003选修4-4 双曲线、抛物线的参数方程及其应用 导学稿

003选修4-4  双曲线、抛物线的参数方程及其应用  导学稿
003选修4-4  双曲线、抛物线的参数方程及其应用  导学稿

1

仲元中学2011学年第二学期高二文科数学

选修4-4 双曲线、抛物线的参数方程及其应用 导学稿

编写人: 黄锡泉 审稿人:邱志红 编写时间:

班级_________姓名_________学号

_______________

【学习目标】

1. 了解双曲线参数方程的推导过程,并能利用双曲线参数方程解决一些简单问题;

2. 掌握抛物线的参数方程,并能较为熟练地应用.

【学习内容及程序】 一、课前准备

(预习教材P 29-P 34,找出疑惑之处) 1.写出圆的参数方程

2.写出椭圆的参数方程.

3.圆和椭圆参数方程有什么应用.

二、新课导学

新知识点:

1.写出双曲线的参数方程

2.写出抛物线的参数方程.

典型例题

例1 如图,设M 为双曲线

12

22

2=-

b

y a

x (a>0,b>0)上任意一点,O 为原点,过点M 作双曲线两渐近线的平

行线,分别与两渐近线交于A,B 两点.探求平行四边形MAOB 的面积,由此可以发现什么结论?

2

变式1 过P (0,1)到双曲线122=-y x 上点M 的最小距离.

例2 如图,O 是原点,A,B 是抛物线y 2=2px(p>0)上异于顶点的两动点,且OA ⊥OB,OM ⊥AB 并与AB 交于点M,求点M 的轨迹方程.

变式2已知O 是坐标原点,A B 、是抛物线2

22x pt y pt

?=?=? (t 为参数)上异于顶点的两动点,且O A O B ⊥,

求AB M 中点的轨迹方程.

三、总结提升

1.双曲线的参数方程:双曲线

12

22

2=-

b

y a

x 参数方程 ?

??==θθ

tan sec b y a x (θ为参数)

2.抛物线的参数方程:抛物线Px y

22

=参数方程???==Pt

y Pt x 222

(t 为参数)

3

【学习评价】 1.曲线2

22x pt

y pt

=??

=? (0,p t >为参数)上的两点A B 、,对应的参数为21,t t ,且

021=+t t ,则||AB 的值是 ( )

A.12t t -

B. 122p t t -

C.12p t t -

D. 124p t t -

2.二次方程20x ax b -+=的两根分别是sin cos ,P a θθ和则点(,b)的轨迹是 ( )

A. 抛物线

B. 直线

C. 抛物线上的一段弧

D. 线段

3.双曲线)(cos 6

tan 32为参数ααα??

?

??=

=y x 的两焦点坐标是 。

5.把下列参数方程化为普通方程:

① sin cos 21x y θθ=??=+? (θ为参数) ②1()1()

x a t t

y b t t ?

=+????=-??

(,,0t a b ≠为参数).

6.曲线C 的方程是???==pt

y pt x 222

(,0>p t 为参数),当t=-1和t=2对就的点分别是A,B.

(Ⅰ)求B A 、两点的直线方程(写成一般形式);

(Ⅱ)设F 是曲线的焦点,且FAB ?的面积为14,求P 的值.

【课后自主检测】

A 、

B 是抛物线2

2y x =上异于顶点的两动点,且O A O B ⊥,点A 、B 在什么位置时,A O B ?的面

积最小?最小值是多少?

4

例1.2

ab S MAOB =

变式1.

2

6||2

3 2tan 2tan 2 1

tan 2tan )tan 1()1(tan cos 1||)

tan ,cos 1M(

min 22

222

2

=

∴≥

+-=+-++=-+=PM PM ???????

??

则设

例2.x 2+y 2-2px=0(x ≠0)

变式2.设)2,2(12

1pt pt A ,)2,2(22

2pt pt B ,由O A O B ⊥,得121-=t t ,

又中点),(y x M 由???

