X射线衍射分析

X射线衍射分析
X射线衍射分析

西安石油大学

X射线衍射分析技术

院(系):油气资源学院

姓名:郝磊

学号:1108240808

专业:矿物学、岩石学、矿床学

指导教师:赵永刚

X 射线衍射分析技术

摘要:1895年伦琴发现X 射线,X 射线又称伦琴射线。德国科学家劳厄于1912年发现了X 射线衍射现象,并导出了劳厄晶体衍射公式。紧接着,英国物理学家布拉格父子又将此衍射关系用简单的布拉格定律表示,使之易于接受。到本世纪四、五十年代,X 射线衍射的原理、方法及在其他各方面的应用虽已建立,其应用领域已遍及物理、化学、地质学、生命科学、工程及材料科学等各领域,在材料科学和工程方面的贡献尤为重要、显著,本文简单介绍了X 射线的研究现状,原理,设备,方法以及应用。

关键词:x 射线;衍射;原理;方法;应用

1 国内外研究概况

1.1X 衍射分析历史

1895年伦琴发现具有特别强的穿透力的X 射线。1912年德国物理学家劳埃发现X 射线通过晶体时产生衍射现象,证明了X 射线的波动性和晶体内部结构的周期性1912年小布拉格提出著名的布拉格方程1913年老布拉格设计出第一台X 射线分光计,并发现了特征X 射线

1.2

X 射线的产生

灯丝中发出的电子达到一定的能量,电子受高压电场的作用以高速轰击靶面,会把靶面材料中的K 层电子空出,处于激发态,其它层的电子跃入,能量降低,发出X 射线。波长范围0.05 ~ 0.25 nm ,穿透力强。X 射线管:阳极靶+阴极灯丝常用Cu 、Cr 、Fe 、Ni 等

热阴极X 射线管示意图

X 射线衍射技术是从劳仑在1912年发现了晶体能衍射X

射线,由其衍射的方

式揭露出晶体的结构而开始的。起初X射线衍射系单纯用来测定晶体结构,现在这种方法已能用来解决像化学分析、应力测量、相平衡的研究等各式各样的向题。

五十年代以前的X射线衍射分析,绝大部分是利用底片来记录衍射线的。但近年来,用各种辐射探测器(即计数器)来进行记录已日趋普遍。目前,X射线衍射仪已广泛应用于科研单位及实验室,业在许多领域中取代了照相法。由于X衍射仪具有操作简便、速度快、费时少、准确度高等优点,所以它是进行晶体结构分析的主要设备。

半个多世纪以来,X 射线衍射定量相分析从直接对比法到内标、外标参比物质的使用,从有标样分析到无标样分析,有了很大的发展。尤其是以Rietveld 法为代表的全粉末图拟合技术的运用,更促使定量相分析技术发生着深刻的变化。然而,由于传统研究方式的束缚,影响了理论上的进一步拓展和深化,从方法的构作和应用,到方法的评价和分类等,都暴露出不少问题。

近年来,利用粉末衍射数据测定未知结构的方法获得了很大的成功,这种方法的关键在于正确地对粉末衍射图谱进行分峰,确定相应于每一个面指数(hkl)的衍射强度,再利用单晶结构分析方法测定晶体结构。从复杂的氧化物到金属化合物都可利用此方法测定晶体结构。

晶体结构测定还有一些经验方法,如同构型法、傅里叶差值法和尝试法等。对于较为复杂的晶体结构,人工尝试往往受到主观因素和计算量大的限制,存在着可行的模型被忽略的可能性。目前计算机技术在材料相关系、晶体结构研究和新材料探索中的应用越来越广泛,其中计算机模拟法是对待测的晶体结构,先给定一个随机的模型,根据设定的某一判据,指导计算机沿正确的方向寻找结构中的原子位置,以获得初略结构,继而可采用差值傅里叶合成和立特沃尔德法修正结构。以衍射强度剩差最小为判据的蒙特-卡洛(Monte-Carlo)法、以体系能量最低为判据的能量最小法以及模拟退火法和分子动力学模拟法等都属于粉末衍射晶体结构测定的计算机模拟法。

目前,X射线衍射技术正在向着高度计算机化的方向发展。如实验设备及实验过程的全自动化,数据分析的计算程序化,衍射花样和衍射象的计算机模拟。由于工亮度及具有特定时间结构X射线源和高效探测系统的出现,使得瞬时及动态的观察、研究成为可能,如研究某些化学反应过程,物质的破坏过程。还可以进行随时间变化现象的实时观察,如晶体生长过程,形变在结晶过程,相变过程,晶体缺陷的运动和交互作用等。X射线衍射学还用于研究物质有超高压,极低温,强电,磁场。冲击波等极端环境下的组织、结构变化衍射效应。利用高亮度X射线源及新型探测设备研究生物组织的结构,如肌肉的伸缩、运动,活的细胞结构,神经系统的组织、

结构和功能等。这些样品如放在电子显微镜内将不能承受其高真空环境,因而脱水,变质,死亡。利用高相干性的同步辐射,特别是X射线激光器的建成后,可以建立X射线全息照相术,得到物质内部的三维图像,有利于测定复杂的晶体结构,如果晶体内部的缺陷不严重,则相角问题将不存在,还可以直接观察晶体中的缺陷。X 射线衍射技术还在不断发展,应用领域还在不断扩大。

2X射线衍射的基本原理

衍射:光线照射到物体边沿后通过散射继续在空间发射的现象。由于干涉的存在,产生不同的衍射花样,可用于分析晶体的性质。必须事先建立X射线衍射的方向和强度与晶体结构之间的对应关系

由于X射线是波长在100A~0.01A之间的一种电磁辐射,常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的天然衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。

2.1 X射线衍射方向

衍射方向实际上就是衍射条件问题,可用布拉格方程描述

选择反射

只有当l、q和d三者之间满足布拉格方程时才能发生反射

产生衍射的极限条件

能够被晶体衍射的电磁波的波长必须小于参加反射的晶体中最大面

间距的2倍(l < 2d)

当X射线的波长一定时,晶体中有可能参加反射的晶面族也是有限

的,必须满足d > l/2

衍射级数

n称为衍射级数

n = 1称为一级衍射,n = 2称为二级衍射

当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差(△)等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。△= 0的衍射叫零级衍射,△=λ的衍射叫一级衍射,△= nλ的衍射叫n级衍射。n不同,衍射方向也不同。

