晶体材料强度

晶体材料强度
晶体材料强度

各种晶体总结及其应用

对晶体结构及其应用的认识 引言:化学中对晶体的研究促进了各种特性材料的发现和发明,也促进了各种催化剂的发现,晶体是美丽的,他们的最小单位——晶胞更是充分体现了各种对称美和造物者的神奇。晶体的应用在人类的生产生活中正发挥着巨大的作用。在本飞行器制造工程专业中也占据着不可忽视的作用。 关键词原子晶体,离子晶体,分子晶体,材料,制造业 高中时学习化学,曾接触过晶体的一些知识,因而对晶体产生了浓厚的兴趣,想借此机会,总结一下晶体结构以及晶体的各种应用。晶体分为原子晶体、离子晶体、分子晶体和金属晶体,我们生活的世界大部分是由这些物质构成。晶体具有以下特征: 自范性:晶体具有自发地形成封闭的凸几何多面体外形能力的性质,又称为自限性。 均一性:指晶体在任一部位上都具有相同性质的特征。 各向异性:在晶体的不同方向上具有不同的性质。 对称性:指晶体的物理化学性质能够在不同方向或位置上有规律地出现,也称周期性。最小内能和最大稳定性。 晶体中质点排列具有周期性和对称性整个晶体可看作由结点沿三个不同的方向按一定间距重复出现形成的,结点间的距离称为该方向上晶体的周期。同一晶体不同方向的周期不一定相同。可以从晶体中取出一个单元,表示晶体结构的特征。取出的最小晶格单元称为晶胞。晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。 原子晶体是几种晶体中硬度最大,熔点较高的一类晶体。晶体中原子与原子通过共价键链接,构成一个空间的三维网络结构,所以具有他们特有的物理性质。俗话说“没有金刚钻别揽瓷器活”就是说的原子晶体中最典型的金刚石,金刚石

中C原子通过sp3杂化轨道与其他C原子相连,在空间形成承受力能力相当强的正四面体结构,我们不禁赞叹大自然的神奇,简单的C原子以这种方式连结竟然构成了世间最硬的物质。正是由于原子晶体的各种特异的性质,原子晶体在工业中具有广泛的应用,金刚石因为它的硬度较大,被广泛用在精密切割的刀具上,另外钻石还是昂贵的奢侈品;二氧化硅常被用在机械加工中各种砂轮砂纸上作为耐磨材料;高纯度的硅单质是良好的半导体,被广泛用于电子信息产业;碳化硅是良好的耐磨材料,。 离子晶体由阴、阳离子通过离子键结合而成的晶体,离子键:阴、阳离子间强烈的静电作用。离子键无饱和性、无方向性,大多数盐、强碱、活泼金属氧化物属于离子晶体,典型代表是氯化钠。相对于原子晶体,离子晶体更加普遍存在,同时它们也具有许多独特的特点。应为离子晶体是靠阴阳离子相互吸引结合,离子间以离子键相互结合,离子之间按照严格的规则排列,因此具有很漂亮的晶胞下面如图立方ZnS、CaF2、NaCl的晶胞 离子晶体在人类的生活中发挥着重要作用,冶炼金属,制作高储能的电池,制作具有各种光学特性光学器材,温度测量等很多地方都有应用。 分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。 金属晶体:晶格结点上排列金属原子-离子时所构成的晶体。金属中的原子

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

通过能力计算

计算题 1.已知某地铁线路车辆定员每节240人,列车为6节编组,高峰小时满载率为120%,且单向最大断面旅客数量为29376人,试求该小时内单向应开行的列车数。 2、已知某地铁线路采用三显示带防护区段的固定闭塞列车运行控制方式,假设各闭塞分区长度相等,均为1000米,已知列车长 度为420米,列车制动距离为100米,列车运行速度为70km/h,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 若该线路改成四显示自动闭塞,每个闭塞分区长度为600米,则此时线路的通过能力是多少? 3.已知某地铁线路采用移动闭塞列车运行控制方式,已知列车长度为420米,车站闭塞分区为750米,安全防护距离为 200米,列车进站规定速度为60km/h,制动空驶时间为1.6秒,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 4.已知某地铁线路为双线线路,列车采用非自动闭塞的连发方式运行,已知列车在各区间的运行时分和停站时分如下表,线路的连发间隔时间为12秒。试求该线路的通过能力是多少?

