三角函数图像的对称轴与对称中心

三角函数图像的对称轴与对称中心
三角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。

三角函数图像的对称轴与对称中心

特级教师 王新敞

对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,

有渐近线但无对称轴.由于函数s i n ()y A x ωφ=+、

cos()y A x ωφ=+和tan()y A x ωφ=+的简图容易画错,一般只要通过函数sin y x =、cos y x =、tan y x =图

像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心.

1.正弦函数sin y x =图像的对称轴与对称中心:

对称轴为2

x k π

π=+

、对称中心为(,0) k k Z π∈.

对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即

2

x k π

ωφπ+=+

()k Z ∈,由此解出1

()2

x k π

πφω

=

+

- ()k Z ∈,这就是函数

s i n ()y A x ωφ=+的图象的对称轴方程.

对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出

1

()x k πφω

=

- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1

(

(),0) k k Z πφω

-∈.

2.余弦函数cos y x =图像的对称轴与对称中心:

对称轴为x k π=、对称中心为(,0)2

k π

π+

k Z ∈.

对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即

x k ωφπ+= ()k Z ∈,由此解出1

()x k πφω

=

- ()k Z ∈,这就是函数cos()

y A x ωφ=+的图象的对称轴方程.

对于函数cos()y A x ωφ=+的图象的对称中心只需令2

x k π

ωφπ+=+ ()k Z ∈,由此

解出1

()2

x k π

πφω

=

+

- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1

(

(),0) 2

k k Z π

πφω

+

-∈.

3.正切函数tan y x =图像的渐近线与对称中心:

渐近线为2

x k π

π=+

、对称中心为(

,0)2

k π

k Z ∈,也就是曲线与x 轴的交点和渐近线与x 轴的交点两类点组成.正切曲线无对称轴.

对于函数tan()y A x ωφ=+的图象的渐近线只需将x ωφ+取代上面的x 的位置,即

2

x k π

ωφπ+=+

()k Z ∈,由此解出1

()2

x k π

πφω

=

+

- ()k Z ∈,这就是函数

t a n ()y A x ωφ=+的图象的渐近线方程.

对于函数tan()y A x ωφ=+的图象的对称中心只需令2

k x π

ωφ+= ()k Z ∈,由此解出1()2

k x πφω=

- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2

k k Z π

φω-∈.

例 函数y =sin(2x +

3π)的图象:⑴关于点(3π,0)对称;⑵关于直线x =4

π

对称;⑶关于点(4π,0)对称;⑷关于直线x =12

π对称.正确的序号为________. 解法一:由2x +3π=k π得x=621ππ-k ,对称点为(6

21π

π-k ,0)(z k ∈),当k=1时为

(3π,0),⑴正确、⑶不正确;由2x +3π2k ππ=+得x=1212

k ππ+(z k ∈),当k=0时为12

x π

=

,⑷正确、⑵不正确.综上,正确的序号为⑴⑷.

解法二:根据对称中心的横坐标就是函数的零点,对称轴必经过图象最值点的结论,可以采

用代入验证法.易求()3

f π

=sin(2×

3π+3π)=0、()4f π=sin(2×4π+3π()12f π=sin(2

×12π+3

π

)=1,所以⑴正确、⑵不正确、⑶不正确、⑷正确.综上,正确的序号为⑴⑷.

中心对称与中心对称图形习题及答案

中心对称与中心对称图形 习题精选(一) 1.判断题 (1)两个全等三角形构成的图形是中心对称图形。 ( ) (2)具有对称中心的四边形必是平行四边形。( ) (3)轴对称与中心对称不同,所以轴对称图形一定不是中心对称图形。( ) (4)三角形一定不是中心对称图形。( ) (5)对称中心是所有对称点连线的中点。 ( ) (6)平行四边形是中心对称图形。 ( ) 2.如图将ABCD 绕O 点旋转180°后,A 点旋转到_______点,B 点旋转到________点,旋转后的平行四边形与原位置的平行四边形互相_________。 3.中心甘情愿对称图形上的每一对对应点所连成的线段都被__________平分。 4.在下列图形:线段、射线、直线、角、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有 __________________________________。 5.若四边形ABCD 和四边形A B C D ''''关于点O 成中心对称,已知A 80∠=?,AB=7cm ,CO=9cm ,那么A '∠=________,A B ''=__________,C O '=_________。 6.下列英文大写字母中,是中心对称图形的是 ( ) A.B