在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可

以得到晶体的点阵结构、晶胞大小和形状等信息。

晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。空间点阵可以看成是互不平行的三组直线点阵的组合,也可以看作是由互相平行且间距相等的一系列平面点阵所组成。劳厄和布拉格就是分别从这两个角度出发,研究衍射方向与晶胞参数之间的关系,从而提出了著名的劳厄方程和布拉格方程。

伦琴发现X射线之后,1912年德国物理学家劳厄首先根据X射线的波长和晶体空间点阵的各共振体间距的量级,理论预见到X射线与晶体相遇会产生衍射现象,并且他成功地验证了这一预见,并由此推出了著名的劳厄定律,其中h、k、l = 0、±1、±2等。

a ( cosα- cosα0 ) = hλ

b ( cosβ- cosβ0 ) = kλ

c ( co sγ- cosγ0 ) = lλ

劳厄等的重大发现引起了英国物理学家布拉格父子的关注,此后不久布拉格父子在劳厄试验的基础上,导出了著名的布拉格定律,其中,θ称为布拉格角或半衍射角,这一定律表明了X 射线在晶体中产生衍射的条件。

2d h·k·l·sinθnh·nk·nl·= nλ

晶体X射线衍射实验的成功,一方面揭示了X射线的本质,说明它和普通光波一样,都是一种电磁波,只是它的波长较短而已;另一方面证实了晶体构造的点阵理论,解决了自然科学中的两个重大课题,更重要的是劳厄、布拉格等人的发现打开了进入物质微观世界的大门,提供了直接分析晶体微观结构的锐利武器,开辟了晶体结构X射线分析的新领域。奠定了X射线衍射学的基础。

2.2X射线分析应用

布拉格方程把晶体的周期性的特点d、X射线的本质l与衍射规律q结合起来,利用衍射实验只要知道其中两个就可以计算出第三个。

已知l,测定q ,计算d可以确定晶体的周期结构——晶体结构分析(XRD)已知d,测定q ,计算出l,可以研究产生X射线特征波长,从而确定物质是由何种元素组成的,含量多少——X射线波谱分析(XRF)

3仪器介绍

3.1衍射仪的组成

X光管、样品台、测角仪、检测器

日本理学公司制造的D/ max-ⅢA型X衍射仪。该仪器负荷为3千瓦,稳定度为士0.03%。它主要由X射线发生器、测角仪、记录仪和微处理机四部分组成。

图1 D/ max-ⅢA型X衍射仪

该衍射仪的特点是,测角仪通过微处理机控制;通常用硬件形式进行的测量与操作转变为软件控制下的侧量和操作,所以操作简便,数据处理功能多样化。如能自动进行积分强度运算,韭通过数字打印机打出数值;样品测定可白动完成(先将

需用的实验条件以数码形式编成程序,然后程序起动。测量程序可长期储存),也可以用手控操作完成。

X射线发生器主要由控制单元、高压变压器箱和X管三部分组成。高压变压器箱通过控制单元供给X管足够稳定的高压,从而使X光管发肘出强而稳定的X射线。高压变压器和X管是用高压电缆连接的。

X射线管是一个封闭式高真空二极管。从阳极发射的高速电子流,在管内高压电场作用下进一步加速而撞击阳极(靶面)时,就产生了X 射线。阳极材料不同,特征X射线的波长也不同。结构分析中最常用的K线,是由电子轰击原子最内层的K 层电子后,L层电子跃人时所辐射出的。根据被分析样品的不同材质选择不同的阳极。如分析钢铁样品时,一般选甩Co靶。

图2是X射线衍射仪的中心部分—测角仪的示意图。D为平板试样,它安装在试样台H上,试样台可围绕垂宜于图面的轴O旋转。S为X射线源。由射线源射出的发散X射线,照射试样后即形成收敛的衍射光束,它在焦点F处聚集后射进计数管C中。

图2 测角仪示意图

G.测角仪圆S. X射线源 D.试样H.试样台

F.接受狭缝 C.计数管 E.支架K.刻度尺

F处有一狭缝称为接收狭缝,它与计数管共同安装在可围绕轴O旋转的支架E 上,其角位置2θ可从刻度尺K上读出。计数管与样品绕同一轴旋转,转速为2:1 。入射的X光照射到分析样品上,样品产生衍射,被闪烁计数器逐点地接收下来,变为脉冲信号,通过脉高分析器去掉噪音后,送到记录部分,以显示出衍射强度。

测角仪除进行常规的连续扫描外,还可进行阶梯扫描及程序扫描。

本设备还配有弯曲石墨晶体单色器附件。单色器放在接收狭缝前,使X衍射单

色化后进人探测器,从而获得背景极浅,衍射线条清晰的图相。

4样品制备方法

薄膜样品的制备

-- 需要注意薄膜的厚度

-- 一般适合比较厚的薄膜

-- 要求样品具有比较大的面积,薄膜比较平整以及表面粗糙度要小

特殊样品的制备

-- 对于样品量比较少的粉体样品

-- 分散在胶带纸上黏结或分散在石蜡油中,形成石蜡糊

-- 分散均匀且每次分散量控制相同

在X射线衍射法中, 一般制备粉末样品比较简单。但对微量样品, 如还猫经过研磨和制样等操作手续, 会使样品进一步损失, 这就给制样带来了困难。为了达到以最少粉末获褂足够衍射强度的要求, 为此, 对微量粉末的制样法进行了试验, 并取得了良好的效果。

1载体选择

如果粉末样品甚少, 不能使用常规的样品板而采用将粉末样品均匀地撒在载体上形成薄膜层。而载体具有一定强度的X射线散射。故载体选择不当, 所获得衍射线的峰背比很小,可造成分析上差错。因此, 选择理想的载体是十分重要的。我们曾试验了各种载体, 用CU ka辐射扫描得到的衍射图谱。从中可看到酷纤维素滤膜虽然其背底高于其它三种载体, 但无尖锐的衍射峰出现。