????+=+=+=+=)

(222)(2

222

12122212

221t t p pt pt y t t p pt pt x ,结合121-=t t ,

得点M 的方程为:)2(2p x p y -= 【学习评价】

BC

3.(0,

,(0,

4

4. 双曲线右支

4.方程?????-=+=t

t t

t e

e y e

e x (t 为参数)的图形是 。 5.(1)θθ22sin 221sin 21-=+-=y ,把x =θsin 代入,得)11(222

≤≤--=x x y ;

(2) ??????

?-=+=????????=-=+)

(211)(2111b y a x t

b y a x t b y t t a x t t ,两式相乘得:42222=-b y a x 6.(Ⅰ)依题意设()()2,28,4A p p B p p -, ,则()

12824=---=p

p p p K AB

∴直线的方程为: p x p

y 22-=+

即04=--p y x (Ⅱ)??

?

??=0,226p

F p AB ,,

5

点F 到AB 的距离2

272

42p

p p d =

-=

14227262121=??=?=?p

p d AB S FAB

解得:33

2

=p

【课后自主检测】

设211(2,2)A t t ,222(2,2)B t t 1212(,0)t t t t ≠?≠且,

则1||2||OA t =

2||2||O B t =, 因为O A O B ⊥,所以121t t =-,

所以122||AOB S t t ?=

=

=4≥,

当且仅当12t t =-时,即A 、B 关于x 轴对称时A O B ?面积最小,最小面积为4.

高中数学知识点总结新人教A版选修44

高中数学选修4-4知识点总结 一、选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 二、知识归纳总结: 1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换? ??>?='>?=').0(,y y 0),(x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。 如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 5.极坐标与直角坐标的互化: 6。圆的极坐标方程: 在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ; 在极坐标系中,以 )0,(a C )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =; 在极坐标系中,以 )2 ,(πa C )0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =; 7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线. 在极坐标系中,过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos . 8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数? ??==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 9.圆2 22)()(r b y a x =-+-的参数方程可表示为)(. sin ,cos 为参数θθθ???+=+=r b y r a x . 椭圆122 22=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数??????==b y a x .

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

双曲线与抛物线的参数方程(教学设计)

2.2.2双曲线与抛物线的参数方程(教学设计) 教学目标: 知识与技能目标:掌握双曲线与抛物线的参数方程,理解参数的几何意义。会用曲线的参数方程解决一些实际问题。 过程与方法:通过双曲线与抛物线参数方程的推导,进一步掌握求曲线方程的方法。 情感态度价值观:数学问题解法的多样性,思维多样性。 教学重点:双曲线与抛物线参数方程的应用。 教学难点:双曲线与抛物线参数方程的推导。 教学过程: 一、复习回顾: 1、椭圆的参数方程: 椭圆122 22=+b y a x (a>b>0)参数方程 ???==θ θsin cos b y a x (θ为参数); 椭圆2 2221(0)y x a b b a +=>>的参数方程是cos sin x b y a θθ=??=?(θ为参数) 二、师生互动,新课讲解: 1、双曲线的参数方程的推导: 1)双曲线122 22=-b y a x 参数方程 ? ??==θθtan sec b y a x (θ为参数) 双曲线 ???==θ θtan sec b y a x (θ为参数) 2、判断双曲线两种参数方程的焦点的位置的方法. 如果x 对应的参数形式是sec φ,则焦点在x 轴上. 如果y 对应的参数形式是sec φ,则焦点在y 轴上. 例1:如图,设M 为双曲线122 22=-b y a x (a>0,b>0)任意一点,O 为原点,过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点,探求平行四边形MAOB 的面积,由此可以发现什么结论? 2a 222y x -=1(a>0,b>0)的参数方程为:b

