VANET Architectures and Protocol Stacks_ A Survey -车联网综述

VANET Architectures and Protocol Stacks_ A Survey -车联网综述
VANET Architectures and Protocol Stacks_ A Survey -车联网综述

VANET Architectures and Protocol Stacks: A Survey Sajjad Akbar Mohammad, Asim Rasheed, and Amir Qayyum

Center of Research in Networks and Telecom (CoReNeT),

Mohammad Ali Jinnah University (MAJU),

Islamabad, Pakistan

sajjad_akr@https://www.360docs.net/doc/1f18096653.html,, asim@https://www.360docs.net/doc/1f18096653.html,.pk, qayyum@https://www.360docs.net/doc/1f18096653.html, Abstract. Intelligent transportation systems (ITS) provide a set of standards for

vehicular communications. The main focus of research activities, within ITS,

has been on development of safety, traffic efficiency and infotainment related

applications. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)

communications are the main research goals of ITS. This paper reviews some

popular architectures of VANETs (Vehicular Ad hoc NETworks) i.e., WAVE

by IEEE, CALIM by ISO, C2CNet by C2C consortium / GeoNet. It also

includes some recent research regarding these standards, specially focusing on

Network and MAC layer issues. This paper also discusses safety related

application protocols, i.e. WSMP by WAVE, CALM FAST by ISO and

C2CNet by C2C consortium. Various recommendations regarding the above

protocol stacks are presented. The recommendations are based on different

parameters like flexibility, implementation etc.

Keywords: VANET, ITS, WAVE, CALM, C2C-CC.

1 Introduction

Intelligent transportation systems (ITS) address the critical problem of traffic safety. Bodies (like IEEE, CALM and C2C-CC) under ITS made tremendous efforts for achieving this goal by making the road traffic management efficient through help of different applications and protocols. The ratio of road accidents can be reduced by using proper traffic management applications. ITS is working on such traffic management solutions to make our vehicular systems safe and better. ITS also discusses the security issues related to these safety applications. Organizations like, International Standard Organization (ISO), Institute of Electrical and Electronic Engineers (IEEE) and Car-to-Car Communication Consortium / GeoNet are working on ITS architecture proposals.

IEEE introduced a complete protocol stack of 1609 protocol family and named it ‘WAVE’ (Wireless Access in Vehicular Environment). Standard is divided in different sub standards to ensure a modular handling of the diverse issues at different layers. It supports dedicated short range communications (DSRC). WAVE enlists two modes of communication:

T. Strang et al. (Eds.): Nets4Cars/Nets4Trains 2011, LNCS 6596, pp. 95–105, 2011.

? Springer-Verlag Berlin Heidelberg 2011

96 M.S. Akbar, A. Rasheed, and A. Qayyum

i.Safety applications (Non-IP), and

ii.Non-safety applications based on IPV6.

The approved frequency band is 5.9 GHz(in Europe 5 GHz).

ISO’s proposal for VANETs is CALM, a Continuous Air Interface for Long to Medium range. ISO CALM was designed to address the issues of continuous communication among vehicles and between vehicles & roadside infrastructure. The concept of CALM is based on heterogeneous cooperative communication framework to provide continuous communication to user transport. Different implementation projects like COOPERS and SAFESPOT included the main concept of CALM in their work. CALM proposes the use of all available interfaces as opposed to the use of single 802.11p proposed by WAVE.

The Car-to-Car Consortium (C2C-CC)[1] is backed by European car industry. They are working on Car-to-Car and Car to Infrastructure communication, specifically for safety applications. They proposed C2CNet architecture for safety applications. C2CNet is further incorporated by GeoNet in their comprehensive architecture under project COMeSafety. C2CNet is based on geographical routing, in addition to uni-cast and broadcast design proposed by other two architectures. C2C-CC deals with safety as well as non-safety applications. Non-safety applications use IPv6 on wireless multi-hop links to communicate with OBUs (on Board Units), RSUs (Road Side Units) and can access internet for other applications.

IETF is another standard body working on mobile networks and introduced the concept of NEMO (Network Mobility) in MANET. Different projects were started by European countries to realize ITS’s proposals. Some of these are NOW, COMeSafety, CVIS, SAFESPOT, COOPERS, GST, GeoNet, FleetNet, GrooveSim, CARLINK, CarTalk2000 etc.

The rest of the paper is structured as follows. Section 2 reviews the VANETs protocol stacks in detail. In section 3, a comparative analysis of VANETs architectures is presented. Section 4 concludes the paper and enlists the goals which may be pursued in future.

2 VANETs Protocol Stacks

This section discusses the VANETs protocol stacks in detail. The discussion focuses on Network, MAC and PHY layers for WAVE, CALM and C2CNet. The approved frequency band is 5.9 GHz for all standards[2]. It was initially approved by U.S Federal Communications Commission (FCC) under Dynamic Short Range Communication (DSRC) concept. The spectrum is divided into six service channels (SCH) and one control channel (CCH) with equal bandwidth of 10 MHz each. For emergency messages (originated by safety related applications) and control messages, CCH is used. SCH is used for other applications’ packets. The entire spectrum is divided into time slots of 50 ms. If the CCH channel is active, all nodes are bound to stop their communication during CCH time frame to receive and transmit emergency messages on CCH channel.

VANET Architectures and Protocol Stacks: A Survey 97 2.1 WAVE by IEEE

IEEE introduced a complete protocol stack of 1609 protocol family and named it as WAVE (Wireless Access in Vehicular Environment). There are six sub-standards under 1609 family named as IEEE 1609.1,2,3,4,5,6. Each one handles different issues at different layers. Fig. 1 provides an insight into the six sub-standards and their relationship with respect to the tasks at the various OSI layers [3].

Fig. 1. WAVE Architecture

The types of applications are divided into two main categories as defined by IEEE 802.11p [4]

i.Safety

ii. Infotainment.

IEEE 1609.1 details the management activities required for the proper operation of the applications. 1609.2 describes the considerations to be taken into account for communication security. For Transport and Network Layer handling of traffic safety related applications, 1609.3 provides a dedicated single protocol, named as WSMP (Wave Short Messages Protocol). 1609.4 defines the coordination between the multiple channels of the spectrum. 1609.5 deals with Layer Management while 1609.6 offers an additional middle layer between transport and application layer, for handling of additional facilities at the Applications Layer.

IEEE 802.11p details the MAC Layer operation of the WAVE architecture [5]. Vehicular nodes in VANETs can move very fast, leading to fast topological changes. WAVE uses two available services sets [6] for network topology handling. WAVE Basic Service Set (WBSS) is defined for communication between RSUs and OBUs and closely resembles the 802.11a specifications for communication of nodes with the

98 M.S. Akbar, A. Rasheed, and A. Qayyum

Access Points (AP). After listening to a beacon message, any new user can join WBSS without authentication process. The second service set is called WAVE independent basic service set (WIBSS). This service set supports the communication between two nodes in a mesh network i.e. V2V communication without the involvement of an RSU.

IEEE WAVE allows only one option at the MAC layer, i.e. 802.11p. Though this restricts the degree of freedom of research activities, open source simulators, like NCTUns, often provide extended protocol stack support, which assist researchers to use other options at the MAC layer as well. However, here it must be noted that 802.11p is based on a time tested standard (802.11a) which has proven its suitability for short range communications.