5.已知地铁列车在某车站采用站后折返,相关时间如下:前一列车离去时间1.5分钟,办理进路作业时间0.5分钟,确认信号时间0.5分钟,列车出折返线时间1.5分钟,停站时间1分钟。试计算该折返站通过能力。 6.已知某终点折返站采用站前交替折返,已知列车直到时间 为40秒,列车侧到时间为1分10秒,列车直发时间为40秒,列车侧发时间为1分20秒,列车反应时间为10秒, 办理接车进路的时间为15秒,办理发车进路的时间为15秒。试分别计算考虑发车时间均衡时和不考虑发车时间均衡时,该折返站的折返能力是多少? 7.已知线路上有大小交路两种列车,小交路列车在某中间折返 站采用站前折返(直到侧发),已知小交路列车侧发时间为1分20秒,办理接车进路的时间为15秒,办理发车进路的时间为15秒,列车反应时间为10秒,列车直到时间为25 秒,列车停站时间为40秒;长交路列车进站时间为25秒。试分别计算该中间折返站的最小折返能力和最大折返能力分别是多少? 8.已知线路上有大小交路两种列车,小交路列车在某中间折返站采用站后折返,已知小交路列车的相关时分为:列车驶出车站 闭塞分区时间为1分15秒,办理出折返线调车进路的时间 为20秒,列车从折返线至车站出发正线时间为40秒,列车反应时间为10秒,列车停站时间为40秒。

晶体中的缺陷

第三章晶体中的缺陷 第一节概述 一、缺陷的概念 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。当然这也是因为客观上晶体的理论相对成熟。在晶体理论发展中,空间点阵的概念非常重要。 空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。 严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。 所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。考虑二维实例,如图3-1所示。 图3-1 平移对称性的示意图 在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。这种情况,我们说具有平移对称性。这样的晶体称为“理想晶体”或“完整晶体”。

图3-2 平移对称性的破坏 如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。 晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。 幸运的是,缺陷的存在只是晶体中局部的破坏。作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。因为缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况)。例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后Fe 中的位错密度为1012m-2<空位、位错都是以后要介绍的缺陷形态)。现在你对这些数量级的概念可能难以接受,那没关系,你只须知道这样的事实:从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。 因此,整体上看,可以认为一般晶体是近乎完整的。因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。它是我们今后讨论缺陷形态的基本出发点。事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实

2020年常用晶体材料

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 Al2O3晶体 氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ 材料基本性能: CaF2晶体

折射率: MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F 2

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能:

车站通过能力计算

车站通过能力 车站通过能力是在车站现有设备条件下,采用合理的技术作业过程,一昼夜能接发和方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站通过能力包括咽喉通过能力和到发线通过能力。 咽喉通过能力是指车站某咽喉区各衔接方向接、发车进路咽喉道岔组通过能力之和,咽喉道岔通过能力是指在合理固定到发线使用方案及作业进路条件下,某衔接方向接、发车进路上最繁忙的道岔组一昼夜能够接、发该方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 到发线通过能力是指到达场、出发场、通过场或到发场内办理列车到发作业的线路,采用合理的技术作业过程和线路固定使用方案,一昼夜能够接、发各衔接方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站咽喉通过能力计算 咽喉占用时间标准 表咽喉道岔占用时间表 顺序作业名称时间标准 (min) 顺序作业名称 时间标准 (min) 1 货物列车接车占用6~8 4 旅客列车出发占用4~6 2 旅客列车接车占用5~7 5 单机占用2~4 3 货物列车出发占用5~7 6 调车作业占用4~6 道岔组占用时间计算 表到发线固定使用方案 线路编号固定用途 一昼夜 接发列车数 线路 编号 固定用途 一昼夜 接发列车数 1 接甲到乙、丙旅客列车8 7 接乙到甲直通、区段货物列车9 4 接乙到甲旅客列车 5 8 接甲、乙到丙直通、区段货物列车10 接丙到甲旅客列车 3 9 接丙到甲、乙直通、区段货物列车10 5 接甲到乙直通、区段货物列车11 10 接发甲、乙、丙摘挂货物列车10 表甲端咽喉区占用时间计算表 编号作业进路名称 占用 次数 每次 占用时间 总占用 时间 咽喉区道岔组占用时间 1 3 5 7 9 固定作业 1 1道接甲-乙,丙旅客列车8 7 56 56 2 4道发乙-甲旅客列车 5 6 30 30 30 3 4道发丙-甲旅客列车 3 6 18 30 30 5 往机务段送车 3 6 18 18 6 从机务段取车 2 6 12 12