变式训练1:化下列参数方程为普通方程,并说明它们表示什么曲线?由此你有什么想法? 小结:参数方程的表示不唯一,如何判断是哪种曲线,必须化为普通方程。 4、抛物线的参数方程的推导: 1)抛物线方程y 2=2px(p>0)的参数方程为????? x =2pt 2y =2pt (t 为参数). 2)抛物线方程x 2 =2py(p>0)的参数方程为222x pt y pt =??=? (t 为参数) 3)抛物线方程y 2 =-2px (p>0)的参数方程为2 22x pt y pt ?=-?=-?(t 为参数) 4)抛物线方程x 2 = -2py (p>0)的参数方程为222x pt y pt =-??=-? 例2:如图O 是直角坐标原点,A ,B 是抛物线y 2=2px (p>0)上异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 并 于AB 相交于点M ,求点M 的轨迹方程。 变式训练2(探究)在本例中,点A 、B 在什么位置时,?AOB 的面积最小?最小值是多少? 课堂练习: a 1(2()1()2x t t t b y t t ?=+????=-?? )为参数,a>0,b>0()2(b )()2t t t t a x e e t b y e e --?=-????=+??为参数,a>0,>02 1212121212121221(),,211x pt t M M t t M M y pt A t t B t t C D t t t t ?=?=?+-+-、若曲线为参数上异于原点的不同两点,所对应的参数分别是则弦所在直线的斜率是( )、,、,、,、20022(1,0)M y x M P M M P =-、设为抛物线上的动点,给定点,点为线段的中点,求点的轨迹方程。

高中数学选修4-4坐标系与参数方程完整教案(精选.)

选修4-4 教案 教案1 平面直角坐标系(1 课时) 教案2 平面直角坐标系中的伸缩变换(1 课时)教案3 极坐标系的的概念(1 课时) 教案4 极坐标与直角坐标的互化(1 课时) 教案5 圆的极坐标方程(2 课时) 教案6 直线的极坐标方程(2 课时) 教案7 球坐标系与柱坐标系(2 课时) 教案8 参数方程的概念(1 课时) 教案9 圆的参数方程及应(2 课时) 教案10 圆锥曲线的参数方程(1 课时) 教案11圆锥曲线参数方程的应用(1 课时)教案12 直线的参数方程(2 课时) 教案13 参数方程与普通方程互化(2 课时)教案14 圆的渐开线与摆线(1 课时)

课题:1、平面直角坐标系教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课 1 2 坐标系的作用————教学过程————复习回顾和预习检查 1 平面直角坐标系中刻画点的位置的方法 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空 中的位置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确 的背景图案,需要缺点不同的画布所在的位置。 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 word.

《参数方程和普通方程的互化》导学案3

《参数方程和普通方程的互化》导学案3 1. 了解参数方程化为普通方程的意义. 2 ?理解参数方程与普通方程的互相转化与应用. 课标解读 3 .掌握参数方程化为普通方程的方法 知识梳理 参数方程与普通方程的互化 (1) 曲线的参数方程和普通方程是曲线方程的不同形式?一般地,可以通过消去参数从参数方程得到普通方程. (2) 如果知道变数x, y中的一个与参数t的关系,例如x =f(t),把它代入普通方程, |x= f t 求出另一个变数与参数的关系y= g(t),那么就是曲线的参数方程.在参数 i y= g t 方程与普通方程的互化中,必须使x, y的取值范围保持一致. 思考探究 普通方程化为参数方程,参数方程的形式是否惟一? 【提示】不一定惟一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参 数不同,那么所得的参数方程的形式也不同 课堂互动 |x= a+1 cos 0 , 例题1在方程y= ?+ t sin 0, (a,b为正常数)中, (1) 当t为参数,0为常数时,方程表示何种曲线?

(2) 当t为常数,0为参数时,方程表示何种曲线?