2.1.1 Literature Review

Many researchers have investigated the various aspects of WAVE. Some have also done performance evaluation at lower layers and presented their modification proposals. A few of them will be discussed here.

As VANETs mainly focus on traffic safety applications, W. Yi, et al[6] proposed to reduce back-off window for such applications. A priority procedure is discussed in [6] which are based on the modification of back-off windows. For analysis and performance evaluation, different back-off values were assigned to different types of applications and node densities. It was concluded that back-off values and node densities significantly affect throughput. For applications that require quick dissemination and response (like traffic safety related applications), smaller back-off values lead to increased throughput.

M. Todd et al. [7] considered average throughput, average delay and packet loss ratio as performance evaluation parameters for their research. They proved that the speed is insignificant factor, whereas vehicles density is significant factor in vehicular communications considering above parameters. By changing vehicle speed, no significant change occurs with respect to average throughput while average delay converges and packet loss is increased.

E. Stephan et al. [8] concentrated on the collision probabilities in V2V communication. A simple simulation was conducted to prove that in dense and high load scenarios, throughput per node decreases, whereas delay and collision probability increases. Due to the increase in collision probability, performance of safety applications using CCH can seriously suffer. Messages for CCH queue up further during the SCH. Authors suggested a re-evaluation mechanism for messages to provide support to high priority messages.

L. C. Kang et al. [9] introduced Telematics technology with WAVE DSRC by using mechanisms like CAS and EAS. Authors concluded that the Telematics technology is helpful for safety and efficiency scenarios.

2.2 ISO CALM

ISO CALM was designed to provide continuous V2V, V2I and V2O (where O stands for Other Interfaces) communication. The concept of CALM [2] is based on heterogeneous cooperative communication framework Different projects like COOPERS and SAFESPOT included the main concept of CALM in their work. Even

VANET Architectures and Protocol Stacks: A Survey 99

C2C-CC incorporated the CALM idea for use of multiple-interfaces for vehicular communication networks. The ISO working group TC204 WG16 is working on seamless connectivity issues. CALM standard is also principally based on 5.9 GHz DSRC concept. This standard has been adopted in many countries including Australia, some countries in Asia and South America. For short and medium distances, CALM recommends Infrared. Similarly, for long distances, it prefers the use of GSM, UMTS or any other technology available at PHY layer. Use of satellite links, especially as the backbone, is costly; however, CALM has kept the option open.

A management entity (CCME) is defined in CALM [2] to provide flexibility and adaptability features. Basically CCME consist of three components which are as follows:

i.CALM Interface Manager

CALM interface manager monitors and stores the status of each

communication interface (CI), along with its channel quality which aids in

making decisions.

ii.CALM Network Manager

The process of handover to alternate media is managed by CALM

Network Manager.

iii.CALM/ Application Manager

CALM Application Manager ensures application transmission

requirements. It interacts with interfaces to get information about most

suitable medium and instructs CALM Network Manager to establish the

connection. CALM networking allows IPV6 nodes to move from one IP

subnet to another. IETF NEMO protocol is concerned with managing the

mobility of a network.

Fig. 2 shows the inter and intra layer entities and their relationships in CALM [10].

Fig. 2. CALM Architecture

100 M.S. Akbar, A. Rasheed, and A. Qayyum

ISO CALM is apparently very flexible in design, with less than 1ms link setup time. It is popular in its design as it provides combination of different technologies for communication as well as it has space in its design to incorporate future technologies. However, researchers are still facing a lot of confusions for its implementation. As CALM is a combination of different technologies so its implementation and provision of different interfaces is a tough job. There is still no support in any simulator for complete CALM protocol stack.

2.2.1 Literature Review

B. Olivia et al. [2] presented CALMnet; a comprehensive network centric simulation environment for CALM based vehicular systems. The authors used OPNET modeler simulation tool, which addressed and identified different problems in cooperative vehicular networks. CALMnet is a simulation tool that was initially implemented to evaluate the performance of lower layers. The simulations were run on Microsoft Windows Server 2003 machine with VMWARE virtual machine running Windows 2000 at 2GHz. It was shown in [2] that the number of simulated nodes has a major affect on the simulation run times and amount of memory required. In future, the authors plan to use IPV6 for their simulations.

2.3 Car to Car Consortium (C2C-CC)

Car 2 Car Communication Consortium (C2C-CC) aims to establish an open European industry standard, focused on development of active safety applications. The C2C-CC is backed by European automobile industry. C2C-CC is designing C2CNet protocol that differs from IP. The protocol is destined to be used for both safety and non safety applications. Also, a single protocol is being considered for use with both the infrastructure based and infrastructure less communication modes. For routing, position based algorithms are used. A dedicated bandwidth of 30 MHz will be available for safety applications in the 5.9 GHz band. In C2C-CC, Network Layer (C2CNet) provides multi-hop communication based on geographical addressing and routing. Network layer also provides beaconing for vehicle movement. Beaconing, location service and forwarding of data are main components of geographical routing. The features that will be provided by C2C-CC are as follows:

i.Fast data transmission for V2V and V2I communications.

ii.Support for the transmission of different types of messages including safety messages and infotainment.

iii.Different short range wireless LAN technologies including IEEE 802.11p, traditional wireless LAN technologies i.e. IEEE 802.11a/b/g/n and other radio technologies e.g. GPRS or UMTS

Fig. 3 shows the C2C-CC architecture [11].

VANET Architectures and Protocol Stacks: A Survey 101

Fig. 3. C2C-CC Architecture

Unlike WAVE and CALM, Safety applications are not restricted to use C2C-CC transport and network layer. Similarly, non-safety applications can use traditional TCP/IP to access wireless multi-hop communications for communication with OBUs, RSUs and can also use C2CNet below IP stack.

2.3.1 Literature Review

T. Manabu et al. [12] referred to project of GeoNet with the aim of combining IPV6 with C2CNet. They focused on V2V and V2I communications. While testing for in-door environment, their test results show that IPV6 over C2CNet does not have too much delay and feasible for vehicle communication. They proposed their future work to evaluate IPV6 over C2CNet in out-door environment.

B. Roberto et al. [13] proposed a solution for application of the NEMO basic support protocol with geographic routing in VANET. They used mobile NEMO router with infrastructure through mutli-hop communication. They showed that mobility does not cause packet loss. Security, privacy, NEMO route optimization and disconnection / isolation, are the challenges of network mobility for VANET.

3 Analysis

In this section we will conduct a comparative analysis of above protocol stacks. Simulation platform for VANET is still an open problem for the research community. There are two types of simulators available (i) Network Simulators (ii) Traffic Simulators. Both types of simulators should be used simultaneously to get better results. There are a few tools available for VANET simulation but most of them have the problem of improper ‘interaction’. Thus the proper selection of a simulator is a big question that must be properly analyzed and considered before starting any research. MOVE, Trans, VanetMobiSim, NCTUns, NS2, NS3, and NCTUns are the examplesf or VANET simulations. Following is a table of the comparisons between the various VANET architectures, achieved through simulations.

102 M.S. Akbar, A. Rasheed, and A. Qayyum

Table 1. Comparison between C2C-CC, CALM and WAVE Parameters/Protocol Stacks

C2C-CC CALM WAVE Promotion Identity

Industry consortium of car manufacturers

Standard body Standard body Focused on

Car to car multi-hop and geo networking.