从X射线衍射图谱和表面形貌来看, 虽然醋纤维素滤膜的散射强度和微孔均匀性不如银箔滤上, 但它以材质薄、高弹性, 过滤迅速, 吸附量小, 无介质脱落以及价格低廉等特点,而被采用为载体。

2制样法

我们这里介绍的方法大多数实验室都有, 设备见图3

图3 制样装置示意图

它由直径为35毫米聚碳树脂过流杯, 玻璃瓶和抽气球组成。将分析粉末放在小烧杯中加入蒸馏水(或6N 硫酸, 甲苯和石油醚等)处理。摇动使粉末分散, 过滤, 粉末分散沉淀在滤膜上, 千燥后供X射线分析用。

5应用领域

X射线衍射仪在岩石矿物学中的应用地壳由矿物、岩石组成,对其成分、结构和性质等的分析是矿物学、岩石学的重要研究内容。X射线衍射技术特别是粉晶X 射线衍射技术自发明以来就被应用于矿物、岩石研究,广泛应用于矿物的定性、定量分析。粉晶X射线衍射提供的丰富信息对于了解矿物成因,探讨成矿、造岩作用以及矿物岩石的应用研究都具有重要意义。粘土矿物的物相定量分析在地质研究中有着广泛的应用。一般的化学分析方法只能给出试样中各种化学元素的含量,很难给出各种物质成分(物相) 的含量。特别是对于含有相同元素组合,但是成分不同的试样,用X射线衍射相定量分析方法测定各物相的含量是一种较好的方法。每种物质成分都有各自特征的衍射图谱,而且衍射强度与其含量成正比(不是严格成立的) 。在混合物中,每一种物质成分的衍射图谱与其他物质成分的存在与否无关。也就是说试样的衍射图谱是试样中各组成物质的衍射图谱组成的,这就是X射线衍射做相定量分析的基础。相定量分析是X射线衍射技术的重要应用,几十年来发展的方法很多,但是由于这些方法大多数要求有已知含量的标样来做计算的标准,例如: 直接分析法、K值法等,而测量结果也不很精确。由于大部分地质样品很难找到标样,所以我们选用了无标样的定量分析方法来解决地质样品的相定量问题,虽然方法的精度不高,但足以满足地质研究的要求。

5.1X射线衍射仪法

X射线衍射分析可给出材料中物相的结构及元素的状态信息

XRD物相定性分析

-- 利用XRD衍射角位置及强度,鉴定未知样品是由哪些物相所组成

-- 对比粉末衍射标准联合会(JCPDS)出版的粉末衍射卡片(PDF卡片)

-- 看“三强线”

每张PDF 卡片列出一种单相物质(包括元素单质、合金、无机化合物、矿物、有机化合物和金属有机化合物)的多晶X 射线衍射数据。PDF 卡片号51-0939,并标出衍射数据的质量(图中为C),分别是:(高质量实测数据),C(根据实测的单晶体结构数据计算而得的理论数据),I(衍射图已指标化,数据可靠),Q(数据质量符合要求),D(已被质量更高的卡片所替代)。列出物质的分子式,英文名称和有关的参考文献。列出化合物的CA(Chemical Abstracts)序列号。列出物质的结晶学数据,包括:分子量,晶胞体积,理论和实测比重,所属空间群,晶胞参数等。列出了有关的实验数据,包括:同样质量的样品最强衍射线与a-Al 2O3 (刚玉)最强衍射线的强度比,实验中所用的X射线种类和波长,实验中是否使用了单色器和滤色片等等。列出粉末衍射的棒图,衍射峰角度(或d值),相对强度,衍射指标等。PDF 卡

片是进行物相鉴定的重要依据。有光盘版发行,可根据实测的多晶X射线衍射图谱自动进行物相检索。

X射线衍射仪(XRD)以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。衍射仪由X射线发生器、测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的实验装置。现代X射线衍射仪还配有控制操作和运行软件的计算机系统。

X射线衍射仪的成像原理与聚焦法相同,但记录方式及相应获得的衍射花样不同。衍射仪采用具有一定发散度的入射线,也用“同一圆周上的同弧圆周角相等”的原理聚焦,不同的是其聚焦圆半径随2θ的变化而变化。

衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。

X射线衍射仪的基本工作原理:X射线衍射仪是由高压发生器提供一个给定的高压到X射线管两级,阴极产生的阴极电子流碰撞到阳极时产生X射线,X射线经梭拉狭缝S1、发散狭缝F S后照射到样品表面,衍射线经散射狭缝J S、梭拉狭缝S2、接收狭缝F SS到达石墨单色器,然后进入检测器,经放大并转换为电信号,经计算机处理后为数字信息。测量过程中,样品台载着样品按照一定的步径和速度转过一定的角度θ(掠射角) ,检测器伴随着转过衍射角2θ,这种驱动方式称为θ- 2θ方式。

5.2物相分析方法

矿物的X射线定性相分析指的是用粉晶X射线衍射数据对样品中存在的矿物相进行鉴别。岩石往往由多种矿物组成,岩石学研究经常需要鉴定岩石中的矿物组成,特别是含量较少的矿物组分,因此矿物定性分析是粉晶X射线衍射在矿物岩石学研究中的最主要应用。此外,由于天然矿物成因、成分复杂,同族矿物的不同矿物种以及同种矿物的不同变体往往很难用其他方法区分,粉晶X射线衍射便成为最有效的分析方法。矿物粉晶X射线衍射数据库的不断丰富以及计算机检索技术的发展,使矿物的X射线定性相分析更加便捷,而大功率X射线源的出现则使微量矿物的发现与鉴定成为可能。很多粉晶X射线定量相分析方法,如直接分析法、内标法、基体清洗法(K值法) 、增量法(冲稀法) 、无标样法等,都已被应用于矿物的定量相分析中,但由于矿物标样难以获得以及对样品和实验要求高等原因,相对于定性相分析,矿物的粉晶X射线定量相分析应用较少。最近的应用多集中于岩石和土壤中的粘土矿物定量分析方面,但由于粘土矿物成分、结构易变,择优取向明显,分析结果误差较大。

晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶

体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相花样的强度正比于各组分存在的量(需要做吸收校正者除外) ,就可对各种组分进行定量分析。