B.H C.M D.Y 7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是 ( ) A.仅是轴对称图形 B.仅是中心对称图形 C.是轴对称图形但不是中心对称图形 D.既是轴对称图形又是中心对称图形 8.下面扑克牌中,是中心对称图形的是 ( ) 9.下列图形中,是中心对称图形的为 ( ) A.①②③ B.①③④ C.②③④ D.①②④ 10.下列说法中,错误的是 ( ) A.一条线段是中心对称图形 B.两个全等三角形一定关于某点成中心对称

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

图形对称轴对称面对称中心对称

图形对称轴对称面对称中心对称

————————————————————————————————作者:————————————————————————————————日期:

图形轴对称与轴对称图形、中心对称,镜面对称 【知识要点】 一、轴对称图形与图形轴对称 1.轴对称图形定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,?这个图形就叫做轴对称图形,这条直线就是它的对称轴. 注意:有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴. 2.图形轴对称:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 3. 轴对称图形的性质:如果两个图形成轴对称,?那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线 4.轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称. 二、轴对称变换 1.定义:由一个平面图形得到它的轴对称图形叫做轴对称变换.? 成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到 2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样 (2)?经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点. (3)连接任意一对对应点的线段被对称轴垂直平分 3.作一个图形关于某条直线的轴对称图形:(1)作出一些关键点或特殊点的对称点. (2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形. 三、坐标系相关 1.点P(x,y)关于x轴对称的点的坐标是(x,-y) 2.点P(x,y)关于y轴对称的点的坐标是(-x,y) 3.点P(x,y)关于原点对称的点的坐标是(-x,-y) 4.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y); 5.点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y); 四、镜面对称 1.镜面对称是关于关于面的对称 2..镜面对称的两个图形全等,并且两个图形到镜面的距离相等 五、中心对称 1.中心对称图形定义:一个图形绕着某点旋转180°后能与自身重合,这种图形叫做中心对称图形,该点叫做对称中心 2.中心对称:一个图形绕着某点旋转180°后能与另一个图形重合,这那么这两个图形成中心对称 3.性质:①成中心对称的两个图形全等 ②对应点的连线经过对称中心且被对称中心平分

画图形的另一半

《画出轴对称图形的另一半》 教学内容青岛版小学数学五年级下册17页信息窗1第2课时 教学目标 1.通过“画一画”的方法,进一步理解轴对称图形的特点。 2.能用一些方法剪出一些轴对称图形,能在方格纸上画出轴对称图形的另一半。 3,在学生在认识,制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。 教学重难点 教学重点:探究画出轴对称图形的另一半,并能利用这一知识点解决一些简单的问题。 教学难点:画出轴对称图形的另一半,渗透镜像对称的数学思想。 教具、学具 教师准备:多媒体课件、三角板、学习纸 学生准备:各种图形硬纸片、剪刀,学习纸。 教学过程 一、创设情境,提出问题 1.画对称图案的对称轴。(教材20页第2题) 问:关于“对称”,你都了解到哪些知识?(相应板书)引:知道这么多对称知识,老师考一考大家,请同学们利用准备好的印有图案的纸片,首先判断是否是对称图案,然后画出对称图案的对称轴。 2.全班交流。 (1)谈对称图案的判断理由,加深理解。问:哪些是对称图案,谈谈你的理由,大家同意吗,还有补充吗?

(2)展示对称图案的对称轴,区别不同。问:为什么对称轴的条数不同?这说明了什么? 3.师:当知道轴对称图形的一半,怎样画出它的另一半呢?电脑出示(教材19页红点部分的内容)下面我们就来重点研究(板书)画出轴对称图形的另一半。 二、自主学习,小组探究。 1.画出图形的另一半,使它成为轴对称图形。 电脑出示教材19页图。 自己动脑想一想,动笔画一画,然后在小组中交流画图的方法。 三、汇报交流,评价质疑 1.集体交流,总结方法。 小组展示学习成果,找关键转折点;点出其对应点(对应的一组点到对称轴的格数相等);连线(对应线所占格数相等)。按照我们总结的方法完成右边一半。 2.看书质疑。 今天我们所学内容是课本第19页,看一看,有什么疑问写到问题口袋处,然后小组内研究解决,解决不了的可以提出来,我们大家共同解决。 四、抽象概括,总结提升 同学们,我们从轴对称图形的意义---轴对称图形对称轴的条数---轴对称图形的特点----画出轴对称图形的另一半,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。上述学习我们还经历了观察----思考----动手操作最后画出图形的另一半,使它成为轴对称图形进而解决问题。 五、巩固应用,拓展提高

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

二次函数的对称轴(学练结合)