Multiple media (802.11p, DSRC, W-LAN etc) Only 802.11p at MAC layer for

purely emergency messages

PHY Layer

DSRC and other WLAN standards Combination of different

technologies

DSRC only Wireless

Technology

Support for Media Dependent and Media Independent

Part

Interface Abstraction Only PHY layers specific to 802.11p Target Applications

Safety Non safety and Critical

Safety Support for

Application Types

Active Safety, Traffic Efficiency, Infotainment Non-IP CALM Aware, IPV6 CALM Aware,

IPV6 Legacy

Safety Non-IP, Non Safety IPV6 Addressing Schemes Geo-routing

Mainly IP addressing IP addressing Routing Schemes

Based on MAC protocol (Receiver based) plus

IPV6

Mobile IPV6 Different channel allocation plus IPV6

Security issues

Different procedures adopted like certificate etc Not very clearly defined and addressed Defined procedures like certificates and

signatures

Number of Hops

Single Hop & Multi-hop

Single hop Single Hop Communication

Mode

Uni-cast, Broad-cast, Geo-uni-cast, Geo-broadcast

Uni-cast, Broad-cast Uni-cast Group Addressing

Geo-Addressing Via Service Initialization

Via WBSS Flexibility

Flexible and ideal to adapt Very flexible but has lot of confusions Not flexible , restricted to single

MAC layer

Simulators

GeoNet claimed to have patch in NCTUns but do not have any open source

simulator

No open source simulator Open source simulator i.e.

NCTUns

VANET Architectures and Protocol Stacks: A Survey 103 The table shows the comparison of the different VANETs protocol stacks. SAFESPOT project documentation provided a lot of material for this comparison. The comparisons show that for short range communication, the two better options are WAVE and C2C-CC. In C2C-CC, there is a provision for single and multi hop as well as Geo-hop communications so we need more resources for multi hop communications in terms of buffer space and processing to process each packet. The main difference is the flexibility parameter. It can be concluded here that C2C-CC provides flexibility to use multiple interfaces and multiple MAC and network layer protocols. It is also fast and reliable due to its geographical routing concept. So it will be suitable to adapt for vehicular communication. However, still there is no open source simulator for C2C-CC, which is a big hurdle for the research community.

Fig. 4. VANET Architecture Comparison

WAVE is not flexible in terms of MAC and PHY. IEEE 802.11p can be used for scenarios where the focus is on short range communication. Also, every vehicle must have an IEEE 802.11p interface. However, it is very suitable for safety messages as it uses the concept of the dedicated CCH through which urgent traffic can be prioritized. WAVE is also popular among researchers as this is the only architecture with full simulation support [6], [7], [8], [9]. NCTUns supports the protocol stack of IEEE 802.11p/WAVE (but it does not provide support for IPV6 and WSMP). For C2C-CC there is still no open source simulator.

ISO CALM is a combination of different technologies from 802.11p to UMTS, so its implementation with interface handover is a tough job. No open source simulator supports the complete CALM protocol stack.

In our opinion C2C-CC is flexible and more suitable for adaptation. As in the architecture of C2C-CC at MAC and PHY we can use different WLAN options like IEEE 802.11/a/b/g/p. So if our selection criteria of a protocol stack is flexibility then we should select C2C-CC else it should be WAVE being less complex. At same time, C2C-CC has adequate security mechanisms, which have been well defined. Traffic management applications create attraction for C2C-CC in the scenarios where we want to manage traffic load by providing different information to the drivers. For such applications in C2C-CC, C2CNet (Non-IP for urgent messages) and traditional

104 M.S. Akbar, A. Rasheed, and A. Qayyum

TCP/UDP and IP protocol stack can be used. Additionally C2C-CC clearly discusses its suitability for different applications like forward collision avoidance, crossing traffic, red light violation, local danger warning, electronic toll collection, emergency vehicles warning etc whereas in WAVE and CALM no such detail is available.

4 Conclusion and Future Work

In this paper, a review of available architectures for VANET was provided based on our survey. WAVE, C2C-CC and CALM were found to be the dominating protocol stacks. A comparative analysis of these protocol stacks was performed and C2C-CC was found to be a suitable candidate for VANET communication due to its flexibility in terms of protocol options, media access and security. Although simulation tools for C2C-CC are not available as open source, but hopefully, a few will be available in near future.

In future, we intend to compare these protocol stacks on basis of simulations performed under a single platform.

Acknowledgement

The authors want to thank Ms. Sana Ajmal for her valuable contribution in reviewing this paper.

References

1.Car to Car Communication Consortium Manifesto, v1.1 (August 2007)

2.Olivia, B., Martin, K., et al.: A Network Centric Simulation Environment for CALM-based

Cooperative Vehicular Systems: SIMUTools. In: Proceedings of the 3rd International ICST; Conference on Simulation Tools and Techniques, Torremolinos, Malaga, Spain, March 15–19 (2010), ISBN 78-963-9799-87-5

3.Task Group p, IEEE P802.11p: Wireless Access in Vehicular Environments (WAVE).

draft standard ed. IEEE Computer Society, Los Alamitos (2006)

4.Wang, S.Y., Lin, C.C., et al.: On Multi-hop Forwarding over WBSS-based IEEE

802.11(p)/1609 Networks. In: IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, September 13-16 (2009), E-ISSBN 978-1-4244-5123-4

5.Farah, A.E., Bertrand, D.: A Light Architecture for Opportunistic Vehicle-to-Infrastructure

Communications. In: Proceedings of the 8th ACM International Workshop on Mobility Management and Wireless Access, MobiWac 2010, Bodrum, Turkey, October 17-18 (2010)

6.Yi, W., Akram, A., et al.: IEEE 802.11p Performance Evaluation and Protocol

Enhancement. In: Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, Columbus, OH, USA, September 22-24 (2008)

7.Todd, M., Tammy, M., et al.: Measuring the Performance of IEEE 802.11p Using ns-2

Simulator for Vehicular Networks. In: IEEE International Conference on Electro/Information Technology (EIT), Ames IA (2008)

VANET Architectures and Protocol Stacks: A Survey 105 8.Stephan, E.: Performance Evaluation of the IEEE 802.11p WAVE Communication

Standard. In: 66th IEEE International Conference on Vehicular Technology, VTC (2007) 9.Kang, L.C., Huang, L.C.: Development of Telematics Communication System with

WAVE DSRC. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA (October 2009)

10.European ITS Communication Architecture: Overall Framework, Proof of Concept and

Implementation, Draft Version 2.0, COMeSafety Specific Support Action (October 2008)

11.Final GeoNet Specification, GeoNet Deliverable D2.2 (January 2010)

12.Manabu, T., Ines, J.B., et al.: Experimental Evaluation for IPv6 over VANET Geographic

Routing. In: Proceedings of The International Wireless Communications and Mobile Computing Conference, IWCMC 2010, Caen, France, June 28-July 2 (2010)

13.Roberto, B., Andreas, F., et al.: A MANET-centric Solution for the Application of NEMO

in VANET using Geographic Routing. In: TridentCom 2008, Innsbruck, Austria, March 18-20 (2008)