多晶体物质其结构和组成元素各不相同,它们的衍射花样在线条数目、角度位置、强度上就显现出差异,衍射花样与多晶体的结构和组成(如原子或离子的种类和位置分布、晶胞形状和大小等) 有关。一种物相有自己独特的一组衍射线条(衍射谱) ,反之,不同的衍射谱代表着不同的物相,若多种物相混合成一个试样,则其衍射谱就是其中各个物相衍射谱叠加而成的复合衍射谱,从衍射谱中可直接算得面间距d值和测量得到强度I值。

物相的X射线衍射谱中,各衍射线条的2θ角度位置及衍射强度会随所用K

α辐射波长不同而变,直接使用衍射图谱对比分析并不方便。故而总是将衍射线的2θ角按布拉格定律2d sinθ=λ转换成d值,而d值与相应晶面指数hkl则巧妙地用已知晶体结构的标准数据文件卡片关联起来。强度I也不需用强度公式直接计算,而是巧妙地转换成百分强度,即衍射谱线中最强线的强度I1 = 100,其他线条强度则为I / I1 ×100,这样,d值及I1/ I2 ×100便成为定性相分析中常用的两个主要参数。

目前常用衍射仪法得到衍射图谱,一般运用计算机软件进行分物相分析,常用的分析软件有:search match,high score,jade,search match可以实现和原始实验数据的直接对接,可以自动或手动标定衍射峰的位置,对于一般的图都能很好地应付。而且有几个小工具使用很方便。如放大功能、十字定位线、坐标指示按钮、网格线条等。最重要的是它有自动检索功能,可以帮你很方便地检索出你要找的物相,也可以进行各种限定以缩小检索范围。如果你对于你的材料较为熟悉的话,对于一张含有4、5相的图谱,检索也就3 min,效率很高,而且它还有自动生成实验报告的功能high score,几乎具备search match 中所有的功能,而且它比search match更实用。它可以调用的数据格式更多,窗口设置更人性化,用户可以自己选择; 谱线位置的显示方式,可以让你更直接地看到检索的情况,手动加峰或减峰更加方便; 可以对衍射图进行平滑等操作,视图更漂亮;可以更改原始数据的步长、起始角度等参数; 可以进行0点的校正;可以对峰的外形进行校正;可以进行半定量分析;物相检索可以编写批处理命令,对于同一系列的衍射图,一键搞定jade 和high score 相比自动检索功能差,但它有比之更多的功能。它可以进行衍射峰的指标化,进行

晶格参数的计算,根据标样对晶格参数进行校正,轻松计算峰的面积、质心。出图更加方便,你可以在图上进行更加随意的编辑。

5.3具体矿物实例分析步骤

以墨江金矿三、四期矿样的物质成分研究进行说明X衍射的工作方法和分析步骤,具体是:

(1) 矿样特征。由于墨江三、四期矿样均为褐色砂状矿样,以氧化物为主,用水析分离后表明三期矿石风化程度较大。

(2) 光谱分析。对矿样的平均样品进行光谱分析,确定矿样中大致上所含元素种类。光谱分析结果表明硅、铝、镁、铁含量较高,同时还有其他元素少量或微量。

(3) 化学分析。对含量较高的元素进行化学分析,得出元素在矿样中的具体含量。化学分析结果表明矿样的主要元素为二氧化硅,次要元素为铁、氧化铝和氧化镁。三期矿石含硫较低,其他金属元素含量也不相同。其中三期含金高含银低。

(4) X衍射分析。挑选矿物和单矿物进行XRD实验分析。使用仪器为日本理学3015升级型X射线衍射仪。XRD分析,按照矿样的外貌特征和颜色特征方面进行挑选,务求将每种单矿物都筛选出来,之后进行对单矿物的XRD试验,得出衍射图谱。对水析细部分矿样进行XRD试验,得出水析细部分矿样的衍射图谱。对平均矿样分析,得出平均矿样的衍射图谱。

对得出的衍射图谱进行分析,运用电脑分析,确定各种矿物组成。

(5) 三、四期矿物样品组成以及含量。根据挑选矿物和单矿物的XRD的分析结果,进行定性分析,墨江金矿三期矿物组成为:石英、绿泥石、含铬绿泥石、滑石、高岭石等;墨江金矿四期矿物组成为:石英、滑石、高岭石、绿泥石、黄铁矿、针铁矿等。

根据衍射图谱和化学分析结果进行矿样的定量分析,因为依据衍射图谱对物质定量是依据他们最强峰的高度或面积进行计算。根据物质的组成元素在物质中所占的含量,以及衍射图谱中各物质的最强峰高度和面积进行确定各物质在矿样中所占含量的多少。得出墨江金矿三期矿样中石英占54.39%,高岭石占7.18%,绿泥石占10.32%,伊利石占2.53%,滑石占12.84%,针铁矿占9.21%等;四期矿样中石英占48.85%,高岭石占5.87%,绿泥石占2.43%,滑石占22.71%,针铁矿占11.13%等。

结果表明三、四期矿石均是以石英和氧化矿物为主体,伴生有少量硫化物的混合型矿床。矿物组成大致相同,但风化程度不同,矿物种类和含量有明显的差异。

应用X射线衍射测量技术进行矿物物相定性分析和定量分析是目前X衍射仪的主要工作,虽然X衍射定量分析只能称为半定量的方法,而且局限性较大,但足以满足地质、矿岩方面的需求。

参考文献:

[1] JJG629 - 1989,多晶X射线衍射仪[ S].

[2] Hutton A C,Mandile A J.Journal ofAfrican Earth Sciences [ J ].1994,23 (1) : 61.

[3] KahleM,KleberM,Jahn R. Geodernla [ J ]. 2002,109 (3 -4) : 191.

[4] 南京大学地质学系矿物岩石学教研室. 粉晶X射线物相分析[M ]. 北京: 地质出版社,1980.

[5] 刘粤惠,刘平安.X射线衍射分析原理与应用[M ]. 北京:化学工业出版社,2003.

[6] 吴. X射线衍射及应用[ J ]. 沈阳大学学报(自然科学版) ,1995 (4) : 7~12.

[7] 郭灵虹,钟辉. X射线及在冶金和材料科学中的应用[ J ]. 四川有色金属,1994 (4) : 19~22.

[8] 潘道皑,赵成大,郑载兴. 物质结构[M ]. 北京:高等教育出版社,1998. 570~573.