路段通行能力计算方法

根据交叉口的现场交通调查数据,通过各流向流量的构成关系,可推得各路段流量,从而得到饱和度V/C 比。路段通行能力的确定采用建设部《城市道路设计规范》(CJJ 37-90)的方法,该方法的计算公式为:单条机动车道设计通行能力n C N N a ????=ηγ0,其中N a 为车道可能通行能力,该值由设计车速来确定,如表2.2所示。 表2.13 一条车道的理论通行能力 其中γ为自行车修正系数,有机非隔离时取1,无机非隔离时取0.8。η为车道宽度影响系数,C 为交叉口影响修正系数,取决于交叉口控制方式及交叉口间距。修正系数由下式计算: s 为交叉口间距(m),C 0为交叉口有效通行时间比。 车道修正系数采用表 2.3所示 表2.3 车道数修正系数采用值 路段服务水平评价标准采用美国《道路通行能力手册》,如表2.4所示 表2.4 路段服务水平评价标准

由路段流量的调查结果,并且根据交叉口的间距、路段等级、车道数等对路段的通行能力进行了修正。在此基础上对路段的交通负荷进行了分析。 路段机动车车道设计通行能力的计算如下: δ m c p m k a N N = (1) 式中: m N —— 路段机动车单向车道的设计通行能力(pcu/h ) p N —— 一条机动车车道的路段可能通行能力(pcu/h ) c a —— 机动车通行能力的分类系数,快速路分类系数为0.75;主干道分类 系数为0.80;次干路分类系数为0.85;支路分类系数为0.90。 m k —— 车道折减系数,第一条车道折减系数为 1.0;第二条车道折减系数 为0.85;第三条车道折减系数为0.75;第四条车道折减系数为0.65.经过累加,可取单向二车道 m k =1.85;单向三车道 m k =2.6;单向四车道 m k =3.25; δ—— 交叉口影响通行能力的折减系数,不受交叉口影响的道路(如高架 道路和地面快速路)δ=1;该系数与两交叉口之间的距离、行车速度、绿信比和车辆起动、制动时的平均加、减速度有关,其计算公式如下: ?+++= b v a v v l v l 2/2///δ (2) l —— 两交叉口之间的距离(m ); a —— 车辆起动时的平均加速度,此处取为小汽车0.82/s m ; b —— 车辆制动时的平均加速度,此处取为小汽车1.662/s m ; ?—— 车辆在交叉口处平均停车时间,取红灯时间的一半。 Np 为车道可能通行能力,其值由路段车速来确定: 表4.1 Np 的确定

常用晶体材料资料讲解

常用晶体材料

Al2O3晶体 氧化铝晶体(白宝石,蓝宝石, Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ CaF2晶体 折射率: 仅供学习与交流,如有侵权请联系网站删除谢谢2

MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F2 仅供学习与交流,如有侵权请联系网站删除谢谢3

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 仅供学习与交流,如有侵权请联系网站删除谢谢4

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

常用晶体材料

氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ CaF2晶体 氟化钙晶体是一种很重要的光学晶体,它具有如下优良的特性: 折射率:

氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 BaF2

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能: YVO4晶体 钒酸钇晶体是一种具有优良的物理和光学特性的双折射单晶。由于它具有较大的透过范围、透光度高、大的双折射、易于加工等特点,所以广泛应用于光学组件如光纤光隔离器、环形器、分光

路区间通过能力计算办法

路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行

图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=―――― (1) T周 式中:N――平行运行图通过能力(对数或列数); 1440――一昼夜时分; T周――运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为:

水利计算公式.doc

1.河床稳定计算及河相分析 1.1.河床稳定计算 河床稳定指标可采用横向稳定指标、纵向稳定指标及综合稳定指标 3 种形式分析,以确定河道特性。 1.1.1.河道横向稳定分析 河道横向稳定系数按下式计算: 式中: 横向稳定系数; Q造床流量, m3/s ; J河床比降; B 相当于造床流量的平摊河宽,m。 1.1. 2.河道纵向稳定分析 水流对河床泥沙的拖曳力与床面泥沙抵抗运动的摩阻力之间的相互作用,决定河床的纵向稳定性。根据黄河水利出版社出版《治河及泥沙工程》中河道纵向稳定系数采用爱因斯坦水流强度函数按下式计算: 式中: 纵向稳定系数; D床沙平均粒径,mm; J河床纵比降; H河流平摊水深,m。