数字式绝缘电阻测试仪的使用知识

数字式绝缘电阻测试仪性能特点 ●适于在各种电气设备的维修、试验及检定中作绝缘测试。 ●31/2LCD大屏幕数字显示,分辨率高,读数方便。 ●有三种额定绝缘测试电压,负载能力强。 ●操作便捷,携带方便,准确、可靠、稳定。 ●低耗电、用6×1.5V(AA, R6)电池供电,使用时间长。 ●电池电压不足,有欠压标志符“”显示。 ●具有防震、防尘、防潮结构,适应恶劣工作环境。 ●保护功能完善,能承受短路和被测电器残余电压冲击。 数字式绝缘电阻测试仪技术指标 2.1 主要指标 额定电压:500V、1000V、2500V三档 测量范围及误差:(20~1999)MΩ±(5%RDG+2d) (0~19.99)MΩ(2.00~19.99)GΩ±(10%RDG+2d) 输出短路电流:≥1mA 2.2 其它指标 ●绝缘电阻: ≥50M? (1000V) ●耐压: AC 3kV 50Hz 1min ●工作温度和湿度: -10℃~+50℃<85%RH ●贮存温度和湿度: -15℃~+55℃<90%RH ●电源: 6×1.5V(AA,R6)电池或充电电池。 ●耗电: ≤150mA; ●外形尺寸: 255mm(L)×135mm(W)×80mm(D)

●重量: ≈1kg 数字式绝缘电阻测试仪仪表外形

数字式绝缘电阻测试仪使用方法 敬告: ●确认被测试品安全接地,试品不带电。 ●确认仪表E端(接地端)已接地。 ●按了测试开关按钮后,仪表E、L端就有高电压输出,请注意安全! ●测试完毕,请及时关闭高压和工作电源。 4.1电池检查及更换 仪表在接通电源工作时,显示屏若显示“”欠压符号,表示 电池电量不足,应更换新电池,否则仪表无法正常工作。 4.2测试 将仪表E端接试品的接地端(或一端),L端接试品的线路端(或 另一端)。打开电源开关,将档位开关置所需的额定电压位,显 示屏首位显示“1”,表示工作电源接通。按一下测试开关按钮, 高压指示灯点亮,显示屏上显示的数值就是被测试品的绝缘电 阻值。当试品的绝缘电阻值超过仪表量程的上限值时,显示屏首 位显示“1”,后三位熄灭。 注:测量时,由于试品有吸收、极化过程,绝缘值读数逐渐向大数 值漂移或有一些上下跳动,系正常现象。 4.3 G端(保护环)的使用 测量高绝缘电阻值时,应在试品两测量端之间的表面上套一导

绝缘电阻测试仪说明书

绝缘电阻测试仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险, 请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。 使用适当的保险丝。只可使用符合规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点和部位。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。

目录 第一章概述 (6) 第二章介绍 (6) 一、特性 (6) 二、技术指标......................... . (8) 三、仪表结构............................ . (9) 四、仪表原理... . (10) 第三章使用方法 (11) 一、准备工作 (11) 二、开始测试 ............................ ... (12) 三、调阅测试结果 (14) 四、屏蔽端使用方法 (14) 五、电池充电 (15)

第一章概述 随着我国电力工业的快速发展,电气设备预防性实验是保障电力系统安全运行和维护工作中的一个重要环节。绝缘诊断是检测电气设备绝缘缺陷或故障的重要手段。绝缘电阻测试仪(兆欧表)是测量绝缘电阻的专用仪表。1990年5月批准实施的JJG662-89《绝缘电阻表(兆欧表)》已把它作为强制检定的仪表之一。目前,电气设备(如变压器、发电机等)朝着大容量化、高电压化、结构多样化及密封化的趋势发展。这就需要绝缘电阻测试仪本身具有容量大、抗干扰能力强、测量指标多样化、测量结果准确、测量过程简单并迅速、便于携带等特点。对于容量较大的电气设备要进行吸收比和极化指数二种绝缘指标的测试,在我国的《500KV规程》中,已将极化指数指标列为500KV变压器、电抗器的预防性试验项目。 BC2000型智能双显绝缘电阻测试仪采用嵌入式工业单片机实时操作系统,超薄形张丝表头与图形点阵液晶显示器完美结合,该表具有二种电压输出等级(2.5KV和5KV)、容量大、抗干扰强、指针与数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大型变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

耐压测试仪绝缘电阻测试仪基本原理与选用

耐压测试仪绝缘电阻测试仪基本原理与选用 作者:北京中仪来源:https://www.360docs.net/doc/1f18096653.html, 耐压测试仪绝缘电阻测试仪基本原理与选用 一、耐电压测试仪 耐电压测试仪又叫电气绝缘强度试验仪或叫介质强度测试仪。将一规定交流或直流高压施加在电器带电部分和非带电部分(一般为外壳)之间以检查电器的 绝缘材料所能承受耐压能力的试验。电器在长期工作中,不仅要承受额定工作电 压的作用,还要承受操作过程中引起短时间的高于额定工作电压的过电压作用 (过电压值可能会高于额定工作电压值的好几倍)。在这些电压的作用下,电气 绝缘材料的内部结构将发生变化。当过电压强度达到某一定值时,就会使材料的 绝缘击穿,电器将不能正常运行,操作者就可能触电,危及人身安全。 1 、耐电压测试仪结构及组成 (1 )升压部分

调压变压器、升压变压器及升压部分电源接通及切断开关组成。 220V电压通过接通,切断开关加到调压变压器上调压变压器输出连接升压变 压器。用户只需调节调压器就可以控制升压变压器的输出电压。 (2 )控制部分 电流取样,时间电路、报警电路组成。控制部分当收到启动信号,仪器立即在接通升压部分电源。当收到被测回路电流超过设定值及发出声光报警立即切断 升压回路电源。当收到复位或者时间到信号后切断升压回路电源。 (3 )显示电路 显示器显示升压变压器输出电压值。显示由电流取样部分的电流值,及时间电路的时间值一般为倒计时。 (4 )以上是传统的耐电压试验仪的结构组成。随着电子技术及单片,计算 机技术飞速发展;程控耐电压测试仪这几年也发展很快,程控耐压仪与传统的耐 压仪不同之处主要是升压部分。程控耐压仪高压升压不是通过市电由调压器来调

数字绝缘测试仪

61-797 数字绝缘测试仪 显示屏 功能键 测试合格指示灯 高电压指示灯 功能选择与电源开关 低电阻测量接口 绝缘电压/电阻测量接口 公共端

测量ACV/DCV:自动感知交/直流功能 自动感知模式:被测电压>0.3V,自动显示ACV/DCV;被测电压大于660V AC/DC,屏幕自动显示“>660V AC/DC”。 自动感知与低通滤波器(LPF)功能 在AC电压模式下,启动低通滤波器(LPF)功能,可阻止频率>1kHz的信号影响测试结果。低通滤波器能很大程度提高对诸如调速设备或变频设备的复杂波形测量能力。

1.测试前 (A)被测电路不能带电,否则会烧仪表内的保险丝。如果电压超过2V,仪表屏幕会显示“>2V”警示。 (B)测试前先短路测试线,按蓝色按钮,将测试线电阻归零 2.锁定模式:按锁定按钮(LOCK),按TEST按钮开始测试,直到TEST再次被按下,测试将持续进行。 3.屏幕显示“>”表示被测电阻超过仪表量程