非零常数时,利用平方关系消参数 0,化成普通方程,进而判定曲线形状. x = a + t cos 0 , ① 【自主解答】 方程* (a , b 是正常数), |y = b + t sin 0 , ② (1) ①x sin 0 —②x cos 0 得 x sin 0 — y cos 0 — a sin 0 + b cos 0 = 0. ■/ cos 0、sin 0不同时为零, ???方程表示一条直线. (2) ( i )当t 为非零常数时, 即(x — a )2+ (y — b )2= t 2,它表示一个圆. (ii)当t = 0时,表示点(a , b ). 1?消去参数的常用方法 将参数方程化为普通方程, 关键是消去参数,如果参数方程是整式方程, 常用的消元法 有代入消元法、加减消元法.如果参数方程是分式方程, 在运用代入消元或加减消元之前要 做必要的变形?另外,熟悉一些常见的恒等式至关重要,如 sin 2a+ cos 2a = 1,(e X + e — x )2 2 x —x 2 1 — k 2 2k 2 -(e -e ) =4,("+ E=1 等. 2?把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普 通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同, 可表示不同的曲线. 将下列参数方程分别化为普通方程,并判断方程所表示曲线的形状: x = 2cos 0 ⑴彳 (0为参数,0W 0 < n ); |y = 2s in 0 r 4 4 x = sin 0 + cos 0 ⑵f . 2 2 ( 0为参数); |y = 1 — 2sin 0 cos 0 2 2 x — a ③2+④得 —cos 0, —sin 0 . 2 y — b 2 ■=1, ④ 「X — a I t 原方程组为\ ¥

《双曲线的参数方程》教学案2

《双曲线的参数方程》教学案2 一、教学目标 (1). 双曲线、抛物线的参数方程. (2). 双曲线、抛物线的参数方程与普通方程的关系。 (3).通过学习双曲线、抛物线的参数方程,进一步完善对双曲线、抛物线的认识,理解参数方程与普通方程的相互联系.并能相互转化.提高综合运用能力 二、教学重难点 学习重点:双曲线、抛物线参数方程的推导 学习难点:(1) 双曲线、抛物线参数方程的建立及应用.(2) 双曲线、抛物线的参数方程与普通方程的互化 三、教学指导: 认真阅读教材,按照导学案的导引进行自主合作探究式学习 四、知识链接: 焦点在x 上的椭圆的参数方程________________________________________ 焦点在y 上的椭圆的参数方程________________________________________ 五、教学过程 (阅读教材29-34完成) (一)双曲线的参数方程 1双曲线)0,0(122 22>>=-b a b y a x 的参数方程___________________________ 注:(1)?的范围__________________________ (2)?的几何意义___________________________ 2双曲线)0,0(122 22>>=-b a b x a y 的参数方程___________________________ (二)抛物线的参数方程

抛物线)0(22>=p px y 的参数方程___________________________ (三)典型例题 、 的轨迹方程。 ,求点相交于点并于点,且上异于顶点的两动是抛物线是直角坐标原点,、如图例M M AB AB OM OB OA p px y B A O ⊥⊥>=,)0(2,12 B x y o A M

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程: 22 22y 1,b a x += 练习:已知椭圆4 92 2y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧? 错解:由已知可得a =3,b =2,θ=600, ∴x =acos θ=3cos60°=2 3,y =bsin θ=2sin60°=3。 从而,点M 的坐标为)3,2 3(。 正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4 92 2y x +=1联立, 解得x =31316, y =9331 6。 所以点M 的坐标为(31316,9331 6)。 另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。 代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是 A )sin cos (ααb a ,)2 0(π α< <,矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π = 时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ? ? =?? =?

5 3 arcsin 23-π= α时,距离d 有最大值2。 例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段 例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =, 试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++ = cos 8211021cos 12211x 21x x B A 3sin 42 11921 sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ? ?+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 例6 椭圆)0b a (1b y a x 22 22>>=+与x 轴的正向相交于点A ,O 为坐标原 点,若这个椭圆上存在点P ,使得OP ⊥AP 。求该椭圆的离心率e 的取值范围。 解:设椭圆)0b a (1b y a x 22 22>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A

极坐标参数方程导学案(一)