1.1.3.综合稳定指标 综合稳定指标是综合考虑河床的纵、横向稳定性。建议采用的公式为 2 (b)*h 1.2.河床演变分析与河相关系 调查工程区河道历史主流及河道变迁,分析工程区河道形态。共分为蜿蜒型河道、游荡型河道两种形式。 蜿蜒型河段一般凹岸崩退,凸岸淤长,凹岸深槽和过渡段浅滩在年内发生互相交替的冲淤变化。 游荡型河道的河岸及河床抗冲性较差,从长距离来看河道往往呈藕节状,其中窄段水流 归顺,有控制河势的作用,宽段则河床宽浅,洲滩密布,汊道交织,水流散乱,主流迁徙不 定。河道的平面状态可用“宽、浅、散、乱”四个字概括。 在水流长期作用下形成的河床,其形态有一定的规律,大量资料表明,表征河床形态的 水深、河宽、比降等,与来水来沙条件及河床地质条件之间,有一定函数关系,这种关系便 称为河相关系。 根据俄罗斯国立水文所提出公式,河道横断面河相关系公式为: B H 式中 : ξ 河相相关系数; B 造床流量下的水面宽(m); H造床流量下的平均水深(m); (蜿蜒型河道ζ 约为2~4,较为顺直的过渡性河段约为8~12,游荡型河道ζ 约为20~30)2.护岸结构设计 2.1.护岸顶高程确定 根据《堤防工程设计规范》(GB50286-2013)(以下简称《堤防规范》)要求,堤顶高程为设计洪水位加超高值确定。堤顶超高按下式计算:

铁路区间通过能力计算办法

铁路区间通过能力计算办法 铁道部 铁路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=———— (1) T周 式中:N——平行运行图通过能力(对数或列数); 1440——一昼夜时分; T周——运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为: 1440—t网 N=---------------- (2)

管道通过能力的实用计算公式及其选择

天然气由气田或气体处理厂进入输气干线,其流量和压力是稳定的。在有压缩机站的长输管道两站间的管段,起点与终点的流量是相同的,压力也是稳定的,即属于稳定流动。长输管道的末段,有时由于城镇用气量的不均衡,要承担城镇日用气量的调峰,则长输管道末段在既输气又储气、供气的条件下,它的起点和终点压力,以及终点流量二十四小时都是不同的,属不稳定流动(流动随时间而变)。天然气的温度在进入输气管时,一般高于(也可能低于)管道埋深处的土壤温度。并且随着起点到终点的压力降,存在焦耳-汤姆逊节流效应产生温降,但由于管道与周围土壤的热传导,随着天然气在管道的输送过程,天然气的温度会缓慢地与输气管道深处的地层温度逐渐平衡。所以天然气在输气干管中流动状态,也不完全是等温过程,为便于理解,我们先给出稳定流动下的水力计算基本公式,再介绍沿线温度分布规律和平均温度。 计算公式随地形条件差异而不同。 在平坦地带,由于气体密度低,对于输气管道任意两点间的相对高差小于200 m的管道,可视为水平输气管段。在稳定输送状态下,管道输送量与管道起、终点压力的函数关系如下: 式中Q——管道标准状态下的体积流量,m3/s; C——常数,按此处所取各参数单位时,C值为··s/kg; p1——计算管段起点压力,Pa; p2——计算管段终点压力,Pa; λ——水力摩阻系数; d——管道内直径,m; L——管道计算段长度,m; △*——天然气相对密度; T——管道中天然气平均温度,K; Z——管输平均压力与平均温度下天然气压缩系数。 在地形起伏较大地带,当输气管道沿线任意两点高差大于200m,位差对输气管道流量的影响就不能忽略不计了。在稳定输送状态下,非水平输气管段的基本流量公式为:

常用晶体材料(互联网+)

Al2O3晶体 氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ 熔点2050 o C 密度 3.91g/m3 莫氏硬度9 杨氏模量53 Mpsi 透过波段300nm-5.5μm CaF2晶体 密度 3.18 g/cm3 熔点1357~1360℃ 晶格常数 5.46 ? 努普硬度178 [100], 160 [110]kg/mm2 介电常数 6.76 ,105HZ 晶体类型cubic, CaF2 type structure 解离面(111) 应用紫外激光窗口材料 折射率: 波长, 0.19 0.21 0.25 0.33 0.41 0.88 2.65 3.90 5.00 6.20 7.00 8.22 μm