[9] von LaueM,FriedrichW,Knipp ing P. Mthchener Sitzungsberichte[ J ]. 1912,303; Ann. Physik,1913,41: 971.

[10] BraggW L,Proc. Camb. Phil. Soc. [ J ] ,1913,17: 43.

[11] 南京大学地质学系矿物岩石教研室. 粉晶X射线物相分析[M ]. 北京:地质出版社,1980. 103~208.

[12] 刘仕子. 一种实用的X 射线衍射多物相无标定量分析法[J ] . 岩石矿物学杂志. 1994 ,13 (3) :268.

[13] 林树智,张喜章. 普适X 射线无标定量相分析方法[J ] . 金属学报. 1988 ,24 :B53.

[14] Alexander L E. Basic Aspects of X2Ray Absorption in Quantitative Diffraction Analysis of Powder Mixtures[J ] . A nal Chem. 1948 ,20 :886.

[15] Chung F H. Quantitative Interpretation of X2Ray Diffraction Patterns of Mixtures Ⅰ. Matrix2Flushing Method for Quantitative Multicomponent Analysis [J ] .J A ppl Cryst . 1974 ,7 :519.

[16] 吴.X射线衍射及应用[ J ]. 沈阳大学学报(自然科学版) ,1995 (4) : 7~12。

[17] 南京大学地质学系矿物岩石教研室.粉晶X射线物相分析[M ].北京:地质出版社,1980. 103~208。

2017X射线衍射及物相分析实验报告写法

请将以下内容手写或打印在中原工学院实验报告纸上。 实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名 综合实验X射线衍射仪的使用及物相分析 实验时间,地点 一、实验目的 1.了解x射线衍射仪的构造及使用方法; 2.熟悉x射线衍射仪对样品制备的要求; 3.学会对x射线衍射仪的衍射结果进行简单物相分析。 二、实验原理 (X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。)三、实验设备 Ultima IV型变温全自动组合粉末多晶X射线衍射仪。 (以下为参考内容) X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1 热电子密封式X射线管的示意图 图1是目前常用的热电子密封式X射线管的示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。x射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。一般的照相多采用点焦点,而线焦点则多用在衍射仪上。 图2 在与靶面成60角的方向上接收X射线束的示意图 自动化衍射仪采用微计算机进行程序的自动控制。图3为日本生产的Ultima IV型变温全自动组合粉末多晶X射线衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进人脉冲高度分析器。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经徽处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样(θ)及探测器(2θ)进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。 物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。

X射线衍射分析法原理概述

第十四章 X射线衍射分析法 14.1概述 X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ是入射波长的整数倍时,即 2dsinθ=nλ (n为整数) 两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X 射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途。在此主要介绍其在物相分析等方面的应用。 14.1.1 物相定性分析 1.基本原理 组成物质的各种相都具有各自特定的晶体结构(点阵类型、晶胞形状与大小及各自的结构基元等),因而具有各自的X射线衍射花样特征(衍射线位置与强度)。对于多相物质,其衍射花样则由其各组成相的衍射花样简单叠加而成。由此可知,物质的X射线衍射花样特征就是分析物质相组成的“指纹脚印”。制备各种标准单相物质的衍射花样并使之规范化(1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片),将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相,这就是物相定性分析的基本原理与方法。 2.物相定性分析的基本步骤 (1) 制备待分析物质样品,用衍射仪获得样品衍射花样。 (2) 确定各衍射线条d值及相对强度I/I1值(Il为最强线强度)。 (3) 检索PDF卡片。 PDF卡片检索有三种方式: 1)检索纸纸卡片 物相均为未知时,使用数值索引。将各线条d值按强度递减顺序排列;按三强线条d1、d2、d3的d—I/I1数据查数值索引;查到吻合的条目后,核对八强线的d—I/I1值;当八强线基本符合时,则按卡片编号取出PDF卡片。若按d1、d2、d3顺序查找不到相应条目,则可将d1、d2、d3按不同顺序排列查找。查找索引时,d值可有一定误差范围:一般允许

X射线衍射的物相分析

X射线衍射的物相分析 一、实验目的: (1)熟悉Philips X射线衍射仪的基本结构和工作原理; (2)学会粉末样品的制样及基本的测试过程; (3)掌握利用X射线衍射谱图进行物相分析的方法; 二、实验仪器 (1)制样:未知粉末样品、药匙、酒精(用于擦拭研钵)、研钵、专用进样片; (2)测试:Philips X'pert X射线衍射仪; 三、实验原理 当一束单色x 射线电磁波照射晶体时,晶体中原子周围的电子受x 射线周期变化的电场作用而振动,从而使每个电子都变为发射球面电磁波的次生波源。所发射球面波的频率、与入射的x 射线相一致。基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉而 叠加,称之为相干散射或衍射。 四、实验条件的选择 (1)用于粉末晶体衍射的射线波长一般为0.5~2.5?,本实验中使用的为Cu靶; (2)滤波片选用Ni,因为滤波片是用于吸收Cu的Kβ线,而Ni的吸收限位于Cu的Kα与Kβ之间且靠近Kα线; (3)狭缝参数的选择:在X射线衍射仪的光路中有五个狭缝:梭拉狭缝(两只)、发散狭缝、散射狭缝、接受狭缝。 a. 梭拉狭缝是用来限制X光垂直发散度的,梭拉狭缝发散度的大小对强度和分辨率都有 很大影响,两只狭缝分别位于X光管之后和探测器前。 b. 发散狭缝是用来限制样品表面初级X射线水发散度的,加大狭缝,分辨率降低但强度 增加,可根据实际所需的测试要求进行调解;

