满堂式支架强度及稳定性计算

满堂式支架强度及稳定性计算
满堂式支架强度及稳定性计算

桥梁支架计算书

**高速公路(贵州境)***合同段 **分离式桥现浇箱梁支架计算书 编制: 复核: 审核: *********有限公司 年月日

**分离式立交桥现浇箱梁支架计算书 一、计算依据: 1、《路桥施工计算手册》; 2、《材料力学》; 3、《结构力学》; 4、《**高速公路两阶段施工图设计变更设计》 二、工程概况: **分离式立交桥为连接原有道路的主线跨线桥,上部结构跨径组合为:2×30m,桥宽5.5m;采用单箱单室截面,梁高150cm,箱梁采用满堂支架现浇施工。 梁体范围内地面为煤系地层,施工满堂支架时需将地面压实,上铺石粉或浇筑混凝土进行找平,支架底托下垫10cm×15cm方木,顶托上纵向铺工字钢,横向铺设10cm×10cm方木。 一、底板纵向分配梁的计算 现浇箱梁跨径组合为2×30m,由于箱梁整体为对称结构,因此计算时纵向只需考虑2个截面即可,及跨中和梁端(见图)。横向分为中间部分、腹板部分和翼板部分,翼板部分荷载较小,不予考虑。采用容许应力计算不考虑荷载分项系数,为了支架安全,总体考虑1.3倍的安全系数进行计算。

根据《路桥施工计算手册》查得,钢材的力学指标取下值: []σ145Μpa =,[]85pa τ=M ,52.110pa E =?M 。 纵梁选用10号工字钢,设计受力参数为: W=49.0cm 3,I=245.0cm 4,S=28.2cm 3,d=0.45cm 一、验算截面分析 我们根据箱梁截面,初步选定支架的纵向间距为90cm ,横向间距为60cm 。根据梁体截面分析,梁端截面为支架受力的最不利截面,因此只需要计算梁端截面处支架的受力情况即可。具体截面如下: 二、计算 支架纵向间距为90cm 处的分配梁计算 梁端截面

满堂支撑架结构计算书

扣件式满堂支撑架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013 6、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

(图1)平面图 (图2)纵向剖面图1 (图3)纵向剖面图2

三、次楞验算 恒荷载为: g1=1.2[g kc+g1k e]=1.2×(0.022+0.35×250/1000)=0.131kN/m 活荷载为: q1=1.4(Q1+Q2)e=1.4×(2+2)×250/1000=1.4kN/m 次楞按三跨连续梁计算符合工况。计算简图如下: (图4)可变荷载控制的受力简图 1、强度验算 (图5)次楞弯矩图(kN·m) M max=0.124kN·m σ=M max/W=0.124×106/(1×85.333×103)=1.454N/mm2≤[f]=15N/mm2 满足要求 2、抗剪验算

(图6)次楞剪力图(kN) V max=0.827kN τmax= V max S0/(Ib) =0.827×103×40.5×103/(341.333×104×4×10)=0.245N/mm2≤[τ]=125N/mm2 满足要求 3、挠度验算 挠度验算荷载统计: q k=g kc+g1k e+(Q1+Q2)e =0.022+0.3×250/1000+(2+2)×250/1000=1.097kN/m (图7)挠度计算受力简图 (图8)次楞变形图 (mm) νmax=0.145mm≤[ν]=max(1000×0.9/150,10)=10mm 满足要求 4、支座反力计算 承载能力极限状态下支座反力为:R=1.516kN 正常使用极限状态下支座反力为:R k=1.086kN 五、主楞验算 按三跨连续梁计算符合工况,偏于安全,计算简图如下:

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

现浇箱梁支架计算书-(midas计算稳定性)

温州龙港大桥改建工程 满堂支架法现浇箱梁设计计算书 计算: 复核: 审核: 中铁上海工程局 温州龙港大桥改建工程项目经理部 2015年12月30日

目录 1 编制依据、原则及范围·············- 1 - 1.1 编制依据·················- 1 - 1. 2 编制原则·················- 1 - 1.3 编制范围·················- 2 - 2 设计构造···················- 2 - 2.1 现浇连续箱梁设计构造···········- 2 - 2.2 支架体系主要构造·············- 2 - 3 满堂支架体系设计参数取值···········- 8 - 3.1 荷载组合·················- 8 - 3.2 强度、刚度标准··············- 9 - 3.3 材料力学参数···············- 10 - 4 计算·····················- 10 - 4.1 模板计算·················- 11 - 4.2 模板下上层方木计算············- 11 - 4.3 顶托上纵向方木计算············- 13 - 4.4 碗扣支架计算···············- 14 - 4. 5 地基承载力计算··············- 18 -