折射率 1.51 1.49 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.38 1.36 1.34 MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F2 密度 4.89 g/cm3, at 20°C 熔点1354°C 摩尔质量175.36 晶格常数 6.196 ? 热导率7.1 W/(m K), at 38°C 比热456 J/(kg K) 热膨胀系数16.5 ~ 19.2 ×10–6 / K,± 60°C 努普硬度82kg/mm2 莫氏硬度 3 杨氏模量53.05GPa 剪切模量25.4GPa 体积弹性模量56.4GPa 介电常数7.33,2×106HZ 水中溶解度0.17 g / 100 g,10℃ 晶体类型立方晶系 解离面(111) 泊松比0.343

风浪计算公式

风浪计算公式 1. 莆田试验站法: ? ???????? ? ??????????????? ??? ?? ????? ???????? ??=7.0245 .027.022 7.013.00018.07.013.0W gH th W gD th W gH th W gh m m m 5 .0438.4m m h T = ??? ? ??=m m m L H th gT L ππ222 式中,m h ——平均波高,m ; m L ——平均波长,m ; m T ——平均波周期,s ; W ——计算风速,m/s ; D ——风区长度(吹程) ,m ; m H ——水域平均水深,m ; g ——重力加速度,取9.81m/s 2 。 对于深水波,即当m L H 5.0≥时(H 为迎水面前水深),波长计算可简化为: π 22m m gT L = 按照规范规定采用累计频率为1%的波高,对应于平均波高应乘以系数2.42。 2. 对于丘陵、平原地区水库,当W<26.5m/s 、D<7500m 时, 可采用鹤地水库公式:

31 26 12 %200625.0?? ? ??=-W gD W W gh 21 22 0386.0?? ? ??=W gD W gL m 式中,%2h ——累计频率为2%的波高,对应于累计频率为1%的波高应乘以系数1.085。 3. 对于内陆峡谷水库当W<20m/s 、D<20000m 时,可采用官 厅水库公式: 3 1 212 12 0076.0?? ? ??=-W gD W W gh 75 .31 215 .21 2 331.0?? ? ??=-W gD W W gL m 式中,h ——当250~202 =W gD 时,为累计频率5%的波高%5h ,m ;当 1000~2502 =W gD 时,为累计频率10%的波高%10h ,m 。根据规范应换算为累计频率为1%的波高,对应于5%的波高应乘以系数1.241;对应于10%的波高应乘以系数1. 415。

道路通行能力计算方法

道路饱和度计算方法研究 摘要:道路饱和度是研究和分析道路变通服务水平的重要指标,但目前人们仍比较简单地用V/C来计算饱和度,未能根据各类不同道路的标准进行计算,尤其是公路和城市道路,其计算方法并不一致,、应根据不同的情况,采用不同的方法进行计算。 0 引言 饱和度的计算主要应考虑两点:一是交通量,二是通行能力。前者的数据一般是通过交通调查数据经过计算获得,后者的计算则相对较为复杂。由于城市道路与公路的通行能力计算方法不同,有必要分开讨论。本文将在介绍道路分类的基础上,对不同类型道路的通行能力及饱和度算法作一探讨。 1 道路分类 我国道路按照使用特点的不同,可分为城市道路、公路、厂矿道路、林区道路和乡村道路。目前除公路和城市道路有准确的等级划分标准外,对林区道路、厂矿道路和乡村道路一般不再进行等级划分。 1.1 城市道路 城市道路是指在城市范围内具有一定技术条件和设施的道路,不包括街坊内部道路。城市道路与公路分界线为城市规划区的边线。根据道路在城市道路系统中的地位、作用、交通功能以及对沿线建筑物的服务功能.一般将城市道路分为四类:快速路、主干路、次干路及支路。具体分级标准参见《城市道路设计规范》等相关规范。

1.2 公路 公路是连接各城市、城市与乡村、乡村与厂矿地区的道路。根据交通量、公路使用任务和性质,一般将公路分为高速公路、一级公路、二级公路、三级公路、四级公路五个等级。具体分级标准参见《公路工程技术标准》等相关规范。 2 饱和度定义及影响因素 2.1 饱和度 道路饱和度是反映道路服务水平的重要指标之一,其计算公式即为人们常说的V/C,其中V为最大交通量,C为最大通行能力。饱和度值越高,代表道路服务水平越低。由于道路服务水平、拥挤程度受多方面因素的制约,实际中因难以考虑多方面因素,常以饱和度数值作为评价服务水平的主要指标。美国的《通行能力手册》将道路的服务水平根据饱和度等指标的不同分为六级(具体分级标准可参考该手册,此处从略).我国则一般根据饱和度值将道路拥挤程度、服务水平分为如下四级: 一级服务水平:道路交通顺畅、服务水平好,V/C介于0至0.6之间; 二级服务水平:道路稍有拥堵,服务水平较高,V/C介于0.6至0.8之间; 三级服务水平:道路拥堵,服务水平较差,V/C介于0.8至1.0之间;