二次函数的对称轴 二次函数的图像是关于某条直线对称的抛物线,这条直线就叫做对称轴。我们用公式这样表示对称轴,直线x=-b/2a,有图像可知,当二次函数图像上两点的纵坐标相等时,那么这两点必然关于对称轴对称,且对称轴为这两点横坐标之和的一半。形如:点 A(x1,y1)、B(x2,y2)在二次函数的图像上,若y1=y2,那么图像的对称轴为 (x1+x2)/2。抛物线的顶点必然通过对称轴。所以可以根据顶点坐标直接求出对称轴。例如已知二次函数的顶点坐标为(x1,y1),那么二次函数的对称轴为直线x=x1。 在平面直角坐标坐标系中,已知两点坐标便可求其连线的中点坐标,例如:已知点 A(x1,y1)、B(x2,y2),则两点连线的中点为 C((x1+x2)/2,(Y1+Y2)/2),一般情况,出题者会结合一次函数,中垂线,三角形,二次函数进行综合考查。

例题演练 1、已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴() A.只能是x=﹣1 B.可能是y轴 C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧 2、已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是() A. 3 B. 4 C. 5 D. 6 3、如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念 轴对称图形的定义 如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。 轴对称图形的性质 1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。(对于一个图形来说) (2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。这条直线就是对称轴。两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。(对于两个图形来说) (3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。 中心对称的定义: 把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。 中心对称的性质: ①于中心对称的两个图形是全等形。 ②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 ③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。 识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。 既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等. 只是中心对称图形的有:平行四边形等. 既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中数学二次函数题型-对称轴、顶点、最值

1 二次函数题型-对称轴、顶点、最值测试 教学目标: 二次函数的对称轴、顶点、最值 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2 -m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

二次函数的对称性

(一)、教学内容 1.二次函数得解析式六种形式 ①一般式y=ax2 +bx+c(a≠0) ②顶点式(a≠0已知顶点) ③交点式(a≠0已知二次函数与X轴得交点) ④y=ax2(a≠0)(顶点在原点) ⑤y=ax2+c(a≠0) (顶点在y轴上) ⑥y=ax2 +bx (a≠0) (图象过原点) 2.二次函数图像与性质 对称轴: 顶点坐标: 与y轴交点坐标(0,c) 增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大 ?当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小 ☆二次函数得对称性 二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴: 与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0) 与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数得对称轴 1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。 2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D) 3、y=2x-4得顶点坐标为___ _____,对称轴为__________。 4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求 它与x轴得另一个交点得坐标( , ) 5、抛物线得部分图象如图所示,若,则x得取值范围就是( ) A、 B、 C、或 D、或 6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( ) A、0 B、-1 C、 1 D、2 题型2 比较二次函数得函数值大小 1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为 ( ) (A)a+c (B)a-c (C)-c (D)c 2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物 线得对称轴为直线x=1,此时时,对应得y 1 与y 2 得大小关系就是( ) A.y 1 <y 2 B、 y 1 =y 2 C、 y 1 >y 2 D、不确定 点拨:本题可用两种解法y x O –1 1 3 O –1 3 3 1

2019年全国数学中考试卷分类汇编:中心对称图形、轴对称图形

数学精品复习资料 中考全国100份试卷分类汇编 中心对称图形、轴对称图形 1、(2013年潍坊市)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(). A. B. C. D. 答案:A. 考点:轴对称图形与中心对称图形的特征。 点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。... 3、(2013杭州)下列“表情图”中,属于轴对称图形的是() A.B.C.D. 考点:轴对称图形. 分析:根据轴对称的定义,结合各选项进行判断即可. 解答:解:A.不是轴对称图形,故本选项错误; B.不是轴对称图形,故本选项错误; C.不是轴对称图形,故本选项错误; D.是轴对称图形,故本选项正确; 故选D. 点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.

4、(2013四川南充,7,3分)有五张卡片(形状、大小、质地都相同),上面分别画有下 列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。将卡片背面朝上洗 匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 ( ) A. 51 B. 52 C. 53 D. 5 4 答案:B 解析:既是轴对称图形,又是中心对称图形的有线段、圆,共2张,所以,所求概率为:5 2 5、(2013达州)下列图形中,既是轴对称图形,又是中心对称图形的是( ) 答案:D 解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。 6、(2013凉山州)下列图案中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 考点:中心对称图形;轴对称图形. 分析:根据轴对称图形与中心对称图形的概念,结合选项所给图形进行判断即可. 解答:解:A .是轴对称图形,不是中心对称图形,不符合题意; B .是轴对称图形,也是中心对称图形,符合题意; C .是中心对称图形,不是轴对称图形,不符合题意; D .不是轴对称图形,是中心对称图形,不符合题意. 故选B . 点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 7、(2013?宁波)下列电视台的台标,是中心对称图形的是( )

