.4,是几个不同的沟通方式之一,然而,某些方面比别人拥有更多的使用权力。因此,ZigBee的用户不一定能够实现传感器网络上的任何方式选择和他们仍然期望多年的电池寿命是ZigBee的标志。事

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

智能汽车中英文对照外文翻译文献

智能汽车中英文对照外文翻译文献 (文档含英文原文和中文翻译) 翻译: 基于智能汽车的智能控制研究 摘要:本文使用一个叫做“智能汽车”的平台进行智能控制研究,该小车采用飞思卡尔半导体公司制造的MC9S12DG128芯片作为主要的控制单元,同时介绍了最小的智能控制系统的设计和实现智能车的自我追踪驾驶使用路径识别算法。智能控制智能车的研究包括:提取路径信息,自我跟踪算法实现和方向和速度控制。下文介绍了系统中不同模块的各自实现功能,最重要部分是智能车的过程智能控制:开环控制和闭环控制的应用程序包括增量式PID控制算法和鲁棒控制算法。最后一步是

基于智能控制系统的智能测试。 关键词:MC9S12DG128;智能控制;开环控制;PID;鲁棒; 1.背景介绍 随着控制理论的提高以及信息技术的快速发展,智能控制在我们的社会中发挥着越来越重要的作用。由于嵌入式设备有小尺寸、低功耗、功能强大等优点,相信在这个领域将会有一个相对广泛的应用,如汽车电子、航空航天、智能家居。如果这些技术一起工作,它将会蔓延到其他领域。为了研究嵌入式智能控制技术,“智能汽车”被选为研究平台,并把MC9S12DG128芯片作为主控单元。通过智能控制,智能汽车可以自主移动,同时跟踪的路径。 首先,本文给读者一个总体介绍智能车辆系统的[2、3]。然后,根据智能车辆的智能控制:提取路径信息,自我跟踪算法实现中,舵机的方向和速度的控制。它提供包括了上述四个方面的细节的智能车系统信息。此外,本文强调了智能车的控制过程应用程序包括开环控制、闭环增量PID算法和鲁棒算法。 2.智能车系统的总体设计 该系统采用MC9S12DG128[4]作为主芯片,以及一个CCD传感器作为交通信息收集的传感器。速度传感器是基于无线电型光电管的原理开发。路径可以CCD传感器后绘制收集的数据,并且系统计算出相应的处理。在同时,用由电动马达速度测试模块测量的智能汽车的当前速度进行响应的系统。最后,路径识别系统利用所述路径信息和当前的速度,以使智能汽车在不同的道路条件的最高速度运行。图1示出了智能车辆系统的框图。

无线数据采集和传输系统外文翻译文献

无线数据采集和传输系统外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 一种无线数据采集和传输系统的设计【摘要】在现代无线通信领域主要有一些技术为无线传输网络提供解决方法,例如:GSM,CDMA,3G,Wi-Fi。这些方法使得网络能够高效率和高质量的工作,但是成本很高。因此要低成本和在没有基础设施或者基础设施被破坏的情况下推广它们是很困难的。根据这种情况,本论文中数据采集和无线传输网络里的信息终端和无线收发模块的关键部件,是依据nRF905收发模块和51系列单片机的原理设计而成作为核心硬件,此外,结合目前自组无线网络的技术,可以构建一个短距离无

线数据采集和传输网络,这个网络能够提供一个工作在ISM(工业科学医学)频段的低功率及高性能的数据通信系统。然后提出了一个对无线通信可行的解决方案,这个方案优势在于更强的实时响应,更高的可靠性要求和更小的数据量。通过软件和硬件的调试和实际测量,这个系统在我们的解决方案基础上运行良好,达到了预期的目标并且已经成功的应用到无线车辆系统。 【关键词】自组网络;数据采集;传输网络 1 简介 在现代无线通信里,GSM,CDMA,3G和Wi-Fi因为其高速和可靠的质量而逐渐成为无线数据传输网络的主流解决方案。它们也有高成本的缺点,因此如果广泛的应用,将会引起大量的资源浪费,也不能在小区域,低速率的数据通信中得到提升。多点短距离无线数据采集和传输网络将成为最佳解决方案。此系统支持点对点,点对多点和多点对多点通信系统的发展。 短距离无线通信可以适应各种不同的网络技术,例如蓝牙, IEEE802.11,家庭无线网和红外。与远距离无线通信网络相比,它们的不同之处在于基本结构,应用水平,服务范围和业务(数据,语音)。设计短距离无线通信网络的最初目的是为了提供短距离宽带无线接入到移动环境或者制定临时网络,这是在移动环境里互联网更深的发展。短距离无线通信网络最主要的优势是更低的成本和更灵活的应用。 本文介绍信息终端(单个器件)的硬件和软件以及多点短距离无线数据采集和传输网络的无线接收模块的设计建议,提供一个低功率高性