温州龙港大桥改建工程 现浇连续梁模板支架计算书 1 编制依据、原则及范围 1.1 编制依据 1.1.1 设计文件 (1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8月)。 (2)其它相关招投标文件、图纸及相关温州龙港大桥改建工程设计文件。 1.1.2 行业标准 (1)《公路桥涵施工技术规范》(JTG/T F50-2011)。 (2)《建筑施工碗扣式钢管脚手架安全技术规范》 JGJ166-2008。 (3)《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)。 (4)《建筑施工扣件式钢管脚手架安全技术规范》 JGJ130-2011。 (5)《建筑结构荷载规范》GB50009-2001。 (6)《竹胶合板模板》(JG/T156-2004)。 (7)《建筑施工模板安全技术规范》(JGJ 162-2008)。 (8)《混凝土结构设计规范》(GB50010-2010)。 (9)《路桥施工计算手册》(2001年10月第1版)。 1.1.3 实际情况 (1)通过对施工现场的踏勘、施工调查所获取的资料。 (2)本单位现有技术能力、机械设备、施工管理水平以及多年来参加公路桥梁工程建设所积累的施工经验。 1.2 编制原则 (1)依据招标技术文件要求,施工方案涵盖技术文件所规定的内容。

盘扣式满堂楼板模板支架计算书

盘扣式满堂楼板模板支架计算书 楼板模板的计算参照《建筑施工模板安全技术规范》(JGJ162-2008)、《混凝土结构工程施工规范》(GB506666-2011)、《建筑施工承插型盘扣式钢管支架安全技术规程》(JGJ231-2010)、《混凝土结构设计规范》(GB50010-2010)、《钢结构设计规范》(GB 50017-2003)、《组合钢模板技术规范》(GB50214-2001)、《木结构设计规范》(GB 50005━2003)、《建筑结构荷载规范》(GB 50009-2012)等编制。 一、参数信息: 楼板楼板现浇厚度为0.20米,模板支架搭设高度为3.00米, 搭设尺寸为:立杆的纵距 b=1.20米,立杆的横距 l=1.20米,立杆的步距 h=1.20米。 模板面板采用胶合面板,厚度为18mm, 板底龙骨采用木方: 50×80;间距:300mm; 托梁采用双楞设置,梁顶托采用10号工字钢。 采用的钢管类型为60×3.2, 立杆上端伸出至模板支撑点长度:0.30米。

图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 二、模板面板计算 依据《混凝土结构工程施工规范》GB50666-2011,4.3.5和4.3.6计算。 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板按照三跨连续梁计算。 使用模板类型为:胶合板。 (1)钢筋混凝土板自重(kN/m): q11 = 25.100×0.200×1.200=6.024kN/m (2)模板的自重线荷载(kN/m): q12 = 0.350×1.200=0.420kN/m (3)活荷载为施工荷载标准值(kN/m): q13 = 2.500×1.200=3.000kN/m 均布线荷载标准值为: q = 25.100×0.200×1.200+0.350×1.200=6.444kN/m 均布线荷载设计值为: q1 = 0.90×[1.35×(6.024+0.420)+1.4×0.9×3.000]=11.231kN/m 面板的截面惯性矩I和截面抵抗矩W分别为: 本算例中,截面抵抗矩W和截面惯性矩I分别为: W = 120.00×1.80×1.80/6 = 64.80cm3; I = 120.00×1.80×1.80×1.80/12 = 58.32cm4; (1)抗弯强度计算

满堂支架计算

办公楼满堂支架施工方案 一、满堂支架方案 2.1、支架设计的要求 2.1.1、支架结构必须有足够的强度、刚度、稳定性。 2.1.2、支架在承重后期弹性和塑性变形应控制在15mm以内。 2.1.3、支架部分地基的沉降量控制在5mm以内,地基承载(压)力达200kPa。 2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留应变通盘考虑。 2.2、支架基础 按通过后满堂支架的设计方案,要求地基承载力大于200MPa,因此必须对地基作特殊处理。 2.2.1、将原地面腐植地表层上耕植土清除15cm,然后用挖掘机挖松50cm,用强夯分两层压实,底层压实度>80%,顶层压实度>85%。 2.2.2、按2%横向排水坡(主体结构边缘四周排水)填筑宕渣30cm,填筑分两层进行,每层压实厚度为15cm,用强夯压实,底层压实度>90%,顶层压实度>95%。 2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm的C10细石混凝土封闭层。 2.3、满堂支架 在混凝土硬化好的基础顶面放置40*40*7cm C30砼预制块作为支架立杆底座,在已放置好的底座上搭设碗扣式多功能钢支架,支架布置为:底板立杆按0.9m×1.2m进行布置,即立杆纵向间距1.2m,横向间距0.9m,内排距主体0.3m,横向7排,纵向56排,步距1.2m; 支架外围四周设剪刀撑,内部沿主体结构纵向每4排立杆搭设一排横向剪刀撑,横向剪刀撑间距不大于5m,支架高度通过可调托座和可调底座调节。