1.测试前 被测电路不能带电。如果电压超过30V,仪表屏幕会显示“>30V”警示。测试将被禁止。 2.按蓝色按钮,显示绝缘电阻或在停止测试后显示漏电流 2.锁定模式:按锁定按钮(LOCK),按TEST按钮开始测试,直到TEST/LOCK再次被按下,测试将持续进行。 3.屏幕显示“>”表示被测电阻超过仪表量程 使用比较功能 1.开始绝缘测试之前,按COMP按钮,在下列参数中选择比较值: 100kΩ,200kΩ, 500kΩ,1MΩ,2MΩ,5MΩ,10MΩ,20MΩ,50MΩ,100MΩ,200MΩ,500MΩ 2.如果被测值大于所选数值,绿色指示灯点亮。

数字式高压绝缘电阻测试仪使用说明书

如有你有帮助,请购买下载,谢谢! 使用说明书 日本共立电气计器株式会社 目录 1.安全警告---------------------------------------------1 2.特点-------------------------------------------------4 3.技术规格---------------------------------------------5 4.仪器布局图 4-1 仪器布局图----------------------------------------8 4-2 液晶屏显示----------------------------------------9 5. 测试前的准备 5-1 检查电池电压--------------------------------------10 5-2 连接测试导线--------------------------------------10 6. 测试 6-1 电压测量(600V或更少些)---------------------------11 6-2 绝缘电阻的测量------------------------------------12 6-3 连续测量------------------------------------------15 6-4 定时器测量功能------------------------------------15 6-5 极化指数测量--------------------------------------15 6-6 测量接线端的电压特性------------------------------15 6-7 保护接线的使用----------------------------------15 7.电池更换---------------------------------------------19 0页

绝缘电阻测试仪型号

绝缘电阻测试仪型号 RT5200采用嵌入式工业单片机实时操作系统,图形点阵液晶显示器,该系列表具有多种电压输出等级容量大、抗干扰强、数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大容量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。 RT-5200绝缘电阻测试仪产品特性 >采用微电脑控制,菜单操作,大屏幕液晶LCD点阵显示,性能稳定,属智能化仪表。

>抗干扰能力强,适合在强电磁干扰环境中测量。 >有50V、100V、250 V、500V、1.0kV、2.5kV、5.0kV、10.0kV共8个电压输出档。 >输出高电压同时也可连续调节。 >自动测量R15、R60、R600,自动计算吸收比、极化指数。 >带载能力强,短路电流约5mA。 >测量范围最大为0 ~10TΩ,自动切换量程。 >模拟条指针与数字显示相结合,形象的表明数据的变化趋势及准确的测量结果。 >随时显示测试时间,且每隔15秒蜂鸣器自动鸣叫提示。 >测量完毕自动泄放高压,高压泄放时间不超过30秒。 >自动测量环境温度、空气湿度及每次测试的日期与时间。 >能保存60组测量结果,且数据20年可不丢失。 >自带RS232串行接口,能与计算机数据通信。 >超大容量9800mAH锂电池,一次充电连续使用30天,具有完善的充电保护功能。 >RS232串口外接打印机(选配),可打印测量结果,免抄表工作。 >具有全面完善的保护功能,工作可靠性高。 可选配功能: 1.打印机

2.泄露电流和吸收电容 可定制参数: 1.测量范围:0~20TΩ 2.短路电流:5mA/6mA/8mA/10mA RT-5200绝缘电阻测试仪型号产品参数 额定测试电压50V、100V、250 V、500V、1.0kV、2.5kV、5.0k、10.0kV(共8个电压输出档,输出高电压同时也可连续调节) 测量上限值100GΩ~ 10TΩ测量下限值0.1MΩ 输出电压误差±5% 短路电流约5mA 准确度等级 3.0级 下半量程范围误差±( 2%·Rx + 1d ) 上半量程范围误差±( 3%·Rx + 2d ) 高压显示误差±( 3%·Ux + 1d ) 温度测量误差±0.5℃

绝缘电阻测试仪使用说明

绝缘电阻测试仪

目录 第一章概述..... .. (1) 第二章产品介绍 (2) 一、产品特性 (2) 二、技术指标 (3) 三、仪表结构 (4) 第三章使用方法 (6) 一、准备工作 (6) 二、开始测试 (7) 三、屏蔽端使用方法 (8) 四、电池充电 (9)

第一章概述 随着我国电力工业的快速发展,电气设备预防性实验是保障电力系统安全运行和维护工作中的一个重要环节。绝缘诊断是检测电气设备绝缘缺陷或故障的重要手段。绝缘电阻测试仪(兆欧表)是测量绝缘电阻的专用仪表。1990年5月批准实施的JJG662-89《绝缘电阻表(兆欧表)》已把它作为强制检定的仪表之一。目前,电气设备(如变压器、发电机等)朝着大容量化、高电压化、结构多样化及密封化的趋势发展。这就需要绝缘电阻测试仪本身具有容量大、抗干扰能力强、测量指标多样化、测量结果准确、测量过程简单并迅速、便于携带等特点。 绝缘电阻测试仪采用超薄形张丝表头、多种电压等级输出、容量大、抗干扰强、交直流两用(C型)、操作简单、具有时间提示功能。是测量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

第二章产品介绍 一、产品特性 1、仪表的绝缘测试对于BC2533在500V最高可测20GΩ, 在1000V最高 可测40GΩ, 在2500V最高可测100GΩ;对于BC2550型在2500V最高可测100GΩ, 在5000V最高可测200GΩ; 2、额定的输出电压保持在对BC2533型负载电阻可低至4MΩ/8MΩ/20M Ω;对BC2550型为20MΩ/40MΩ,这使得仪表能够精确测量较低的绝缘阻抗。 3、自动转换的高低范围双刻度指示, 彩色刻度易于读识, 并且有LED 显示相应色彩。 4、整机采用ABS塑料机壳便携式设计,具有抗干扰能力强、结构紧凑、 外观精美。 5、仪表采用超薄型张丝表头,抗震能力强。 6、交直流两用,内置可充电池和智能充电模块,整机输出功率大(C 型)。 7、是测量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

绝缘电阻测试仪的原理

绝缘电阻测试仪-表面电阻测试仪的原理 利用直流四探针法测量半导体的电阻率一,测试原理: 当四根金属探针排成一条直线,并以一定压力压在半导体材料上时,在1,4两根探针间通过电流I,则2,3探针间产生电位差V(如图所示). 根据公式可计算出材料的电阻率: 其中,C为四探针的探针系数(cm),它的大小取决于四根探针的排列方法和针距. 二,仪器操作: (一)测试前的准备: 1,将电源插头插入仪器背面的电源插座,电源开关置于断开位置; 2,工作方式开关置于"短路"位置,电流开关处于弹出位置; 3,将手动测试架的屏蔽线插头与电气箱的输入插座连接好; 4,对测试样品进行一定的处理(如喷沙,清洁等); 5,调节室内温度及湿度使之达到测试要求. (二)测试: 首先将电源开关置于开启位置,测量选择开关置于"短路",出现数字显示,通电预热半小时. 1,放好样品,压下探头,将测量选择开关置于"测量"位置,极性开关置于开关上方; 2,选择适当的电压量程和电流量程,数字显示基本为"0000",若末位有数字,可旋转调零调节旋钮使之显示为"0000"; 3,将工作方式开关置于"I调节",按下电流开关,旋动电流调节旋钮,使数字显示为"1000",该值为各电流量程的满量程值; 4,再将极性开关压下,使数显也为1000±1,退出电流开关,将工作方式开关置于1或6.28处(探头间距为1.59mm时置于1位置,间距为1mm时置于6.28位置); (调节电流后,上述步骤在以后的测量中可不必重复;只要调节好后,按下电流开关,可由数显直接读出测量值.) 5,若数显熄灭,仅剩"1",表示超出该量程电压值,可将电压量程开关拨到更高档; 6,读数后,将极性开关拨至另一方,可读出负极性时的测量值,将两次测量值取平均数即为样品在该处的电阻率值. 三,注意事项: 1,压下探头时,压力要适中,以免损坏探针; 2,由于样品表面电阻可能分布不均,测量时应对一个样品多测几个点,然后取平均值; 3,样品的实际电阻率还与其厚度有关,还需查附录中的厚度修正系数,进行修正. 1. 在测容性负载阻值时,绝缘电阻测试仪输出短路电流大小与测量数据有什么关系,为什么? 绝缘电阻测试仪输出短路电流的大小可反映出该兆欧表内部输出高压源内阻的大小。当被测试品存在电容量时,在测试过程的开始阶段,内的高压源要通过其内阻向该电容充电,并逐步将电压充到的输出额定高压值。显然,如果试品的电容量值很大,或高压源内阻很大,这一充电过程的耗时就会加长。其长度可由R内和C负载的乘积决定(单位为秒)。请注意,给电容充电的电流与被测试品绝缘电阻上流过的电流,在测试中是一起流入内的。测得的电流不仅有绝缘电阻上的分量,也加入了