c. 散射狭缝用来减少非相干散射及本底等因素造成的背景,提高峰背比,它与发散狭缝配对使用且角度相同; d. 接受狭缝是用来限定进入探测器的X 衍射线的。它位于衍射线的焦点。测量时如果主要为了提高分辨率,应该选择较小的接受狭缝。如果为了提高衍射强度,则应加大接受狭缝。 五、实验操作 1.样品制备: A .测试对于样品粒径的大小并没有严格的要求,但是粒径过大或者不均匀会谱图中锋的相对高度发生变化,导致在对比所得谱图与PDF 标准卡时需要对衍射峰进行大量的排列组合。 B. 测试样品在装入样品板之前必须用毛玻璃将待测表面打磨至完全光滑,并且保证样品的表面与样品板相平。 2.样品扫描 将样品板装入样品台,将防护罩关闭,设定好控制程序,开始扫描,扫描期间面板“shutter open ”指示灯亮起,此时不可以强行打开防护罩,否则会导致仪器强行停止损坏X 光管; 实验中X 光管的高压值设定为4Kv ,电流35mA ;扫描的起始角为10o ,终止角为80o (2θ) 3.结果保存 扫描完成后,当“shutter open ”指示灯熄灭时,确认防护罩解锁后方可打开,取出样品。将数据在highscore 软件中进行处理,软件可以按照要求标示出图中的峰位置,再用软件去除K β线,标示出各个锋的相对高度及d 值,打印结果。 4.利用标准PDF 卡片对未知粉末进行物相分析 将所得的谱图与标准卡片进行对比,有时可能由于峰的相对强度有偏差导致在查找时要对三强线的顺序作出相应调整。d 值的测量受到仪器状态及其他外在因素的影响有一定偏差,这也给查表过程带来了一定难度。 六、实验结果分析 实验中测得未知粉末样品的三强线(three strong lines )分别是 3.34525 ?、4.25729 ?、1.81808 ?,在标准卡片中查找,由于实验条件等因素限制使得测试结果与标准值有一定偏差,最终确定未知样品粉末为二氧化硅,即合成高纯石英( silicon oxide quartz high-synetic ),PDF 编号为89-3433,标准值的三强线分别为3.40 ?、4.34 ?、2.01 ?。 未知粉末的物理性质:白色固体粉末,无特殊光泽,粒径较小,研磨时发现硬度较大,无特殊气味,初步测试不溶于水和酒精溶液。 d 值偏差计算: 0000 3.34525 3.40 100 1.613.40 -?=

X射线衍射分析

X射线衍射分析 百科内容来自于: 《近代X射线多晶衍射》 X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。 简介 X射线 衍射X射线满足布拉格方程:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶

体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础。 X射线衍射在金属学中的应用X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相;而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe 硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。 应用 物相分析 是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。 精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。 取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。 晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。

X射线衍射图谱的分析

X射线衍射图谱的分析 ---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 B 衍射峰的强度 C 衍射峰的峰形 E 衍射测试实验条件选择 F 其他相关知识 ----------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 1、衍射方向取决于晶体的周期或晶胞的大小。 2、X射线入射到结晶物质上,产生衍射的充分必要条件是 3、第一个公式确定了衍射方向。在一定的实验条件下衍射方向取决于晶面间距d。而d是晶胞参数的函数, ;第二个公式示出衍射强度与结构因子F(hkl)的关系,衍射强度正比于F(hkl)模的平方, 4、F(hkl)的数值取决于物质的结构,即晶胞中原子的种类、数目和排列方式,因此决定X射线衍射谱中衍射方向和衍射强度的 一套d和I的数值是与一个确定的结构相对应的。这就是说,任何一个物相都有一套d-I特征值,两种不同物相的结构稍有差异其衍射谱中的d和I将有区别。这就是应用X射线衍射分析和鉴定物相的依据。 5、若某一种物质包含有多种物相时,每个物相产生的衍射将独立存在,互不相干。该物质衍射实验的结果是各个单相衍射图 谱的简单叠加。因此应用X射线衍射可以对多种物相共存的体系进行全分析。 6、一种物相衍射谱中的(是衍射图谱中最强峰的强度值) 的数值取决于该物质的组成与结构,其中称为相 对强度。当两个样品的数值都对应相等时,这两个样品就是组成与结构相同的同一种物相。因此,当一未知物相的样品其衍射谱上的的数值与某一已知物相M的数据相合时,即可认为未知物即是M相。由此看来,物相分析就是将未知物的衍射实验所得的结果,考虑各种偶然因素的影响,经过去伪存真获得一套可靠的数据后与已知物相的相对照,再依照晶体和衍射的理论对所属物相进行肯定与否定。当今在科学家们的努力下,已储备了相当多的物相的数据,若未知物是在储备范围之内,物相分析工作即是实际可行的。 7、衍射图,图中的每一个峰就是一族晶面的衍射线,

X射线衍射分析原理及其应用

X射线衍射分析

目录 1.摘要 (2) 2.前言 (2) 3.X射线及XRD (2) 4.X射线衍射仪的结构 (3) 5.X射线衍射仪的原理 (5) X射线衍射原理 (5) X射线图谱 (6) 6.X射线衍射法 (7) 多晶粉末法 (7) 单晶衍射法 (10) 7.X射线衍射法的应用 (11) X射线衍射分析方法在中药鉴定中的应用 (11) X射线衍射仪在岩石矿物学中的应用 (11) 8.总结 (12) 9.参考文献 (14)

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:X射线,XRD,衍射,原理,岩石矿物,中药,应用 一、X射线及XRD 1.X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁 辐射。X射线的波长在10-6 ~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。 2.X射线的产生途径有四种:1.高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2.将物质用初级X射线照射以产生二级射线—X射线荧光; 3.利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源; 4.从同步加速器辐射源获得。 3.X射线的吸收。当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1]。 4.X射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。在实际的应用中将该分析方法分

X射线衍射分析

X-射线衍射分析 化学系 0907401班贺绍飞 [摘要] 研究晶体材料,X-射线衍射分析非常理想也非常有效,而对于液体和非晶态固体,这种方法也能提供许多基本的重要数据。所以X-射线衍射分析被认为是研究固体最有效的工具。本文首先对X-射线衍射分析技术进行了简单介绍,然后分别举例说明X-射线衍射分析在晶体分析中的作用。 [关键词] X-射线衍射分析;晶体;晶体分析 1 引言 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: λ θn 2 d= sin 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 2 X-射线衍射分析 2.1 X-射线衍射分析的原理 X-射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。 将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程: θn λ 2 sin d= 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。 2.2 X-射线衍射分析的方法 在各种X-射线衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