满堂支架平面布置示意图 满堂支架纵立面布置示意图 满堂支架横立面布置示意图

2.4、模板结构及支撑体系 模板结构是否合适将直接影响该悬挑结构造型的外观,底模面板均采用厚为18mm 的竹胶板,面板尺寸1.2m ×2.8m ,以适应立杆布置间距,面板直接钉在横向方木上,横向方木采用100×100mm 方木,间距25cm ;横向方木置于纵向100×160mm 方木上,纵向方木间距应与立杆横向间距一致。在钉面板时,每块面板应从一端赶向另一端,以保证面板表面平整。 二、支架结构检算 3.1、拟采用的材料截面特性 根据上图的布置方案,采用碗扣式多功能钢支架,对其刚度、强度、稳定性必须进行检算。拟采用钢管外径D=48mm ,壁厚3.5mm ,即内径d=44.5mm 。 断面积2222254.24)45.48.4(14.34/)(cm d D A =÷-?=-=π 转动惯量4444481.664)45.48.4(14.364/)(cm d D J =÷-?=-=π 回转半径cm d D i 64.14)45.48.4(4/)(2/1222/122=÷+=+= 截面模量)32/()(44D d D W -=π 34484.2)8.432()]45.48.4(14.3[cm =?÷-?= 钢材弹性系数MPa E 5101.2?= 钢材容许应力MPa f 170][= 3.2、荷载计算及荷载的组合 计算单元荷载(按受荷较大的梁处计算) A 、钢筋混凝土梁重:2/6.15266.0m kN h W p =?==钢筋砼砼ρ(钢筋混凝土梁重量按 26kN/m 3计算) B 、支架模板重 ① 模板重量: 2/4498.099.24018.0m kN h W p =?==模板模板ρ(竹胶板重量按24.99kN/m 3计算) ② 方木重量: 2/40.01.2 0.98.33)21.20.160.1+30.90.1(0.1m kN h W p =????????==方木方木ρ(方木重量按8.33KN/m3计算) ③ 支架重量: 根据现场情况以21米高支架,步距1.2m 进行检算 2/68.201.0*84.3*18*2*1.2 0.9)9.0(1.2m kN W W W =?+=+=横杆立杆支架(48*3.5杆重量3.84kg/m) C 、人员及机器重 2/2.1m kN W =人员机器

桥梁满堂支架计算书说明书

满堂支架及模板方案计算说明书 西滨互通式立体交叉地处厦门市翔安区西滨村附近,采用变形苜蓿叶型方案,利用空间分隔的方法消除翔安大道和窗东路两线的交叉车流的冲突,使两条交叉道路的直行车辆畅通无阻。Q匝道桥为窗东路上与翔安大道相交的主线桥梁,桥跨布置为5×28+5×28+(28+2×35+34+33)+3×27m,预应力砼连续箱梁,梁高2.0m,箱梁顶宽为~,箱梁采用C50混凝土。 以Q桥左线第一联为例,梁高2m,顶宽,支架最高6m,跨径5×28m,支架采用碗扣式多功能脚手杆(Φ搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调顶托,墩旁两侧各范围内的支架采用60×60×120cm的布置形式,墩旁外侧~8m范围内、纵横隔板梁下的支架采用60×90×120cm的布置形式,其余范围内(即跨中部分)的支架采用90×90×120cm的布置形式支架及模板方案。立杆顶设二层方木,立杆顶托上纵向设10×15cm方木;纵向方木上设10×10cm的横向方木,其中在端横梁和中横梁下间距,在跨中其他部位间距。 1荷载计算 荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式:——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑴ q 1 ⑵ q ——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算 2 =(偏于安全)。 取q 2 ⑶ q ——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下 3 肋条时取;当计算肋条下的梁时取;当计算支架立柱及替他承载构件时 取。 ⑷ q ——振捣混凝土产生的荷载,对底板取,对侧板取。 4 ——新浇混凝土对侧模的压力。 ⑸ q 5 ⑹ q ——倾倒混凝土产生的水平荷载,取。 6 ⑺ q ——支架自重,经计算支架在不同布置形式时其自重如下表所示: 7 1.1.1荷载组合

满堂支架计算

中交二航局硚孝高速第QXTJ-6标 标准跨径现浇砼箱梁支架结构计算书 编制 审核 中交第二航务工程局

2010年7月 标准跨径(20m)砼箱梁现浇支架结构设计和计算书 一、设计与验算条件 1、设计与验算假定及原则 为简化计算,对于连续结构按简支结构计算,这样偏于安全;其结构形式及构件型号选用宜结合现场条件尽量采用原有,即可周转和便于采购,租赁以及便于运输的材料;施工简单和便于装拆,节省费用,加快施工进度,确保交通,施工安全及施工质量。 2、设计与验算依据 (1)硚口至孝感高速第QXTJ-06合同段设计说明及相关施工图; (2)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); (3)公路桥涵技术规范(JTJ041—2000); (4)路桥施工计算手册; 3、工程概况 武汉硚口至孝感高速公路时武汉城市圈中武汉(汉口中心城区)至孝感(孝南区)的快速通道,是武汉城市圈实施交通一体化建设的重要组成部分,同时也是武汉市西北方向环线公路之间的一条快速联络通道,沿线经过武汉市下辖的硚口区、东西湖区以及孝感市下辖的孝南区。第QXTJ-6合同段位于位于武汉市东西湖区的东山农场灯塔大队和胜利大队范围内,为上跨京港澳高速的一个互通(灯塔互通)。主线全长 2.393km(K20+107-K22+500)、其中路基只有24米,主线宽26米。主线通过 A、B、C、D、E、F6条匝道桥与京港澳高速互通,匝道总长4.618Km,其中桥梁长度3.008Km、路基长度1.61Km,宽8.5米。