极坐标参数方程复习学案(一) 【高考要求】:(1)坐标系 ①理解坐标系的作用②了解在平面直角坐标系伸缩变换作用下平面图形的变 化情况③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角 坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化④能在极坐标 中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的 方程。理解用方程表示平面图形时选择适合坐标系的意义 (2)参数方程 ①了解参数方程,了解参数的意义 ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程 【教学目标】: 1、知识与技能:理解极坐标的概念,会正确进行点的极坐标与直角坐标的互化,会正确将 极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极 坐标方程,不要求利用曲线方程或极坐标方程求两条曲线的交点。 } 2、过程与方法:在坐标系的教学中,可以引导学生自己尝试建立坐标系,说明建立坐标系 的原则,激励学生的发散思维和创新思维,并通过具体实例说明这样建立 坐标系有哪些方便之处。 3、情感、态度与价值观:体会从实际问题中抽象出数学问题的过程,培养探究数学问题的 兴趣和能力,体会数学在实际中的应用价值,提高应 用意识和实 践能力。 【自主探究】 已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos 10sin x y θθ =??=?. (1)化直线l 的方程为直角坐标方程; (2)化圆的方程为普通方程; (3)求直线l 被圆截得的弦长. )

【巩固练习】 1、已知直线l 经过点(1,1)P ,倾斜角6πα=,设l 与曲线2cos 2sin x y θθ=??=?(θ为参数)交于两点,A B ,求(1)|PA||PB|,|PA|+|PB|的值; (2)弦长|AB|; (3) 弦AB 中点M 与点P 的距离。 , 、

人教A版选修4-4双曲线的参数方程抛物线的参数方程跟踪练习及答案解析(最新整理)

双曲线的参数方程抛物线的参数方程 跟踪练习 一、选择题 1.曲线Error!(t为参数)的焦点坐标是( ) A.(1,0) B.(0,1) C.(-1,0) D.(0,-1) 2.圆锥曲线Error!(θ是参数)的焦点坐标是( ) A.(-5,0) B.(5,0) C.(±5,0) D.(0,±5) 3.方程Error!(t为参数)的图形是( ) A.双曲线左支B.双曲线右支 C.双曲线上支D.双曲线下支 4.点Μ0(0,2)到双曲线x2-y2=1的最小距离(即双曲线上任一点Μ与点Μ0的距离的最小值)是( ) A.1 B.2 C.D.3 3 二、填空题 5.已知动圆方程x2+y2-x sin 2θ+2y·sin=0(θ为参数).则圆心的轨迹方程 2(θ+π4) 是________. 6.双曲线Error!(θ为参数)的两条渐近线的倾斜角为________. 7.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为Error!(t为参数)和Error!(θ为参数),则曲线C1与C2的交点坐标为________. 三、解答题 8.已知圆O1:x2+(y-2)2=1上一点P与双曲线x2-y2=1上一点Q,求P,Q两点距离的最小值.

9.已知双曲线方程为x2-y2=1,Μ为双曲线上任意一点,点Μ到两条渐近线的距离分别为d1和d2,求证:d1与d2的乘积是常数. 10.过点A(1,0)的直线l与抛物线y2=8x交于M,N两点,求线段MN的中点的轨迹方程. 双曲线的参数方程抛物线的参数方程 跟踪练习答案 一、选择题

1.曲线Error!(t 为参数)的焦点坐标是( ) A .(1,0) B .(0,1) C .(-1,0) D .(0,-1) 解析:选B 将参数方程化为普通方程(y -1)2=4(x +1), 该曲线为抛物线y 2=4x 向左、向上各平移一个单位得到, 所以焦点为(0,1). 2.圆锥曲线Error!(θ是参数)的焦点坐标是( ) A .(-5,0) B .(5,0) C .(±5,0) D .(0,±5) 解析:选C 由Error!(θ为参数)得 -=1,x 216y 29 ∴它的焦点坐标为(±5,0). 3.方程Error!(t 为参数)的图形是( ) A .双曲线左支 B .双曲线右支 C .双曲线上支 D .双曲线下支 解析:选B ∵x 2-y 2=e 2t +2+e -2t -(e 2t -2+e -2t )=4. 且x =e t +e -t ≥2=2. e t ·e -t ∴表示双曲线的右支. 4.点Μ0(0,2)到双曲线x 2-y 2=1的最小距离(即双曲线上任一点Μ与点Μ0的距离的最小值)是( ) A .1 B .2 C. D .3 3解析:选C ∵双曲线方程为x 2-y 2=1,∴a =b =1. ∴双曲线的参数方程为Error!(θ为参数). 设双曲线上一动点为Μ(sec θ,tan θ), 则2=sec 2θ+(tan θ-2)2 |Μ0Μ|=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5=2(tan θ-1)2+3. 当tan θ=1时,2取最小值3, |Μ0Μ|此时有= . |Μ0Μ|3二、填空题