X射线衍射分析

X射线衍射分析 1 实验目的 1、了解X衍射的基本原理以及粉末X衍射测试的基本目的; 2、掌握晶体和非晶体、单晶和多晶的区别; 3、了解使用相关软件处理XRD测试结果的基本方法。 2 实验原理 1、晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。③晶体结构=空间点阵+结构单元。非 晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais点阵 表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。

晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。 2、X衍射的测试基本目的与原理 X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: θn λ 2 d= sin 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。 X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X 射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。 3 仪器与试剂 仪器型号及生产厂家:丹东浩元仪器有限公司DX-2700型衍射仪。 测试条件:管电压40KV;管电流40mA;X光管为铜靶,波长1.5417?;步长0.05°,扫描速度0.4s;扫描范围为20°~80°。 试剂:未知样品A。 4 实验步骤 1、打开电脑主机电源。 2、开外围电源:先上拨墙上的两个开关,再开稳压电源(上拨右边的开关,标有稳压)。 3、打开XRD衍射仪电源开关(按下绿色按钮)。 4、开冷却水:先上拨左边电源开关,再按下RUN按钮,确认流量在20左右方可。

X射线衍射物相分析

X射线衍射物相分析 物相分析并不是一般的成份分析,一般的化学成份分析是分析组成 物质的元素种类及其含量,并不涉及元素间的化学结合状态及聚集态结构,只有元素单独存在时该元素才是一个单独的物相。物相分析是进行元素间的化学结合状态和聚集态结构的分析。那些化学组成相同但晶型不同的物质,虽然其元素组成相同,属同种化合物,但其聚集态结构不同,属不同的物相。 已知,识别一个物质不但要知其元素组成,而且要知各元素间的化 学结合状态和聚集态结构。如只含Si和0二种元素的Si0 2 ,它有石英、方英石、鱗石英、白硅石和无定形硅胶等许多结构形态,分别属于不同 物相。而不同形态的Si0 2在性质上是差别很大的。再如ZnO和Cr 2 O 3 在 高温下焙烧可生成化学上稳定的尖晶石结构的ZnCr 20 4 。但在多少温度下 转化开始发生?转化程度如何?对此问题化学成份分析是很难解决的,因为在反应中化学成份并无改变。对矿物、陶土、固熔体合金、新兴材料、多相催化剂以及混合物的分析更是如此,只知元素组成而不知物相结构是远远不够的。 X射线衍射物相分析在矿物分析中可确定物相组成以提供开发利用的方案;在冶金工业中可确定各元素的结合状态,了解热处理过程及性能的变化关系;在化学工业中可控制产品质量,确定合理的工艺流程;在材料科学中可确定材料的结构及性能,为新兴材料的开发指明方向;

在理论研究中可帮助确定中间历程,研究催化反应及机理,指导新产品的合成等等。因此,X射线衍射物相分析在许多部门和领域有着广泛的应用。 物相分析主要包括物相的定性识别,定量分析以及结构类型及晶格参数的测定。本文主要介绍物相定性、定量分析,结构类型及晶格参数将在下一章介绍。 定性物相分析——物质的识别及鉴定 定性物相分析的主要依据是衍射谱图的峰位及相对强度。每种结晶物质都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中的原子数及原子(离子或分子)的种类和位置等。这些参数的差别必反映出衍射谱图的差别,即每种物质都有其特定的峰位及相对强度,就象人的指纹一样,可作为鉴别的依据。方法是描绘待鉴别样品的X射线谱图,将该谱图与已知物相的标准谱图或数据相比较。比较方法有三种: 1.图谱直接对比法。直接将待鉴试样的谱图与已知物相的标准谱图相对比。简单、直观、易看出细微变化。但需在相同条件下摄谱。此法常用于那些经常分析的,对可能物相比较明确的样品。 2.数据对比法。描绘待鉴样品的衍射谱图,利用布拉格公式2d hkl sinθhkl=λ,由每条谱线的角位置(峰位)算出相应的平面间距d hkI,再以最强线的强度I1为100测出每条谱线的相对强度I/I1,这一套d hkl

X射线衍射分析原理及其应用

X射线衍射分析原理及其应用 X射线及XRD 1.1 X射线 是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁辐射。X射线的波长在10-6 ~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。 1.2 X射线的产生途径有四种 1)高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线; 2)将物质用初级X射线照射以产生二级射线—X射线荧光; 3)利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源; 4)从同步加速器辐射源获得。 1.3 X射线的吸收 当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1] 。 1.4 XRD X射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在

某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。在实际的应用中将该分析方法分3为多晶粉末法和单晶衍射法。多晶粉末法常用来测定立方晶系的晶体结构点阵形式、晶胞参数及简单结构的原子坐标,还可以对固体式样进行物相分析等。 衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的长;θ是衍射角;d是结晶面间隔;n是整数。X射线束入射到样品表面后产生衍射,检测器收集衍射X射线信息。当入射波长λ、样品与X射线束夹角θ及样品晶面间距d满足布拉格公式时,检测器可以检测到最强的信息。因此采集入射和衍射X射线的角度信息及强度分布,可以获得晶面点阵类型、点阵常数、晶体取向、缺陷和应力等一系列有关材料结构信息[2],确定点阵参数的主要方法是多晶X射线衍射法[3]。 二、X射线衍射仪的结构 分析物质X射线衍射的仪器,形式多种多样,用途各异,但仪器构成皆如下图所示,其硬件主要有X射线光源、衍射信号检测系统及数据处理和打印图谱系统等几部分构成。 图1.X射线衍射仪

X射线衍射物相定量分析(精)