4、桥型及结构特点 全桥分主线桥、A 、B 、C 、D 、E 和F 六条匝道桥。本项目共有现浇箱梁365孔。箱梁顶宽8.5m-15.54m ,有单室、双室、三室和四室。高度为1.4m 。为非预应力连续箱梁,3跨-6跨为一联。本项目跨越5口鱼塘,一条灌溉渠,10条水沟,其余均为旱地,因此本项目所有旱地均采用满堂脚手架作为临时支撑,鱼塘、沟渠、跨路处采用少支架。 二、现浇箱梁满堂支架设计与验算 由于本工程现浇箱梁跨径不一,但以20m 跨径居多,所以采用20m 跨径、宽12.75m 、梁高为1.4m 、净空为10m 的箱梁为标准跨径箱梁进行计算。采用φ48轮扣式满堂支架搭设,底模、侧模采用竹胶合板、钢模组合模板。经验算满堂支架脚手管的布置型式为: ①箱梁底板下脚手管横桥向布距:箱梁腹板位置为0.6m ,底板及翼缘板区为0.9~1.2m ,层间0.9m 。每根立杆顶端设60cm 顶托,在其上横向铺设I10横向分配梁,箱梁底模面板采用竹胶合板mm 12=δ,纵向次肋为10×10cm 硬杂枋木,箱梁下布置间距均为@=30cm 。外侧模及翼缘底模为面板δ=12mm ;横纵梁均为10×10木枋,横向间距300mm ,顺桥向间距100mm ;内模为δ=12mm 竹胶合板加10×10木枋纵横向主次肋。 ②脚手管纵桥向排距为60cm 。具体布置见图一。 ③同时支架横向采用φ80×3.5mm 普通脚手管设置剪刀撑,以增加支架整体稳定性,剪刀撑均上、下到底。

桥梁碗扣支架计算书

连续箱梁碗扣支架计算书 1、工程概况 xx干道上跨xxR区1#路桥为中环快速干道(xx段)在xx处上跨xxR区x#路桥。跨线桥桥面总体宽度为:5.0m(人行道)+12.0m(行车道)+2.0m(中分带)+16.5m(行车道) +4.0m(人行道)=39.50m,双向6车道,横向分成左右两幅桥,主梁分别采用C50单箱四室和单箱三室现浇混凝土简支箱梁。 2、计算依据 《xx快速干道上跨xxR区x#路桥》施工设计图 《结构力学》、《材料力学》、 《公路桥涵施工技术规范》(JTJ041-2000) 《路桥施工计算手册》 3、支架分析 3.1、支架方案 (1)支架设计 支架采用碗扣支架搭设,碗扣立杆外径为φ48钢管,壁厚3.5mm,支架横向间距均为0.9米;纵向间距均为0.9米,在距两桥台3.0米的位置纵向间距为0.6米,纵横杆排距1.2米。支架顶口及底口分别设顶托与底托来调整高度(顶托和底托外露高度需满足相关规范要求),水平和高度方向分别采用钢管加设水平连接杆和坚向剪刀撑。横桥向剪刀撑为间距4.0米搭设,纵桥向间距也为4.0米,必要时根据现场施工情况,对全桥剪刀撑进行加密。箱梁底模采用δ=15

mm的竹编胶合模板,底模小楞采用间距0.3米的100×100mm方木,大楞采用150×150mm方木,具体布置见”箱梁支架构造图”。由于该桥跨线,需要预一行车道,设置单车道门通,门通净高4.5米,净宽4米,门式通道采用钢管桩加Ⅰ40b工字钢搭设。钢管桩横桥向布置见图。横桥向采用Ⅰ40工字钢,在工字钢上面再横铺Ⅰ40b号工字钢,间距90cm,其上满铺木板,防高空坠物。箱梁底模采用δ=15 mm的竹编胶合模板,底模小楞采用间距0.3米的100×100mm方木,大楞采用150×150mm方木,具体布置见”碗扣支架正面示意图”。 4、支架计算 4.1荷载分析 ①扣件式钢管支架自重,包括立柱、纵向水平杆、横向水平杆、支承杆件、扣件等,可按表1查取。 表1 扣件式钢管截面特性 外径d(mm) 壁厚 t(mm) 截面积 A(mm2) 惯性矩 I(mm4) 抵抗矩 W(mm3) 回转半径 i(mm) 每米长自 重(N) 48 3.5 4.89× 1021.219× 105 5.08× 103 15.78 38.4 ②新浇砼容重按26kN/m3计算, 箱底:22.0KPa,翼板:7.50 KPa。 ③模板自重(含内模、侧模及支架)以砼自重的5%计,则: 箱底:1.10KPa, 翼板:0.375 KPa。 ④施工人员、施工料具堆放、运输荷载: 2.0kPa ⑤倾倒混凝土时产生的冲击荷载: 2.0kPa