高中数学选修44极坐标与参数方程试题

高中数学选修44极坐标与参数方程试题

————————————————————————————————作者:————————————————————————————————日期:

高中数学选修4-4综合试题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 22 2 t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C 、 ???-=-=121 t y t x (t 为参数) D 、?? ?+==1 sin 2sin θθy x (t 为参数) 2.若点(3,)P m 在以点F 为焦点的抛物线2 4()4x t t y t ?=? =?为参数上,则||PF 等于( ). A .2 B .3 C .4 D .5 3.已知??? ? ? -3,5πM ,下列所给出的不能表示点M 的坐标的是( ) A 、?? ? ? ?- 3,5π B 、?? ? ? ?3 4, 5π C 、?? ? ? ?- 3 2,5π D 、?? ? ? ?- -3 5,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线 对称的是( ) A .(-ρ,θ) B .(-ρ,-θ) C .(ρ,2π-θ) D .(ρ,2π+θ) 5.点() 3,1-P ,则它的极坐标是 ( ) A 、?? ? ? ?3, 2π B 、?? ? ? ?34, 2π C 、?? ? ? ?- 3,2π D 、?? ? ? ?- 34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θ θ =+?? =? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). A.1 B.2 C.3 D.4 7.参数方程为1()2 x t t t y ? =+ ???=?为参数表示的曲线是( ) A .一条直线 B .两条直线 C .一条射线 D .两条射线

导学案:参数方程与普通方程的互化(可编辑修改word版)

? + = 2 课题:参数方程与普通方程的互化 【学习目标】 1. 进一步理解参数方程的概念及参数的意义。 2. 能通过消去参数将参数方程化为普通方程,由普通方程识别曲线的类型 3. 能选择适当的参数将普通方程化成参数方程 【重点、难点】 参数方程和普通方程的等价互化。 自主学习案 【问题导学】阅读课本 P24—P26,然后完成下列问题: 1. 参数方程的概念 (1) 在平面直角坐标系中,如果曲线上任意一点的坐标 x 、 y 都是某个变数t ? x = f (t ) 的函数? y = g (t ) (t ∈ D ) , 并且对于 t 的每一个允许值,由方程组所确定的点 M (x,y )都在这条曲线上,那么方程就叫这条曲线的 ,联系变数 x 、 y 的变数 t 叫做 ,简称 。相对于参数方程而言,直接给出点的坐标间关系的方程 F (x , y ) = 0 叫做 。 (2) 是联系变数 x,y 的桥梁,可以是一个有 意义或 意义的 变数,也可以是 的变数。 2、 ( 1) 圆 心 在 原 点 O , 半 径 为 r 的 圆 的 一 个 参 数 方 程 是 ; (2)圆(x - a )2 + ( y - b )2 = r 2 的一个参数方程是 . 3、指出下面的方程各表示什么样的曲线: (1)2x+y+1=0 表示 (2) y = 3x 2 + 2x +1 表示 2 (3) x y 1表示 9 4

t ? (4) ?x = cos + 3(为参数) 表示 ? y = sin 【预习自测】把下列参数方程化为普通方程,并说明它们各表示什么曲线? ?x = t +1 ?x = 2 c os 1、? y = 1- 2t (t 为参数) 2、? y = sin (为参数) ? ? 思考: 1、通过什么样的途径,能从参数方程得到普通方程? 2、在参数方程与普通方程互化中,要注意哪些方面? 合作探究案 考向一、参数方程化普通方程 例 1.把下列参数方程化为普通方程,并说明它们各表示什么曲线 (1) ??x = ? + 1 ?x = sin + cos (t 为参数) (2) ? y = 1 + sin 2 (为参数) ?? y = 1 - 2 ? 小结: t