BY2671数字式绝缘电阻测试仪使用说明书

BY2671型 数字式绝缘电阻测试仪 使用说明书

目录 一、引言 (2) 二、仪表工作原理 (2) 三、仪表电路框图 (2) 四、仪表使用范围 (3) 五、仪表特点 (3) 六、主要技术指标 (4) 七、操作方法 (5) 八、维护保养及注意事项 (5) 九、配套附件 (6) 十、售后服务 (6)

一、引言 在使用本仪表之前,请您仔细阅读说明书! 二、仪表工作原理 BY2671绝缘电阻测试仪由中大规模集成电路组成。本表输出功率大,短路电流值高,输出电压等级多(每种机型有四个电压等级)。工作原理为由机内电池作为电源经DC/DC变换产生的直流高压由E极出经被测试品到达L极,从而产生一个从E到L极的电流,经过I/V变换经除法器完成运算直接将被测的绝缘电阻值由LCD显示出来。 三、仪表电路框图 如图所示: 四、仪表使用范围 本仪表是电力、邮电、通信、机电安装和维修以及利用电力作为工业动力或能源的工业企业部门常用而必不可少的仪表。它适用于测量各种绝缘材料的电阻值及变压器、电机、电缆及电器设备等的绝缘电阻。

五、仪表特点 本表具有以下特点: ·输出功率大、带载能力强,抗干扰能力强。 本表外壳由高强度铝合金组成,机内设有等电位保护环和四阶有源低通滤波器,对外界工频及强电磁场可起到有效的屏蔽作用。对容性试品测量由于输出短路电流大于 1.6mA,很容易使测试电压迅速上升到输出电压的额定值。对于低阻值测量由于采用比例法设计故电压下落并不影响测试精度。 ·本仪表不需人力作功,由电池供电,量程可自动转换。一目了然的面板操作和LCD显示使得测量十分方便和迅捷。 ·本表输出短路电流可直接测量,不需带载测量进行估算。 六、主要技术指标 1. 输出电压等级:500V,1000V,2000V,2500V 2. 测量范围:0~19999MΩ 3. 相对误差:≤±4%±1d 4. 分辨率:0.01 MΩ,0.1 MΩ,1.0 MΩ,10.0 MΩ 5. 电压负载:2500V/20 MΩ 6. 电压跌落:约10% 7. 短路电流:>1.6mA 8. 电源适用范围,功率损耗 直流:7-9V(6节5#可充电电池) 外接交流220V电源进行充电。 功耗:静态功耗≤160mW; 最大功率≤2.5W 9. 使用条件

HDT20系列绝缘电阻测试仪使用说明书

HDT20系列绝缘电阻测试仪使用说明书 安全规范 安全警告 本仪器的设计、制造和检测均达到IEC1010安全标准(电子类测量产品安全要求),本说明书包括确保仪器的安全使用及保证仪器的安全状态,使用者所必须遵守的警告和安全条例。使用前请先阅读以下说明。 郑重申明 ●使用仪器前请先仔细阅读并理解本使用说明书。 ●无论何时必须遵守说明书的要求,并保存好说明书,使之随时能供参考。 ●仪器测试时,错误的操作会导致事故及仪器的损坏。 ●本公司保留对说明书修改权,如果说明书有改动,恕不另行通知。 本仪器上的标志意思是指为了安全操作本仪器,请使用者参照使用说明书的相关部分操作。 危险—为了避免在某些状态及操作下,有可能引起的严重或致命的损害。 警告—表明避免遭受电击的危险。 注意—表明避免对仪器的损害和进行准确的测量。 ●请勿在易燃性场所测试,火花可能会引起爆炸。 ●如果仪器表面潮湿或操作者手是湿的请勿操作本仪器。 ●当测试电压时,由于金属部分与测试导线不小心短路时,有可能导致人身伤害。 ●测量时不要超过量程允许的最大范围。 ●测量时请勿打开电池盖。 ●执行绝缘测量时,不可触摸待测线路。 ●如果仪器出现异常请停止使用。例如:仪器破损或裸露出金属部分。 ●测试导线插入仪器接口并接入电路测试时,不要旋转功能旋钮。 ●不要对仪器装入替代部件或进行任何未授权的改动,维修时仪器返回公司本部或由公司指定的具有一定技术资质的授权服务商提供维修服务。 ●仪器于潮湿状态下请勿更换电池。 ●确定所有测试导线与仪表的测试端口连接牢固。 ●确保仪器已关机才可以打开电池盖。 ●测量前,确认功能旋钮旋至适当的位置。 ●使用完毕后,将功能旋钮旋至“OFF”位置,若长时间不使用,请将电池取出后存放。 ●请勿在高温、潮湿、有结露可能的场所及光直射下长时间放置。 ●请使用湿布或清洁剂来清洁仪器外壳,请勿使用磨擦物或溶剂擦拭仪器外壳及配件。 ●仪器潮湿时,请先干燥后再使用或存储。 符号

10kV绝缘电阻测试仪

10kV绝缘电阻测试仪 一、概述 1、引言 在GD2136的基础上重新设计GD3126A绝缘电阻测试仪,提供数字绝缘测试,测试电压最高可达10kV,可广泛应用于变电站、发电厂等电气设备的检修,非常适合用于测试各种高电压设备,包括开关设备,变压器、电抗器、电容器、电动机,发电机和电缆等进行绝缘电阻(IR)、吸收比(DAR)、极化指数(PI)的测量。国电西高的绝缘电阻测试仪执行DL/ T845.1-2004,SJ/T 11385-2008,CAT IV 600 V安全等级测试。GD3126是早期识别、发现潜在设备故障的预防性或预测性维护计划的完美测试工具。对保证产品质量和运行中的人身及设备安全具有重要意义,电气产品的绝缘性能是评价其绝缘好坏的重要标志之一,它是通过绝缘电阻的测试来反映的。 2、产品别称 智能双显绝缘电阻测试仪,数字兆欧表,指针兆欧表,电动兆欧表,绝缘表,数字绝缘表,电动绝缘表绝缘电阻测试仪,绝缘测试仪,高压绝缘测试仪,高压绝缘电阻测试仪,绝缘电阻测量仪,高压兆欧表,电动摇表,水内冷发电机绝缘电阻测试仪,数字式自动量程绝缘电阻测试仪,兆欧表,摇表,高阻计。