不同人工晶体材料的特性

第26卷 第3期Vol 126 No 13材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第113期J un.2008 文章编号:167322812(2008)0320467206 不同人工晶体材料的特性 崔海坡 (上海理工大学医疗器械与食品学院,上海 200093) 【摘 要】 人工晶体材料由最初的聚甲基丙烯酸甲酯发展到今天的丙烯酸酯多聚物等,一直在不断地改良变 化。不同人工晶体材料的性能各有其局限性,选择一种合适的人工晶体对白内障复明手术具有十分重要的意义。本文对目前常用的人工晶体材料基本性能及其优缺点进行了综述,并对不同人工晶体材料的临床性能进行了详实的对比分析,从而为人工晶体生产者及临床医师在选择人工晶体材料时提供一定的参考。 【关键词】 人工晶体;材料;性能;对比中图分类号:TB39 文献标识码:A Matreial Properties of Different Intraocular Lens CUI H ai 2po (College of Medical Device and food ,U niversity of Shangh ai for Science and T echnology ,Shanghai 200093,China) 【Abstract 】 The materials of intraocular lens (IOL )starting to improve and alter all along is exercised f rom the original polymethylmethacrylate to present acrylic.Every type material has defects itself.The right selection of intraocular lens is a vital element for deciding whether or not the cataract operation can be implemented successf ully.The essential properties of IOL materials are summarized.Emphasis is placed on the comparison and analysis of clinic characteristics for the different materials ,which may provide further assistance in the choosing of IOL materials for the IOL producer and therapist. 【K ey w ords 】 intraocular lens ;material ;property ;comparison 收稿日期:2007207204;修订日期:2007209212 作者简介:崔海坡(1978-),讲师,博士,主要研究方向为材料力学、材料的生物相容性。E 2mail :h _b _cui @https://www.360docs.net/doc/2d26463.html, 。 1 引 言 白内障是最常见的致盲眼病之一,我国目前至少有400 万因白内障致盲的患者,而且白内障致盲人数每年新增加约为40万人[1]。目前白内障无特殊的预防方法,手术治疗几乎是唯一有效的措施。人工晶体(intraocular lens )是白内障手术时植入人眼内的精密光学部件,多用在白内障手术后,代替摘除的自身混浊晶体。因人而异选择不同材质、不同特性和类型的人工晶体,对白内障患者术后效果和生活质量有着十分重要的意义。 人工晶体植入技术起始于1949年11月,英国眼科医生Ridley 第一次将自制的人工晶体植入患者眼内。50多年来,尤其是近10多年来,研究者们对各种材料的人工晶体都作了大量的实验研究,测试了人工晶体材料的相关生物学性能及其临床特性。然而,目前对不同材料人工晶体各方面性能都进行详细对比分析的文献还很少见。本文对目前常用的人工晶体材料基本性能及其优缺点进行了综述,并对不同人工晶体材料的临床性能进行了详实的对比分 析,这些性能与人工晶体植入术后临床并发症密切相关,对 它们的了解可以为临床医师选择人工晶体材料时提供参考,并有助于其在细胞和分子水平上了解术后并发症的发病机制。 2 人工晶体材料的基本特性 制造人工晶体的材料应具备以下特点[2]:(1)光学性能 好,屈光指数高,可见光透过率高(透光率大于90%);(2)质量轻、抗拉力强;(3)眼内理化性能稳定,耐用性强,无生物降解作用;(4)无毒,无致炎、致癌性;(5)无抗原性;(6)易加工。人工晶体从材料上分,有硬性材料聚甲基丙烯酸甲酯(polymethylmethacryte ,PMMA ),俗称有机玻璃;软性材料有硅凝胶、水凝胶等,以及由PMMA 衍生出来的丙烯酸酯类人工晶体。2.1 聚甲基丙烯酸甲酯(PMMA) PMMA 自1933年开始用于工业制品中,并最先被人们用来制造人工晶体,经50多年的临床验证表明,PMMA 材料具有很好的物理特性:质轻、不易破碎、性能稳定、耐用,

相关文档
最新文档