脚手架稳定性计算

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性。 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照以下公式计算 Wk=0.7μz μs ω0 其中ω0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用: ω0=0.37kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 0.74,0.74; μs -- 风荷载体型系数:取值为1.132; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为: Wk1=0.7 ×0.37×0.74×1.132=0.217kN/m2; Wk2=0.7 ×0.37×0.74×1.132=0.217kN/m2; 风荷载设计值产生的立杆段弯矩MW 分别为: Mw1=0.85 ×1.4Wk1Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; Mw2=0.85 ×1.4Wk2Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; 1. 主立杆变截面上部单立杆稳定性计算。 考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA) + MW/W ≤ [f] 立杆的轴心压力设计值:N=Nd=8.487kN; 不考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA)≤ [f] 立杆的轴心压力设计值:N=N'd= 8.991kN; 计算立杆的截面回转半径:i=1.59 cm; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得: k=1.155 ; 计算长度系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得:μ=1.5 ;

满堂脚手架荷载计算

扣件钢管楼板模板支架计算书 计算参数: 模板支架搭设高度为5.7m, 立杆的纵距 b=0.80m,立杆的横距 l=0.80m,立杆的步距 h=1.50m。 面板厚度18mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。 木方50×100mm,间距100mm,剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。 模板自重0.50kN/m2,混凝土钢筋自重24.00kN/m3,施工活荷载2.50kN/m2。 扣件计算折减系数取1.00。 图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 采用的钢管类型为48×3.5。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。 静荷载标准值 q1 = 24.000×0.180×0.800+0.500×0.800=3.856kN/m

活荷载标准值 q2 = (0.000+2.500)×0.800=2.000kN/m 面板的截面惯性矩I 和截面抵抗矩W 分别为: 本算例中,截面惯性矩I 和截面抵抗矩W 分别为: W = 80.00×1.80×1.80/6 = 43.20cm 3; I = 80.00×1.80×1.80×1.80/12 = 38.88cm 4; (1)抗弯强度计算 f = M / W < [f] 其中 f —— 面板的抗弯强度计算值(N/mm 2); M —— 面板的最大弯距(N.mm); W —— 面板的净截面抵抗矩; [f] —— 面板的抗弯强度设计值,取15.00N/mm 2; M = 0.100ql 2 其中 q —— 荷载设计值(kN/m); 经计算得到 M = 0.100×(1.20×3.856+1.40×2.000)×0.100×0.100=0.007kN.m 经计算得到面板抗弯强度计算值 f = 0.007×1000×1000/43200=0.172N/mm 2 面板的抗弯强度验算 f < [f],满足要求! (2)抗剪计算 T = 3Q/2bh < [T] 其中最大剪力 Q=0.600×(1.20×3.856+1.4×2.000)×0.100=0.446kN 截面抗剪强度计算值 T=3×446.0/(2×800.000×18.000)=0.046N/mm 2 截面抗剪强度设计值 [T]=1.40N/mm 2 抗剪强度验算 T < [T],满足要求! (3)挠度计算 v = 0.677ql 4 / 100EI < [v] = l / 250 面板最大挠度计算值 v = 0.677×3.856×1004/(100×6000×388800)=0.001mm 面板的最大挠度小于100.0/250,满足要求! 二、板底支撑钢管计算 横向支撑钢管计算 横向支撑钢管按照集中荷载作用下的连续梁计算。 集中荷载P 取木方支撑传递力。 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 支撑钢管计算简图

满堂脚手架计算方法

L --长杆总长度(m);N2 --直角扣件数(个); N3 --对接扣件数(个);

N4 --旋转扣件数(个); S --脚手板面积(m2); n --立杆总数(根) n=121; H --搭设高度(m) H=18; n1 --纵向跨度n1=10; n2 --横向跨度n2=10; h --步距(m) h=; la--立杆纵距(m) la=; lb --立杆横距(m) lb=; 长杆总长度(m) L =×18×(121+×121/× 直角扣件数(个) N2=×18/×121=3485 对接扣件数(个) N3=6=1075 旋转扣件数(个) N4=×6=322 脚手板面积(m2) S=×10×10××= 根据以上公式计算得长杆总长米;直角扣件3485个;对接扣件1075个;旋转扣件322个;脚手板。 九、脚手架的搭设要求: 1、满堂脚手架搭设在建筑物楼面上时,脚手架自重及施工荷载应在楼面设计荷载许可范围内, 否则须经验算后制定加固方案;