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

外文翻译(土木专业)

模拟在火灾情况下加载对构造柱行为的影响 作者: 阿尼尔阿加瓦尔,普渡大学西拉法叶,在47906,anilag@https://www.360docs.net/doc/1317091812.html, 阿米特阁下瓦玛,普渡大学西拉法叶,在47906,ahvarma@https://www.360docs.net/doc/1317091812.html, 本文介绍了在光纤梁柱的有限元建模发展的基础上,模拟梁柱和其他构件在火灾高温情况下受荷的结构行为。几个这样的单元可以结合起来:(一)模型结构构件和框架(二)在火灾情况下分析它们,有限元程序是在一个土著有限元分析程序,使用改进的牛顿拉夫逊(星期日)迭代求解算法进行非线性分析。该文件还为简单的基准的方案问题以及钢柱在最近进行的火灾测试提供了有限元的有限验证。审定、采用有限元参数进行分析,以探讨在火灾情况下钢柱负荷强度的结构参数和约束作用 1.0简介 目前的建筑法规(例如,国际生物伦理委员会2005年)强调规范建筑钢结构防火抗震设计。用标准的ASTM E119进行测试以确定各组成部分的防火等级。由于工具简单,火灾的标准测试结果的适用性是有限的,通过这些测试推断出结果,提供一个在现实的火灾情况下洞察整个结构和各个组成部分的基本行为的途径。目前,急需一个简单的分析模型和方法,以用来从一定精度上模拟在标准火灾作用下,个别结构构件的行为以及它们之间相互作用。这些模型必须基于基本原则,适用于参数研究,同时能容易地探索设计方案。本文论述了一个结论的发展和验证,即一个简单的2个节点的有限梁柱元素,可以用来模拟和分析在火灾荷载下整个结构。对一些参数进行研究,探讨边界条件和其它的约束作用,以及钢柱受到的轴向和热负荷作用下的破坏。 2.0纤维配方基于2 -节点有限元 一个2节点有限元已制订的c0曲率在节点的连续性和一个三次埃尔米特多项式形函数。荷载被假定为只作用在一个元素的节点上,这个元素有两个结合点,在每个端部各一个,拟议的梁柱元素设计是考虑到结构的几何非线性和材料非线性。完整的工具,包括元素和计算程序,有能力对只承受弯曲变形或轴向变形的任何截面做出分析。以下分节讨论了该模型的突出问题。 2.1热负荷 该元素能将热膨胀的影响和由于温度变化所引起的材料性能的改变结合起来。全截面纤维可以被分配在不同的温度和在温度非均匀情况下分布,压力和弯曲的情况也是全截面分布的,使截面图保持水平,外部作用平衡外部作用。香港开发的分析程序(2007)可以用来计算给定播映时间的温度曲线整个路段的温度。计算工具得到了进一步的修改,以允许用户通过宽翼缘部分(图1)给定的7个点,输入时间温度曲线。该方案在特定值中插值以计算每个截面纤维的温度。 2.2材料性能 该方案有能力建模钢、钢筋混凝土,以及诸如钢管混凝土管(桂林工学院)的复合元素。变温单轴应力应变曲线必须是一节中使用的特定的材料。目前的工作,重点是在钢柱。博爱医院所提出的温度依赖性钢的应力应变曲线(2001)已用

毕业设计外文翻译

本科生毕业设计(论文)外文翻译毕业设计(论文)题目:悬架系统设计与分析 外文题目:An Overview of Disarray in Active Suspension System 译文题目:主动悬架系统杂谈 学生姓名: XXX 专业:车辆工程1002班 指导教师姓名:田国富 评阅日期:

主动悬架系统杂谈 帕蒂尔,维杰河帕蒂尔,加尼甚 助理教授,机械工程系,A.D.C.E.T,阿什达 摘要:当设计一个悬挂系统时,它的双重目标是尽量减少传到乘客的垂直力量和最大限度地提高轮胎与道路接触以提高操控性和安全性。乘客的舒适性与从车身传递的垂直力有关。这个目标可以通过最小化车身的垂直加速度来实现。过度的车轮行驶,将导致轮胎相对路面的非最佳姿态,从而导致差的操控性和附着力。此外,为了保持良好的操控性,轮胎与路面的最佳接触必须保持在四个轮子上。在传统的悬架系统中,这些特点是冲突的,不符合所有条件。因此,在被动悬架系统的基础上,为了改善主动悬架系统,各种各样的研究工作正在进行中。在本文中各种作品的概述已经完成。考虑到季度汽车模型,本文试图给出关于以往的研究和他们的发现对被动和主动悬架系统的参数。 关键词:主动悬架系统,控制系统,动态,被动悬架,车辆。 1.引言 汽车悬架系统的目的是在不同路况下,能保持良好的操控特性和改善乘坐品质。不同的悬架,满足上述要求的程度不同。虽然,可由设计者的聪明才智来改善,就平均而言,悬架的性能主要取决于悬架使用的类型。按改进的性能可以以升序区分为:与被动,半主动和全主动悬架系统,输入的力通常由液压致动器提供。为主动悬架系统设计的机电致动器的另一种方法将在电子控制和悬架系统之间提供直接接口。 目前,公认的主动悬架有两种形式,一种是制动器和钢板弹簧平行的高带宽主动悬架。第二种是低带宽主动悬架,它的致动器带有一系列的钢板弹簧并且能够控制车身的运动,而簧下质量控制是通过被动阻尼器控制的。汽车悬架的主动控制在传统悬架的基础上又提出了新的改进。主动悬架,包括创建悬挂系统中力的液压致动器。由液压致动器产生的力被用来控制簧上质量的运动,以及簧上和簧下质量之间的相对速度。为了提高车辆的特色,以后将主要对主动悬架的高带宽型进行研究。

通信工程项目毕业材料外文翻译

用于多跳认知无线电网络的分布式网络编码控制信道 Alfred Asterjadhi等著 1 前言 大多数电磁频谱由政府机构长期指定给公司或机构专门用于区域或国家地区。由于这种资源的静态分配,许可频谱的许多部分在许多时间和/或位置未使用或未被充分利用。另一方面,几种最近的无线技术在诸如IEEE802.11,蓝牙,Zigbee之类的非许可频段中运行,并且在一定程度上对WiMAX进行操作;这些技术已经看到这样的成功和扩散,他们正在访问的频谱- 主要是2.4 GHz ISM频段- 已经过度拥挤。为了为这些现有技术提供更多的频谱资源,并且允许替代和创新技术的潜在开发,最近已经提出允许被许可的设备(称为次要用户)访问那些许可的频谱资源,主要用户未被使用或零星地使用。这种方法通常被称为动态频谱接入(DSA),无线电设备发现和机会性利用未使用或未充分利用的频谱带的能力通常称为认知无线电(CR)技术。 DSA和CR最近都引起了无线通信和网络界的极大关注。通常设想两种主要应用。第一个是认知无线接入(CW A),根据该认知接入点,认知接入点负责识别未使用的许可频谱,并使用它来提供对次用户的接入。第二个应用是我们在这个技术中研究的应用,它是认知自组织网络(CAN),也就是使用 用于二级用户本身之间通信的无许可频谱,用于诸如点对点内容分发,环境监控,安全性等目的,灾难恢复情景通信,军事通信等等。 设计CAN系统比CW A有更多困难,主要有两个原因。第一是识别未使用的频谱。在CW A中,接入点的作用是连接到互联网,因此可以使用简单的策略来推断频谱可用性,例如查询频谱调节器在其地理位置的频谱可用性或直接与主用户协商频谱可用性或一些中间频谱经纪人另一方面,在CAN中,与频谱调节器或主要用户的缺乏直接通信需要二级用户能够使用检测技术自己识别未使用的频谱。第二个困难是辅助用户协调媒体访问目的。在CW A中存在接入点和通常所有二级用户直接与之通信(即,网络是单跳)的事实使得直接使用集中式媒体接入控制(MAC)解决方案,如时分多址(TDMA)或正交频分多址(OFDMA)。相反,预计CAN将跨越多跳,缺少集中控制器;而对于传统的单通道多跳自组织网络而言,这个问题的几个解决方案是已知的,因为假设我们处理允许设备访问的具有成