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

直线的参数方程导学案

《直线的参数方程》导学案 紫云民族高级中学高二数学组 学习目标: 1、了解直线的参数方程及参数的的意义 2、能选取适当的参数,求直线的参数方程 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 一、回忆旧知,做好铺垫 1.→a 与→b 共线向量的充要条件是什么?________________________ 2.直线l 的方向向量怎样表示?________________________ 3.什么是单位向量?________________________ 4.斜率存在且为k 的直线l 的方向向量怎样表示?________________________ 5.倾斜角为α的直线l 的单位方向向量怎样表示?________________________ 6直线方程的有几种形式? 二直线参数方程探究 问题1:经过点M(x0,y0),倾斜角为 ??? ??≠2παα 的直线l 的 普通方程是________________________; 合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?

得出结论:定点 ) ,(000y x M 倾斜角 α直线的参数方程为 观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练 1.写出满足下列条件直线的参数方程: (1)过点(2,3)倾斜角为4π (2)过点(4,0)倾斜角为32π

知识探究一: 由 t M 0 ,你能得到直线l 的参数方程中参数t 的几何 意义吗? 知识探究二: 如图所示:请讨论参数t 的符号; 利用t 的几何意义,如何求过M0直线上两点AB 的距离? 点A,点B 在M0同侧点A,点B 在M0异侧 e

高中数学选修4—4(坐标系与参数方程)知识点总结

1 / 5 坐标系与参数方程 知识点 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换 (0):(0) x x y y λλ?μμ'=>?? '=>?的作用下,点P(x,y)对应到点(,)P x y ''',称?为 平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标:设M是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M的极角,记为θ.有序数对(,)ρθ叫做点M的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R) .和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:

圆和椭圆的参数方程导学案

x θ y M 圆与椭圆的参数方程导学案 教学目标: 知识与技能:了解圆与椭圆的参数方程及参数的的意义; 过程与方法:能选取适当的参数,求圆与椭圆的参数方程,利用参数方程求最值; 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 教学重点:圆、椭圆参数方程的定义与应用. 教学难点:选择适当的参数写出圆、椭圆的的参数方程,并利用其求最值. 问题1.回顾圆的标准方程 . 问题2.推导圆心为原点,半径为r 的圆的参数方程: 在圆上任取点(,)M x y ,试用θ表示x 与y : 其中参数θ的几何意义为: . 问题3. 怎样得到圆心在1(,)O a b ,半径为r 的圆的参数方程? 问题4.圆的参数方程的应用: 1.圆O 的半径为2,P 是圆上的动点,Q (6,0) 是x 轴上的定点,M 是PQ 的中点.当点P 绕O 作匀速圆周运动时,求点M 的轨迹的参数方程. 2. 已知(,)P x y 是圆C :2264120x y x y +--+=上的点。 (1)求x y -的最大值与最小值; (2)求22x y +的最大值与最小值. (3)求 y x 的最小值与最大值;

问题5: 你能仿照圆的参数方程猜想出椭圆 的参数方程吗? 如下图,以原点为圆心,分别以,(0)a b a b >>为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,半径OA 绕点O 旋转,(1)试用半径OA 的旋转角?表示出点M 的横纵坐标x ,y ,由此得参数方程; (2)试消掉(1)中的参量?,得出点M 的轨迹方程。 问题6: 你能仿照问题5写出椭圆 (0a b >>)的参数方程吗? 问题7:椭圆 的参数方程为 的几何意义是什么? 1.在椭圆的参数方程中,常数a 、b 分别是椭圆的 和 . (其中a>b ) 2.?称为离心角,规定参数?的取值范围是 问题8:椭圆的参数方程的应用: 在椭圆2288x y +=上求一点P ,使P 到直线l :40x y -+=的距离最小.(可以选择不同的解法) ?,,b a )0(122 22>>=+b a b y a x 其中为参数)(sin cos ?? ????==b y a x )0 (12222>>=+b a b y a x O A M x y N B 122 22=+a y b x