2、立杆搭设应符合下列规定: (1)当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m;靠边坡上方的立杆轴线到边坡的距离不应小于500mm,如下图所示: (2)立杆接长除顶层顶步外,其余各层各步接头必须采用对接扣件连接; (3)立杆顶端宜高出女儿墙上皮1m,高出檐口上皮m; 3、水平杆搭设应符合下列规定,如图所示: (1)纵向水平杆应设置在立杆内侧,其长度不宜小于3跨; (2)纵向水平杆接长宜采用对接扣件连接,也可采用搭接; (3)横向水平杆应放置在纵向水平杆上部,靠墙一端至墙装饰面距离不宜大于100mm; (4)主节点处必须设置横向水平杆; (5)杆件接头应交错布置,两根相邻杆件接头不应设置在同步或同跨内,接头位置错开距离不应小于500mm, 各接头中心至主节点的距离不宜大于纵距的1/3; (6)搭接接头的搭接长度不应小于1m,应采用不少于3个旋转扣件固定; 4、扫地杆设置应符合下列要求: (1)纵向扫地杆必须连续设置,钢管中心距地面不得大于200mm; (2)脚手架底部主节点处应设置横向扫地杆,其位置应在纵向扫地杆下方;5、扣件安装应符合下列规定:

高速公路桥梁现浇支架受力验算计算书

现浇支架受力验算计算书 1、支架受力检算 太平互通中桥箱梁断面较大,本方案计算以中桥左幅(互通匝道加宽)为例进行计算,右幅桥可参照执行。太平互通中桥整幅为3×25m等截面预应力混凝土箱形连续梁,左幅箱梁为渐变宽20.709m~23.357m(斜角),右幅箱梁宽为12m;左幅箱梁为单箱四室截面,悬臂长2.31m,梁高1.5m等高,右幅箱梁为单箱双室截面,悬臂长2m,梁高1.5m等高;箱梁跨中底板厚25cm,靠支点段加厚到50cm,跨中顶板厚25cm,靠腹板段加厚到50cm,跨中腹板厚(左幅57.8cm,右幅50cm),靠支点段加厚到(左幅80.8cm,右幅70cm)。箱梁顶宽从2607.5cm 渐变至2057.8cm。左幅箱梁顶宽从2070.9cm渐变至2335.7cm。对荷载进行计算及对其支架体系进行检算。 箱梁构造图见第2页“左幅梁体一般构造图” 1.1荷载计算 1.1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算, 经计算取q2=1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板 及其下肋条时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计 算支架立柱及替他承载构件时取1.0kPa。 ⑷q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸q5——新浇混凝土对侧模的压力。 ⑹q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺q7——支架自重,经计算支架在不同布置形式时其自重如下表所示:

支架稳定性验算方法

现浇梁板支架稳定性的验算方法摘要:结合芜湖长江大桥南岸接线立交工程G205国道高架桥现浇连续箱梁施工,介绍支架稳定性的验算方法。 关健词:现浇箱梁、施工方案、支架模板、内力验算 1 前言 随着我国目前公路建设的飞快发展,城市立交桥、高速公路桥梁对外观要求越来越高,只要条件允许,其梁板均采用现浇方法施工。目前现浇梁板支承体系主要依赖于脚手架,而脚手架的施工成本与项目的经济效益、质量、安全等诸多因素密切相关,怎样采用科学的计算方法从诸多因素中找出最佳平衡点,是体现项目的技术能力和管理水准的一个重要方面。下面就结合芜湖长江大桥南岸接线立交工程G205国道高架桥工程施工,介绍支架稳定性的验算方法。 2 工程概况 芜湖长江大桥南岸接线立交工程G205国道高架桥桥梁总长456.76米,分三联18跨。箱梁采用单箱五室钢筋混凝土斜腹板等宽度等截面连续箱梁,横桥向为双向整体式断面。箱梁梁高1.5米,单幅箱梁顶板宽21.00米,底板宽11.00米,箱梁顶、底板厚分别为0.22米、0.20米,中、边腹板厚分别为0.5米和0.3米,两侧悬臂长均为2.0米。全联仅在桥墩支点截面处设置端、中横梁,其中中横梁宽1.6米,端横梁宽1.4米,桥墩高2.2~6.1米不等。 箱梁采用φ48×3.5mm碗扣式钢管满堂支架,自过渡墩往两端逐跨全断面现浇的方法施工。 3 施工方案 3.1 地基处理 桥宽范围内有一部分是原沥青路面,不做处理直接架设支架;剩余部分先清除表面杂草和废弃垃圾等,然后用素土分层回填碾压到位;个别软弱地段抛填片石,进行加固处理后填筑素土,结构层做10cm厚二灰结石,面层浇注10cm厚C20素混凝土,并做好排水处理。3.2 支架架设、立模方法 首先进行测量放线(中心轴线和中心点法线),然后在搭设支架的带状位置用干硬性水泥砂浆精平地面,再铺上厚5cm×宽15cm的木板,最后在木板上搭设支架。支架以两桥墩(或桥台)中心连线为轴线,并垂直于中心点法线往两翼及跨两端对称搭设。竖杆纵横向间距为90cm×90cm,支架步距视架子实际高度采用120cm或60cm,利用可调下托调整支架横杆使之保持整体水平。在支架搭设过程中结合模板、横梁、纵梁厚度,通过跟踪测量调整支架高度,同时确保可调U型顶托螺旋调节幅度不超过25 cm。在支架U型顶托上沿线路纵向摆放横截面为10cm×10cm方木作为纵梁,在纵梁上横向摆放横截面为5cm×10cm、间距25cm 方木作为横梁,方木均使用东北红杉。最后在横梁上铺设模板(“宝庆”牌厚1.2cm的竹胶板),模板接头之间放置海绵双面帖,以防止因模板摆放时间过长热胀冷缩造成模板鼓起或缝隙过大。支架架设结构(见图1)。