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

外文翻译译文

对整体叶盘加工柔性磨削头的自适应性 Pengbing Zhao & Yaoyao Shi 收稿日期:20135月21日 接受:2013年10月15日 在线发表时间:2013年11月8日 #施普林格出版社伦敦2013 摘要:为提高机械加工时的质量、稳定性、一致性,以及其他加工表面的机械性能,现设计出一款新式的气动的柔性磨头,现分析这款柔性磨头的工作原理,可加工的区域以及实时定位技术。考虑到非直线区域加工死区、未知系统功能以及气动伺服系统性能的不确定干扰的影响,提出一种基于扩张状态观测器(ESO)的自适应滑模控制(ASMC),ESO是被用来估计系统状态变量以及采用一种自适应率来补偿输入加工死区。最后,闭环系统的稳定性由李亚普诺夫理论(Lyapunov theory)确定。实验结果表明了ESO的完美估计,以及ASMC与传统的PID控制相比有着更强的抗干扰能力,ASMC可以实现亚微粒级别之内控制的精确程度。磨削实验说明这种方法可以缩减近乎50%的叶片表面波状起伏和粗糙度,以及降低大约22.93%的形状误差。 关键词:叶片磨削工艺气动系统滑模控制 1 介绍 叶片是为航空发动机设计的一种新式零件,是一种薄壁整体结构的复杂零件,复杂曲面以及难切割材料。考虑到不同的几何尺寸,材料以及叶片的批量大小,以下有几种加工方法,例如磨削,电化学加工(ECM),以及可以分为水槽电火花加工(SEDM)和电缆电火花加工(WEDM)的电火花加工(EDM)。有几种铣削加工过程依靠特殊的叶片几何形状。次摆线铣削是其中一种最新发展的方法,这种方法可以实现很高的材料切除速率和低的工具磨损。SEDM是一种经

济的叶片粗加工方式,特别是Ni基合金材料的叶片。随着电机的发展,WEDM 可以实现高的材料切除率和切割率,同时也可以应用于叶片的粗加工上。为了大批量生产,ECM或许是叶片生产最高效的方法,ECM没有工具磨损而且可以实现更好的表面加工质量同时不会产生白层或者热影响区。 以上提到的几种加工方法主要是用于叶片的粗加工,且对叶片的表面质量有很高的需求。本文的重点是叶片表面的加工完成过程,例如最后的加工,通过磨削来保证尺寸精度和表面质量,这个过程可以提升表面平滑度和完整性,改善残余应力分布,也可以增强疲劳强度和抗腐蚀性。超声振动磨削的作用已经清楚,其可以显著降低工件表面的粗糙度而且在加工硬脆性材料时特别有效。实验证明超声振动磨削可以减少磨削时的正应力和相当的热损害。现提出电缆电火花磨削和一种由此而生的表面粗糙度在线估计方法。金刚石电火花磨削将金刚石磨削和电火花加工结合起来,是一种加工电传导性硬质材料的新式加工工艺。在实现超精密表面硬化和电解磨削修整的脆性材料的加工过程中,其有效地增加了材料切除效率以及砂轮的磨损。对于提出的电化学磨削(ECG),和电解液浓度、工作电压、切割深度的影响,以及加工过程中的电解液流动速率已经做了研究,以及依靠响应曲面法的ECG多响应优化已经被设计出来了。流动磨料加工是用来完成加工高的内表面质量,难以进入的零件,以及外轮廓的一种方法。由阿尔门试片被介质影响完成可塑性变形振动模型的过程调查,和数值模型的边缘舍入的脆性材料振动建立完成。拖动研磨表面改性的研究,以及减少径向前角和拖后整理工序前沿的准备导致硬质合金立铣刀刀具寿命增加。机械化学磨削是一个优异的加工过程,是将化学和机械磨削的优点相结合的固定磨料加工。一种机器人的从几何复杂的工件去除材料的砂带磨削的有效过程,以及仿真平台设计的最优区磨削参数。为了在整个磨削过程中保持一个恒定的接触力,提出了一种机器人砂带磨削的新方法。 本文提出了一个新式的多轴数控磨削方法,可以提高加工质量,稳定性,一致性以及叶片其他表面的机械性能,降低生产成本,提高加工效率。作为一个必要的装配,在这个数控磨削试机时,柔性磨头是一个复杂的气动伺服系统,表面的加工精度取决于磨头的定位精度。然而,可压缩气体,活塞与气缸壁之间的摩擦,阀的死区,和其他非线性区域严重影响系统的控制精度,许多文献都集中在

Background of Control Theory(控制理论基础) 外文翻译

Background of Control Theory System and Control Theory According to the Encyclopedia Americana,a system is "an aggregation ox assemblage of things so combined by nature or man as to form an integral and complex whale". Mathematical systems theory is the study,of the interruptions and behavior of such an assemblage of "things'* when subjected to certain conditions or inputs. The abstract nature of systems theory is due to the fact that it is concerned with mathematical properties rather than the physical faun of the constituent parts. Control theory is mare often concerned with physical applications. A control system is considered to he any system which exists for the purpose or regulating or controlling the flow of energy,information, money,or other quantities in some desired fashion. In more general terms,a control system is an interconnection of many components or functional units in such a way as to produce a desired result. In this book,control theory is assumed to encompass all questions related to design and analysis of control systems. Fig. 37. 1 is a general representation of an open loop control system, the ingot or control u(t) is selected hayed on the goals for the system and all available a priori knowledge about the system, The input is in no way influenced by the output of the system,represented by y(t),If unexpected disturbances act upon an open-loop system, or if its behavior is not completely understood,them the output will not behave precisely as expected.