№.5陕西科技大学学报 Oct.2005Vol.23 JOURNALOFSHAANXIUNIVERSITYOFSCIENCE&TECHNOLOGY ?55?3文章编号:1000-5811(2005)05-0055-04 X射线衍射物相定量分析 吴建鹏,杨长安,贺海燕 (陕西科技大学材料科学与工程学院,陕西咸阳712081 ) 摘要:在RigakuD/max22200pc型X,2定量分析 所用的内标曲线和外标曲线,2完全一致,。 关键词:物相定量分析;内标法;中图分类号:O723:A 0引言 X射线衍射物相定量分析已被广泛的应用于材料科学与工程的研究中。X射线衍射物相定量分析有内标法〔1〕、外标法〔2〕、绝热法〔3〕、增量法〔4〕、无标样法〔5,6〕、基体冲洗法〔7〕和全谱拟合法〔8〕等常规分析方法。内标法、绝热法和增量法等都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有的物相较多,谱线复杂,再加入参考标相时会进一步增加谱线的重叠机会,给定量分析带来困难。基体冲洗法、无标样法和全谱拟合法等分析方法虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。外标法虽然不需要在样品中加入参考标相,但需要用纯的待测相物质制作工作曲线,这在实际应用中也是极为不便的。 本研究在RigakuD/max22200pc型X射线衍射仪分析软件的基础上,开发了X射线衍射物相定量分析中最常用的内标法和外标法,并对这两种分析方法进行了实验验证。 1原理 设样品由N个物相组成,采用衍射仪测定时,由Alexander和Klug导出的N相中第J相的衍射强度公式为: IJ=KJ(1) 式中:IJ———试样中J相衍射峰的积分强度;

X射线衍射的定量物相分析

摘要X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。每种晶体所产生的衍射花样都是其内部原子分布规律的反映。研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。 0、引言 X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中。X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。 1、X射线定量物相分析的基本原理 物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法。X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。多相材料中某相的含量越多,则它的衍射强度就越高。但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正。 定量分析的依据,是物质中各相的衍射强度。设试样是由n 个相组成的混合物,则其中第j 相的衍射相对强度可表示为 式中(2μl )-1对称衍射即入射角等于反射角时的吸收因子, μl 试样平均线吸收系数,

X射线衍射分析jade

第一篇X射线衍射分析 实验一X射线衍射物相定性分析 一、实验目的与任务 1.熟悉常用X射线衍射分析软件的操作界面。 2.学会使用X射线衍射分析软件进行单物相的定性分析。 3.学会使用X射线衍射分析软件进行多物相的定性分析。 二、定性相分析的原理与步骤 .1 定性分析的基本原理 根据晶体对X射线的衍射特征——衍射线的方向及强度来鉴定结晶物质的物相的方法,就是X射线物相分析法。 每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射面网的间距d和反射线的相对强度I/I0来表征。其中面网间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 2 Jade分析软件简介 Jade分析软件是Mdi(Materials Date,Inc)的产品,具有x射线衍射分析的一些基本功能如:平滑、Ka分离、去背底、寻峰、分峰拟合、物相检索、结晶度计算、晶粒大小和晶格畸变分析、RIR值快速定量分析、晶格常数计算、图谱指标化、角度校正、衍射谱计算等功能。从Jade6.0开始增加了全谱拟合Rietveld法定量分析,还可以对晶体结构进行精修。 Jade 5.0的常用工具栏和手动工具栏的基本功能见下图1和图2。 图1 Jade5.0常用工具栏 图2 Jade5.0手动工具栏

3 Jade定性分析的步骤 Jade物相定性分析,它的基本原理是基于以下三条原则:(1)任何一种物相都有其特征的衍射谱;(2)任何两种物相的衍射谱不可能完全相同;(3)多相样品的衍射峰是各物相的机械叠加。因此,通过实验测量或理论计算,建立一个“已知物相的卡片库”,将所测样品的图谱与PDF卡片库中的“标准卡片”一一对照,就能检索出样品中的全部物相。物相检索的步骤包括: (1)给出检索条件:包括检索子库(有机还是无机、矿物还是金属等等)、样品中可能存在的元素等; (2)计算机按照给定的检索条件进行检索,将最可能存在的前100种物相列出一个表;(3)从列表中检定出一定存在的物相。 一般来说,判断一个相是否存在有三个条件:(1)标准卡片中的峰位与测量峰的峰位是否匹配,换句话说,一般情况下标准卡片中出现的峰的位置,样品谱中必须有相应的峰与之对应,即使三条强线对应得非常好,但有另一条较强线位置明显没有出现衍射峰,也不能确定存在该相,但是,当样品存在明显的择优取向时除外,此时需要另外考虑择优取向问题;(2)标准卡片的峰强比与样品峰的峰强比要大致相同,但一般情况下,对于金属块状样品,由于择优取向存在,导致峰强比不一致,因此,峰强比仅可作参考;(3)检索出来的物相包含的元素在样品中必须存在,如果检索出一个FeO相,但样品中根本不可能存在Fe元素,则即使其它条件完全吻合,也不能确定样品中存在该相,此时可考虑样品中存在与FeO晶体结构大体相同的某相。当然,如果你自己也不能确定样品会不会受Fe污染,你就得去做做元素分析再来了。 对于无机材料和粘土矿物,一般参考“特征峰”来确定物相,而不要求全部峰的对应,因为一种粘土矿物中可能包含的元素也可能不同。 下面介绍Jade中物相检索的步骤。 第一轮检索:不做限定检索。打开一个图谱,不作任何处理,鼠标右键点击“S/M”按钮,打开检索条件设置对话框,去掉“Use chemistry filter”选项的对号,同时选择多种PDF子库,检索对象选择为主相(S/M Focus on Major Phases)再点击“OK”按钮,进入“Search/Match Display”窗口。 第二轮:限定条件的检索。限定条件主要是限定样品中存在的“元素”或化学成分,在“Use chemistry filter”选项前加上对号,进入到一个元素周期表对话框。将样品中可能存在的元素全部输入,点击“OK”,返回到前一对话框界面,此时可选择检索对象为次要相或微量相(S/M Focus on Minor Phases或S/M Focus on Trace Phases)。其它下面的操作就完全相同了。此步骤一般能将剩余相都检索出来。如果检索尚未全部完成,即还有多余的衍射线未检定出相应的相来,可逐步减少元素个数,重复上面的步骤,或按某些元素的组合,尝试一些化合物的存在。如某样品中可能存在Al,Sn,O,Ag等元素,可尝是否存在Sn-O化合物,此时元素限定为Sn和O,暂时去掉其它元素。在化学元素选定时,有三种选择,即“不可能”、“可能”和“一定存在”。见图3。

实验一 X射线衍射技术及物相分析

实验一 X射线衍射技术及物相分析 一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,

X射线衍射分析原理及其应用

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现

了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:方法,衍射,原理,应用 X射线衍射仪的原理 1.X射线衍射原理 当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。 光栅衍射 当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 一、X射线衍射法

相关文档
最新文档