满堂支架计算材料

新建武汉至咸宁城际铁路二标连续梁满堂支架临时结构检算资料 中国铁建 中铁十一局集团武咸城际铁路二标项目经理部 二〇一一年十一月

目录 一、项目概况 (1) 二、临时结构方案 (3) 三、支架布置图 (6) 四、支架计算书 (9) 五、相片资料 (23)

一、项目概况 1. 概况 武咸城际铁路位于湖北省南部,北连"九省通衢"武汉,南接鄂南著名的生态城市咸宁,自武汉枢纽武昌站引出,途经东湖新技术开发区、庙山经济开发区,江夏区纸纺镇、于贺站进入咸宁市境内。全线运营长度90.12km,新建正线长度77km,其中武汉市境内长51.6km,咸宁市境内长25.4km。 WXSG-2标段位于湖北省咸宁市境内,起点桩号为DK53+500,终点桩号为DK76+062,全长22.562公里。十六潭特大桥位于湖北省咸宁市甘鲁村以及咸安区经济开发区境内,在DK69+960-DK70+000处采用(40+64+40)m连续梁跨越横温路,银泉大道行车道为双向4车道,正宽约24m,与线路夹角144°。 图1 线路关系图 连续箱梁全长145.2m,计算跨径40+64+40m,为单箱单室、变高度、变截面结构。中支点处梁高5.4m,跨中2m直线段及边跨7.6m直线段处梁高均为3.00m,梁底下缘按二次抛物线变化;箱梁顶宽12.2米,箱梁底宽为变截面,中支点处为6.91m,其余按5.54m~6.150m线性变化;顶板厚度除梁端附近外均为37cm;底板厚度44~72cm,按圆曲线线性变化;腹板厚度50~70cm,按折线变化。全梁在端支点、中跨中及中支点处共设5个横隔板,横隔板设有过人门洞,供检查人员通过。 箱梁采用纵、横、竖三向预应力体系。主桥箱梁共分7个节段,其中2A0#块长27m、2A1#块长17.5m、2A2#块长27.1m、中跨合拢段2m。

桥梁支架模板计算

(六)、承台施工方案及模板计算 4、安装模板 承台桥墩均采用大块钢模板施工,设拉杆。面板采用δ=6mm厚钢板,[10 竖带间距0.3m,[14 横带间距0.5m,竖肋采用[10槽钢,间距30cm,横肋采用[14槽钢,间距100cm。横肋采用2[14a工字钢,拉杆间距150cm。拉杆采用υ20圆钢 承台尺寸:钢桁梁部分11.4×18.4×3.5m。 模板采用分块吊装组拼就位的方法施工。根据模板重量选择合适的起吊设备立模、拆模。 根据承台的纵、横轴线及设计几何尺寸进行立摸。安装前在模板表面涂刷脱模油,保证拆模顺利并且不破坏砼外观。安装模板时力求支撑稳固,以保证模板在浇筑砼过程中不致变形和移位。由于承台几何尺寸较大,模板上口用对拉杆内拉并配合支撑方木固定。承台模板与承台尺寸刚好一致,可能边角处容易出现漏浆,故模板设计时在一个平行方向的模板拼装后比承台实际尺寸宽出10cm,便于模板支护与加固。模板与模板的接头处,应采用海绵条或双面胶带堵塞,以防止漏浆。模板表面应平整,内侧线型顺直,内部尺寸符合设计要求。 模板及支撑加固牢靠后,对平面位置进行检查,符合规范要求报监理工程师签证后方能浇筑砼。 5、浇注砼 钢筋及模板安装好后,现场技术员进行自检,各个数据确认无误,然后报验监理,经监理工程师验收合格后方可浇筑砼。砼浇注前,要把模板、钢筋上的污垢清理干净。对支架、模板、钢筋和预埋件进行检查,并做好记录。 砼浇注采用商品砼。