5G无线通信网络中英文对照外文翻译文献

5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 5G无线通信网络的蜂窝结构和关键技术 摘要 第四代无线通信系统已经或者即将在许多国家部署。然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。面临潜在技术的未知挑战也被讨论了。 介绍 信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。 然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。越来越多的

外文翻译(陈鹏)

机床的发热问题 1、引言 从1990年开始,布莱恩等人做了关于热状态错误的最新研究,weck更多的做了对机床误差的减少和补偿工具的研究,自从他们做了前面这两个主题演讲之后,在这个领域已经做了很多的研究。本文是在前两个主题演讲基础上做的最新研究。 机床定位的不确定性会直接影响所加工零件的尺寸精度。典型的误差来源是运动误差,机械热误差,载荷,动力,以及运动控制软件。本文主要研究机械热误差,这种误差是由外部环境或内部热源引起的。 制造业正在经历关于引起机床热误差管理的重大改变。直到最近,机床制造商给了机床用户在指定的环境温度要求和需要必要的非生产机器预热程序下产生这样的错误的管理责任。 如今,机床制造商越来越频繁的承担对于控制热致位移的责任。这一变化之所以会发生,是因为机床用户意识到,有些类似的机床可以显示显著不同的热错误,并且在一些机床上大部分所提供的能量被用于平衡机床的温度。 此外,高达75%加工工件的整体几何误差是通过温度的影响而引起的。因此,这个话题是最近的活动的显著研究重点。 制造业对这个主题的兴趣可以在最新的国际标准上看到。在过去的二十年已经发展了计量规则和性能参数来评估空载和精加工条件下机床的发热特性的多项国际标准。如今,用户经常会问机床制造商,包括这样的测量进行验收测试。新的测量设备经常用于延长热误差和检测机床热误差源。特别是在测温测量设备,如红外摄像机价格的下降导致在分析机床的发热特性的新选项。在第2节,将呈现在热误差和温度测量方面的进展。数值方法目前用于在开发的

早期阶段比较不同的机床设计或模拟温度对机床的影响来检测热诱发工具中心点(TCP)位移的来源。由于计算时间的瞬态仿真的费用,工程师们往往对他们的模拟只使用稳态结果。 然而,它显示的是TCP位移在运行期间改变其方向的瞬态行为的观察,如果两个不同的时间常数都参与或者如果温度场的热源向外扩散,通过监管陡峭的坡度后会变得均匀。另外,稳定状态的结果不会导致在稳定状态的情况下产生时间依赖行为,这期间可以表示若干小时。 机电一体化的发展进一步提高了机床的精度。然而,为了实现更高的精度,机床的热稳定性的可预测性变得越来越重要,尤其是为了避免后期基于实验研究的机床发展的巨大花费。计算技术的进步带来了在TCP温度分布和热致位移上更好的估计。当今最先进的个人计算机的处理能力已经足以满足处理这样的计算的要求。即使使用有限元方法对一个完整的机床瞬态效应进行密集型模拟(FEM)计算,也可以在合理的时间内进行。关于建模和发热计算错误的概述将在第3节给出。 关于减少在机床TCP热错误方面所有安排的技术性定义,将在第四章给出。早期的散热可以在哈里森于1726年开发的摆动烤架上发现。在这个时钟钟摆上的时钟的最小热影响是通过组合黄铜和钢,两种材料具有不同的膨胀系数(图1-1)实现的。 在机床的设计中,热稳定性被用于如线性秤架。其它的安排,例如用以稳定温度分布的加热和冷却装置,可用于降低热误差。另一方面,机电一体化经常用于误差补偿。热误差计算各种数值算法和一个移动,以补偿热引起的误差是由一个控制致动器产生的。 控制温度仍然是高精度制造的关键要求。不同的介质用于稳定机床上的温度分布,以及车间的环境温度。所选择的流体的材料性质,主要影响冷却系统的设计和能源效率。在机床的能源效率的讨论中已经确定,要求进一步减少机

相关文档
最新文档