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

中心对称图形和轴对称图形

什么是中心对称图形 中心对称:在平面内,把一个图形绕着某个点旋转180。,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转18(T后重合的两个点叫做对称点(corresponding points) o 理解中心对称的左义要抓住以下三个要素: (1)有一个对称中心一一点: (2)图形绕中心旋转180° ; (3)旋转后两图形重合. 中心对称的性质: 连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平而内,把一个图形绕着某个点旋转180° ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.旋转180° 后重合的两个点叫做对应点(corresponding points)。 ①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的而积被平分(对称点在中心对称图形中)。 ②成中心对称的两个图形全等。 ③中心对称图形上每一对对称点所连成的线段都被对称中心平分。 区分:中心对称是两个图形间的位豊关系,而中心对称图形是一种具有独特特征的图 形。

常见图形 常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。 正偶边形是中心对称图形 正奇数边形不是中心对称图形 ※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。反比例函数的图像双曲线是以原点为对称中心的中心对称图形 什么是轴对称图形? 如果一个图形沿着一条宜线对折后两部分完全重合,这样的图形叫做轴对称图形(axial?symmetric?figure),这条直线叫做对称轴(axis?of?symetric);这时,我们也说这个图形关于这条直线对称。 例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形?有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴.圆有无数条对称轴,都是经过圆心的直线。 要特别注意线段,有两条对称轴,一条是这条线段所在的宜线,另一条是这条线段的中垂线.轴对称图形2示例 蝴蝶也是一种轴对称图形。 性质 1.对称轴是一条直线。 2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。 3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

生活中的轴对称与中心对称图形

生活中的轴对称与中心对称图形 贵州省麻江县宣威中学:张绍银 [知识点]轴对称图形; 中心对称图形 [数学情境] 数学在我们的生活中无处不在,在平时的生活当中你见过学习过哪些图形呢?当你看到下面的图形时,你有什么感觉?你一定会惊讶数学的伟大,数学的美妙。 图一 图二

[提出问题] 1.图一和图二是轴对称图形吗?如果是,有几条对称? 2.图一和图二是中心对称图形吗?如果是,它的对称中心在哪里? 3.你能在图一和图二中找出与已学相关的知识点,并说出它们的具体应用吗? [解决问题] 1.图一和图二都是轴对称图形,图一有一条对称轴,图二有两条对称轴。 2.图一不是中心对称图形,图二是中心对称图形,它的对称中心在中间那个正方形的对角 线的交点处。 3.在图一中我们可以发现等腰三角形,平行线,圆的内接正方形,圆的切线,两个圆相切 等等。在图二中我们可以发现等腰直角三角形,平行线,正方形,等腰梯形,数轴,角平分线,垂直平分线等等。 举例:圆的内接正方形的应用。 如图,ABCD是一个圆的内接正方形,①请说明为什么点O为圆的圆心?②图中有几个全等的三角形,你是如何找全的?根据解答你可提出什么问题?③∠BEC为多少度? 解:①∵ABCD是一个圆的内接正方形 ∴∠ABC=90度 ∴AC是圆的直径(直角所对的弦是直径) 同理,BD也是圆的直径 ∴O是圆的圆心。(两条直径可决定圆心,即交点) ②图中共有6对全等的三角形。问题:当有n个相同的三角形时,共有几对全等的三角形?(根据排列组合可得结论) ③∠BEC=45度(同弧所对的圆周角等于圆心角的一半) [教学建议] 在本案例中,要让学生学会观察,分析生活中的数学问题,通过实地考察,了解数学在生活的广泛应用,提高学生学习数学的兴趣,增强学生学习数学信心。

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

中心对称图形和轴对称图形

什么是中心对称图形 中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个 图形重合,那么就说明这两个图形的形状 关于这个点成中心对称 (Central of symmetry graph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点 (corresponding points )。 理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质: 连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。,如果旋转后的图形能与原 来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后 重合的两个点叫做对应点 (corresp onding poi nts)。 ① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。 ② 成中心对称的两个图形全等。 ③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。 区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。 中心对称图形

常见图形 常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的 正多边形,某些不规则图形等。 正偶边形是中心对称图形 正奇数边形不是中心对称图形 ※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形), 至少需旋转120度,而不是180度,所以它不是中心对称图形。反比例函数的图像双曲线 是以原点为对称中心的中心对称图形 什么是轴对称图形 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。 例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形?有 的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴?圆有无数条对称轴,都 是经过圆心的直线。 要特别注意线段,有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线?轴对称图形2示例

相关文档
最新文档