二、功能特点 1、采用数字处理技术,抗干扰性强,可在强电磁干扰环境下测量; 2、容量大,能满足高压、高阻、大容量负载测试的要求; 3、具有防震、防潮、防尘结构,适应恶劣工作环境; 4、人机交互友好、美观,显示准确结果和数据变化趋势; 5、保护功能完善,能承受短路和被测电容残余电压冲击; 6、测量范围最大可到10TΩ,自动切换量程; 7、各档位高电压从零连续可调; 8、自动测量R15、R60、R600,计算吸收比、极化指数; 9、自动测量环境温度、空气湿度及测试时间; 10、显示测试时间,每15秒有蜂鸣提示,5分钟无操作提示关机; 11、测量完毕自动泄放高压,泄放时间不超过30秒; 12、能保存60组测量结果,且数据可20年不丢失; 13、自带RS232串行接口,可与计算机通信; 14、外接打印机(选配); 15、测试前显示带电试品电压并有相关提示; 16、预设测试时间,自动停止测量; 17、可以检测泄露电流Ix和吸收电容Cx;

绝缘电阻测试仪使用方法

绝缘电阻测试仪使用方法 兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用,否则就会造成人身或设备事故。在使用兆欧表前,首先要做好以下各种准备工作: (1)测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备的安全。 (2)对可能感应出高电压的设备,必须消除这种可能性后才能进行测量。 (3)被测物表面要清洁,减少接触电阻,确保测量结果的正确性。 (4)测量前要检查兆欧表是否处于正常工作状态下,主要检查其"0"和"∞"两点位置。即摇动手摇发电机手柄,使电机达到额定转速。兆欧表在短路时,指针应指在"0"位置;开路时,指针应指在"∞"位置。 (5)兆欧表使用时应放在平稳、牢固的地方,且远离大的外电流导体和外磁场。 做好上述准备工作后,就可以进行测量了。在测量时,要注意兆欧表的正确接线,否则将引起不必要的误差甚至错误。兆欧表的接线柱共三个;三个"L"即线端,一个"E"即地端,再一个"G"即屏蔽端(也叫保护环)。一般被测绝缘电阻都接在"L"和"E"端之间,但当被测绝缘物表面漏电严重时,必须将被测物的屏蔽环或不须测量的部分与"G"端相联接。这样漏电流就经屏蔽端"G"直接流回发电机的负瑞形成回路,而不再流过兆欧表的测量机构(动圈)。这样就从根本上消除

了表面漏电流的影响。值得注意的是测量电缆线芯和外表之间的绝缘电阻时,一定要接好屏蔽短钮"G"。因为当空气湿度大或电缆绝缘表面又不干净时,其表面的漏电流将很大。为防止被测物因漏电而对其内部绝缘测量所造成的影响,一般在电缆外表办一个金属屏蔽环,使之与兆欧表"G"端相连。 用兆欧表测量电器设备的绝缘电阻时,要注意"L"和"E"端不能接反。正确的接法是"L"线端钮接被测设备导体,"E"地端或连接接地的设备外壳,"G"屏蔽端接被测设备的绝缘部分。如果将"L"和"E"接反了,流过绝缘体内及表面的漏电流经外壳汇集到地,由地经"L"流进测量线圈,使"G"端失去屏蔽作用而给测量带来很大误差。另外,因为"E"端及内部引线同外壳的绝缘程度比"L"端与外壳的绝缘程度要低,当兆欧表放在地上使用,采用正确接线方式时,"E"端对仪表外壳和外壳对地的绝缘电阻相当于短路,不会造成测量误差而"L"与"E"接反时,"E"对地的绝缘电阻同被测绝缘电阻并联,而使测量结果偏小,给测量带来较大的误差。 由此可见,要准确地测量出电器设备等的绝缘电阻,必须对兆欧表进行正确的使用,否则将会失去测量的准确性和可靠性。

VC60B+绝缘电阻测试仪说明书

VC60B +/VC60D +/VC60E + 使用说明书 第一章 1、 概述................................................1 2、 外观说明..........................................1 3、 技术特性..........................................2 4、 操作说明..........................................4 5、 绝缘电阻测量方法..............................5 6、 安全注意事项....................................5 7、 仪表的成套性 (6) 第二章 1、 概述................................................7 2、 外观说明..........................................7 3、 技术特性..........................................8 4、 操作说明..........................................10 5、 绝缘电阻测量方法..............................11 6、 安全注意事项....................................11 7、 仪表的成套性....................................12 8、 故障排除 (12) 第一章 VC60B + 一、概述 VC60B +数字兆欧表,是采用低损耗高变比电感储能式直流电压变换器将9V 电压变换成 250V/500V/1000V 直流电压。采用数字电桥进行电阻测量,用于绝缘电阻的测试,具有使用轻便,量程宽广,背光显示,测试锁定,自动关机等功能,还可以进行市电测量,整机美观高档,性能稳定,使用背带可双手作业,试用于电机、电缆、机电设备、电信器材,电力设施等绝缘电阻检测需要。 二、外观说明 1、2、3、4 。 5、电阻量程选择开关(RANGE )。 6、电源开关:自锁式电源开关(POWER )。 7、高压提示:LED 显示。 8、测试按钮。 9、LCD 显示器:显示测量数据及单位符号。 10、仪表型号。 11、L :接被测线路端插孔。 12、G :保护端插孔,当要求被测对象加保护环消除泄漏效应时,保护环电极导线接至“G ”端插孔。 13、ACV:交流电压测试输入端。 14、E :接被测对象的地端插孔。 15。

绝缘电阻测试仪使用标准

绝缘电阻测试仪资料说明 一、该使用规范仅适用于UT512绝缘电阻测试仪。 1、特点 a.自动释放电压功能。 https://www.360docs.net/doc/1f18096653.html,B接口数据传输。 c.背光功能便于在阴暗光线下工作。 d.条形图显示测量结果。 e. 高压提示符和红色警示灯。 f. 自动关机功能: 2、UT512是一台智能微型仪器即绝缘测试仪器,整机电路设计采用微机技术设计为核心,以大规 模集成电路和数字电路相组合,配有强大的测量和数据处理软件,完成绝缘电阻、电压等参数测量,性能稳定,操作简便。适用于现场电力设备以及供电线路的测量和检修。 a.当测量结束后15分钟如果不操作会自动关机,自动关机后按ON/OFF键1秒后方可开机。 18组数据存诸功能。 b.设定测试时间TIME功能:在指定时间15分钟内自动执行测量。 https://www.360docs.net/doc/1f18096653.html,P测量(比较功能测量) d.PI测量(极化指数测量):PI测量能在任意两点时间里,根据设定自动测量电阻比率。 二、安全警告: 为包括确保仪器的安全使用及保证仪器的安全状态,使用者所使用前请先阅读以下说明,且必须遵守以下的警告和安全条例。 1、危险 1. 切勿测量交/直流电压在600V以上的电路。 2. 请勿在易燃性场所测试,火花可能会引起爆炸。 3 如果仪器表面潮湿或操作者手是湿的请勿操作本仪器。 4.当测量时,不可接触测试笔导电部位。 5 当测试线短路连接在仪器上时,不要按下TEST键。 6.测量时请勿打开电池 7. 执行绝缘测量时,不可触摸待测线路。 2、警告 1.如果仪器出现异常请停止使用。例如:仪器破损或裸露出金属部分。 2. 在电压超过33Vrms,46.7Vacrms或70Vdc工作时一定要小心谨慎。此类电压可能引起电击。