历年高考抛物线真题详解理科

历年高考抛物线真题详解理科 1.【2017课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1, l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12 D .10 2.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线上 任意一点,M 是线段PF 上的点,且 =2 ,则直线OM 的斜率的最大值为( ) (A )(B )(C )(D )1 3.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线2 2(p 0)y px =>上 任意一点,M 是线段PF 上的点,且 PM =2MF ,则直线OM 的斜率的最大值为( ) (A (B )2 3 (C (D )1 4.【2016高考新课标1卷】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、 E 两点.已知|AB |=DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 5.【2015高考四川,理10】设直线l 与抛物线 24y x =相交于 A , B 两点,与圆 () ()2 2250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条, 则r 的取值范围是() (A ) ()13, (B )()14,(C )()23,(D )()24, 6.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点 A , B , C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ?与ACF ?的面积之比是()

参数方程的概念学案

参数方程的概念学案 第八大周 年级:高二 学科:数学(文) 主备人:张淑娜 审核人:王静 【学习目标】1.理解曲线参数方程的概念,体会实际问题中参数的意义; 2.能选取适当的参数,求简单曲线的参数方程。 【学习重点】曲线参数方程的定义及求法 【学习难点】曲线参数方程的探求。 一、【课前预习】 引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗? 思考交流:把引例中求出的物资运动轨迹的参数方程消去参数t 后,再将所得方程与原方 程进行比较,体会参数方程的作用。 二、【新知探究】 1、参数方程的概念 一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标(x, y )都是某个变数t 的函数 ??? ,并且对于t 的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的_______________, 联系变数x,y 的变数t 叫做____________,简称________。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做_______________。 2、关于参数几点说明: (1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 3、求曲线的参数方程的一般步骤。 (1)建立直角坐标系,设曲线上任一点P 坐标为),(y x (2)选取适当的参数 (3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式 (4)证明这个参数方程就是所由于的曲线的方程 三、【预习检测】 1、曲线2 1,(43x t t y t ?=+?=-? 为参数)与x 轴的交点坐标是( ) A 、(1,4) B 、25(,0)16± C 、25(,0)16 D 、(1,3)- 2、方程sin ,(cos x y θθθ=??=? 为参数)所表示的曲线上一点的坐标是( ) A 、(2,7) B 、12(,)33 C 、11(,)22 D 、(1,0)

双曲线、抛物线的参数方程

双曲线 、抛物线的参数方程 1.双曲线的参数方程 (1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的参数方程是??? ??x =a sec φy =b tan φ (φ为参数),规定参数φ的取值范围为φ∈[0,2π)且φ≠ π2,φ≠3π 2 . (2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2 b 2=1(a >0,b >0)的参数方程是? ?? ??x =b tan φy =a sec φ(φ为参数). 2.抛物线的参数方程 (1)抛物线y 2 =2px 的参数方程为? ??? ?x =2pt 2 y =2pt (t 为参数). (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 1.参数方程? ????x =2t 2 , y =4t (t 为参数)表示的曲线不在( ) A .x 轴上方 B .x 轴下方 C .y 轴右方 D .y 轴左方 解析:选D.原参数方程可化为y 2 =8x ,故图象不在y 轴左方.选D. 2.下列不是抛物线y 2 =4x 的参数方程的是( ) A.?????x =4t 2 y =4t ,(t 为参数) B .?????x = t 2 4y =t ,(t 为参数) C.? ????x =t 2y =2t ,(t 为参数) D .? ????x =2t 2 y =2t ,(t 为参数) 解析:选D.逐一验证知D 不满足y 2 =4x . 3.双曲线?? ?x =23tan α y =6sec α ,(α为参数)的两焦点坐标是( ) A .(0,-43),(0,43) B .(-43,0),(43,0) C .(0,-3),(0,3) D .(-3,0),(3,0) 解析:选A.tan α= x 23 ,sec α=y 6,

相关文档
最新文档