浇筑的自由倾落高度不得超过2m,高于2 m时要用流槽配合浇筑,以免砼产生离析。砼应水平分层浇筑,并应边浇筑边振捣,浇筑砼分层厚度为30 cm左右,前后两层的间距在1.5m以上。砼的振捣使用时移动间距不得超过振捣器作用半径的1.5倍;与侧模应保持5~10cm 的距离;插入下层砼5~10cm;振捣密实后徐徐提出振捣棒;应避免振捣棒碰撞模板、钢筋及其他预埋件,造成模板变形,预埋件移位等。密实的标志是砼面停止下沉,不再冒出气泡,表面呈平坦、泛浆。 浇筑砼期间,设专人检查支撑、模板、钢筋和预埋件的稳固情况,当发现有松动、变形、移位时,应及时进行处理。砼浇筑完毕后,对砼面应及时进行修整、收浆抹平,待定浆后砼稍有硬度,再进行二次抹面。对墩柱接头处进行拉毛,露出砼中的大颗粒石子,保证墩柱与承台砼连接良好。砼浇筑完初凝后,用草毡进行覆盖养护,洒水养生。 6、养护及拆模 混凝土浇注完成后,对混凝土裸露面及时进行修整、抹平,待定浆后再抹第二便并压光或拉毛。收浆后洒水覆盖养生不少于7天,每天撒水的次数以能保持混凝土表面经常处于湿润状态为度,派专人上水养生。 混凝土达到规定强度后拆除模板,确保拆除时不损伤表面及棱角。模板拆除后,应将模板表面灰浆、污垢清理干净,并维修整理,在模板上涂抹脱模剂,等待下次使用。拆除后应对现场进行及时清理,模板堆放整齐。 7、基坑回填 拆除侧模并经监理工程师验收合格签认后,方可进行基坑回填,回填时应分层进行 8、承台模板计算

桥梁满堂支架计算

满堂支架计算 碗扣式钢管支架门架式钢管支架 扣件式满堂支架(后图为斜腿钢构)

1立杆及底托 1.1立杆强度及稳定性(通过模板下传荷载) 由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。可采用此值直接计算立杆的强度和稳定性。 立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。以下按Ф48*3.0进行计算,截面A=424mm2。 横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。 立杆长细比:1350/15.95=84.64 按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。 强度验算:31150/424=73.47N/mm2=73.47MPa,满足。 稳定验算:31150/(0.656875*424)=111.82MPa,满足。1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》) 支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。 立杆荷载计算:

单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。 单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。 单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。 单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。 单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。 风荷载:W K=0.7u z*u s*w0 风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算); 挡风系数ψ=1.2*An/Aw。1.2为节点增大系数;An为挡风面积(An=(L+h+0.325*L*h)*d=(0.6+0.9+0.325*0.6*0.9)*0.048=0.08m2, L为立杆的纵距,h为横杆的步距,0.325为每平方米剪刀撑的长度,d为钢管的外径);Aw为迎风面积(Aw=L*h=0.6*0.9=0.54m2,L为立杆的纵距,h为横杆的步距)。故ψ=1.2*0.08/0.84=0.114); 基本风压w0查《建筑结构荷载规范》D.4表可取0.30KN/m2(根据地区情况,浙江杭州)。

满堂支架设计计算实例

满堂支架设计计算(一)1.《京承高速公路—陡子峪大桥工程施工图》 2. 《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 (0#台—1#墩)出京线 3.目录《公路桥涵施工技术规范》JTJ041-2000 4. 《扣件式钢管脚手架安全技术规范》JGJ130-2001 5. 《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》1 一、设计依据.......................................................................................二、地基容许承载力1 二、地基容许承载力..............................................................................根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力三、箱梁砼自重荷载分布 (1) 较好。四、模板、支架、枕木等自重及施工荷载 (2) 为了保证地基承载力不小于12t/ 五、支架受力计算㎡,需要进行地基处理。地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平、立杆稳定计算 (15) 板震动器)夯实,地基面应平整,夯实后铺设5cm2、立杆扣件式钢管强度计算……………………………………………………6 石子,继续

压实,并进行承载力检测。整平地基时应注意做好排水设施系统,防止雨水浸泡地基,、纵横向水平钢管承载力...............................................................36 导致地基承载力下降、基础发生沉降。钢管支架和模板铺设好后,按6 4、地基承载力的检算.....................................................................120%设计荷载进行预压,避免不均匀沉降。、底模、分配梁计算 (57) 三、箱梁砼自重荷载分布12 、预拱度计算 (6) 根据设计图纸,箱梁单重为819t。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段 箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱 梁腹板等厚段下方,纵桥向间距最 d=大的立杆受力最不利。根据立杆纵桥向布置,受力最不利立杆纵向间距取为一、设计依据 (0.9+1.2)/2=1.05m。本计算书主要检算该范围箱梁和支架受力。载均匀传至地基。 1、底模、外模面积共:15.16×四种形式,横向间距为30=454.80m 钢管支架立杆纵向间距为30cm、60cm、90cm、120cm2共重:120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。

相关文档
最新文档