KZC数字高压绝缘电阻测试仪使用说明及注意事项样本

KZC30型数字高压绝缘电阻测试仪 使 用 说 明 书 扬州市菲柯特电气有限公司 地址: 扬州市高新技术开发区 电话: 手机: 一、概述 检查电气设备的绝缘性能, 测量绝缘电阻是最简单快速的基本方法, 第一代和第二 代的手摇式和电动式指针摇表存在测量精度低, 误差大, 抗干扰能力差, 人工计时, 人工计算等, 使用极不方便。公司调查了国内外多种兆欧表, 设计了KZC30型第三代数字兆欧表。该仪器测量原理新颖, 操作简便, 精度高, 整机采用全集成电路, 耐振动, 工作稳定性好, 输出短路电流大, 在现场环境下抗干扰能力强, 能满足当前国内500KV 及以下变电站、发电厂的测试要求。该仪器具有计时, 报时和数据存贮等功能, 测试电压分500V、 1KV、 2.5KV、 5KV四档, 可方便地测量绝缘电阻, 吸收比, 极化指数

等参数。适合各类绝缘设备的测量需要。 二、安全措施 1.使用本仪器前一定要认真阅读本手册。 2.仪器的操作者应具备一般电气设备或仪器的使用常识。 3.本仪器户内外均可使用, 但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4.仪器应避免剧烈振动。 5.对仪器的维修、护理和调整应由专业人员进行。 6.测试过程中严禁碰触测试引线! 7.测试完毕后要短路测试端人工放电! 8.严格遵守安全操作规程。 9.非测试人员必须远离高压测试区, 测试区必须用栅栏或绳索、警视牌等明显表示出来。 三、性能特点 1.中文菜单操作, 使用方便。 2.可实现绝缘电阻、吸收比、极化指数等参数的全自动测量。 3.保留15秒及每一分钟数据, 直到第10分钟, 并自动计时。 4.可存贮10组测量数据, 以便随时分析和存档。 5.功能全面, 具有测试、存贮、报警、调阅等功能。 6.测试结束后可自动放电。 7.输出短路电流大, 抗干扰能力强。 四、技术指标 测试范围: 10MΩ~1.5TΩ 分辨率: 最小0.1 MΩ 精度: ±( 3%·R+2字) 测试电压: 500V, 1KV, 2.5KV, 5KV

光数字绝缘电阻测试仪充电和注意事项

光数字绝缘电阻测试仪充电和注意事项光数字绝缘电阻测试仪充电和注意事项 充电 关机后将电源线插入防水充电电源插座,接至AC 220V电源。接通电源后,电源充电器指示灯红灯,充电完毕, 电源指示灯绿灯。建议每次充电时间不少于10小时。 不要使电池处于完全放电状态。经常性地充电将最大限度地延长电池寿命。 1)充电应在干燥的环境下进行。 2)当在室内充电时,应保持环境通风良好。 3)充电必须应在0℃- 40℃温度下进行。 4)若保持电池处在充电状态对电池只有好处,不会对其造成损害。 5)若仪器长期闲置不用,应每半年对其充电24小时。(若保存温度大于40℃,应增加充电频率) 8. 注意事项 ●仪表应在电池约50%充电态存放,电池过放欠压,应及时充电,否则无法开机。 ●在测试和检定中应使用随仪表配置的测试线,以保工作正常。 ●应经常保持仪表与测试线的清洁。 ●不得受潮、雨淋、暴晒、跌落。 ●仪器对大电容量试品测量后,用户必须按有关高压操作规程对试品进行再次放电。 9.故障及现象 常见现象说明及处置 开机后液晶屏无显示。开机电源按钮长按 电池电量不足,接入AC220V给电池充电,电源指示灯应

闪亮,充电完毕电源指示灯长亮。 测试无数据显示。用万用表检查L、E测试线是不是正常。 L、E短接后是不是显示电阻值MΩ 测试线和被测试品间可能接触不良。 被测试品的绝缘电阻值超过了仪表量程的上限值或开路。 测试数据极不稳定或可信度不高。 检查被测试品是否安全接地,确认试品不带电。 检查G端(保护环)是否可靠有效连接。 (为了得到更准确的测试数据,电池电压显示有小数点显示,测试时注 电压数值波动不能太大,否则测试有误差,请及时充电)

绝缘电阻测试仪

绝缘电阻测试仪 型号显示交流电 压 交流电流直流电压直流电流电阻钳口 KT200数字式400/60040/400400/600--- 2002PA数字式200/750200/2000------20055 2003A数字式200/750200/200020/100020/2000 1.5千欧55 2004数字式50020/20020020/20020019 2005数字式---2/200---------19 2006数字式2/2002/200------2千欧19 2007A数字式400/750400/600------40033 2009A数字式200/750200/200020/1000200/2000 1.5千欧55 2010数字式---200m/20---2/20---7.5 2017数字式200/600200/600------20033 2020数字式---200---------14 2027数字式200/600200/600------20033 2031数字式---20/200---------24 2033数字式---40/300---40/300---24 2037数字式40/400/ 600 400/60040/600100/10004千欧33 2103指针式150/75010/1000------2千欧60 2412数字式60020m/500------20040 2413F数字式---200m/1000---------68 2414数字式50020m/100---------30 2415数字式50020m/2/100---------30

绝缘电阻测试仪解决方法

目录 一、概述 (1) 二、产品介绍 (1) 1、产品特性 (1) 2、技术指标 (2) 3、仪表结构 (2) 三、使用方法 (5) 1、准备工作 (5) 2、开始测试 (5) 3、查询测试结果 (7) 4、删除测试结果 (7) 5、测试时间设置 (7) 6、屏蔽端使用方法 (8) 7、电池充电 (9)

MS-2000绝缘电阻测试仪 一、概述 我公司生产的MS-2000绝缘电阻测试仪采用嵌入式工业单片机实时操作系统,数字模拟指针与数字段码显示完美结合,该系列表具有多种电压输出等级(250V、500V、1000V、2500V、5000V、10000V)、容量大、抗干扰强、模拟指针与数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大容量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。 二、产品介绍 1、产品特性 1.有多种电压输出选择MS-2000(250V/500V/2500V/5000V),测量电阻量程范围可达0~400GΩ。 2.两种方式同步显示绝缘阻值。模拟指针的采用可容易观察绝缘电阻的变化范围,数字显示的采用可精确得出测量结果。 3.采用嵌入式工业单片机和实时操作软件系统。自动化程度高、抗干扰能力强,仪器可自动计算吸收比和极化指数,无须人工干预。 4.操作界面友好,各种测量结果具有防掉电功能,可连续存储19次的测量结果。 5.仪表产生高压时,有提示音输出并有相应显示。 6.内置残留高压放电电路,测试完毕可自动放掉被测设备上的残留高压。 7.交直流两用,配置可充电池和交流适配器。 8.仪表采用便携式设计,便于野外操作。

相关文档
最新文档