泊松公式和达朗贝尔公式解同类型题目

泊松公式和达朗贝尔公式解同类型题目
泊松公式和达朗贝尔公式解同类型题目

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3、4、3统一取弹性模量206000MPa 。泊松比约为0。3 ) (有限元材料库得参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000G P。) (HT200,弹性模量为135GP a,泊松比为0、27) (HT200 密度:7、2-7。3,弹性模量:70-80; 泊松比0。24—0、25 ;热膨胀系数 加热: 10冷却—8) (用灰铸铁 HT 200,根据资料可知其密度为7340kg /m3,弹性模量为120GPa ,泊松比为0。 25) (HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0。25,密度ρ=7800 k g/m 3) ( HT200 122 /0。 3 /7。 2 ×10 — 6) (材料H T200,密度为7。 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0。3) ( H T200,其弹性模量 E=140GPa,泊松 比μ=0、25,密度ρ=7.8×10 3 kg /m 3) (模具材料为灰口铸铁 HT200,C —3.47%,Si —2。5%,密度 7210 kg / m3 ,泊松比 0.27 、) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0。3,密度为ρ=7.8×10 3 k g.m —3 ) (模型材料H T200,其主要物理与机械性能参数如下:密度7。25 t /m 3 ,弹性模量126 GPa, 泊松比0。3) (垫板得材料采用 HT200, 材料相关参数查表可 得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比 μ= 0125, 密度ρ=712 ×10 - 9 t /m m 3) 表58—23,常用材料得弹性模量,泊松比与线胀系数

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

(整理)偏微分方程相关材料翻译

目录 前言vii 1 应用与方法概述 1 1.1 什么是偏微分方程1 1.2 求解并解释偏微分方程7 2傅里叶级数17 2.1 周期函数18 2.2 傅里叶级数26 2.3 以任意数为周期的函数的傅里叶级数38 2.4 半幅展开:余弦级数和正弦级数50 2.5 均方逼近和帕塞瓦尔恒等式53 2.6 傅里叶级数的复数形式60 2.7 受迫振动69 收敛性的补充内容 2.8 傅里叶级数表示定理的证明77 2.9 一致收敛性和傅里叶级数85 2.10 狄利克雷判别法和傅里叶级数的收敛性94 3 直角坐标中的偏微分方程103 3.1 物理和工程中的偏微分方程104 3.2 建模2 弦振动和波动方程109 3.3 一维波动方程的求解:分离变量法114 3.4 达朗贝尔方法126 3.5 一维热传导方程135 3.6 棒中的热传导:各种边界条件146 3.7 二维波动方程和热传导方程155 3.8 直角坐标中的拉普拉斯方程163 3.9 泊松方程:特征函数展开法170 3.10 诺伊曼条件和罗宾条件180 3.11 最大值原理187 4 极坐标与柱面坐标中的偏微分方程193

4.1 各个坐标系中的拉普拉斯算子194 4.2 圆膜的振动:对称情况198 4.3 圆膜的振动:一般情况207 4.4 圆域中的拉普拉斯方程216 4.5 圆柱体中的拉普拉斯方程228 4.6 亥姆霍兹方程和泊松方程231 关于贝塞尔函数的补充内容 4.7 贝塞尔方程和贝塞尔函数237 4.8 贝塞尔级数展开248 4.9 贝塞尔函数的积分公式和渐近式261 5球面坐标中的偏微分方程269 5.1 问题和方法概述270 5.2 对称狄利克雷问题274 5.3 球面调和函数和一般狄利克雷问题281 5.4 亥姆霍兹方程及其在泊松方程、热传导方程和波动方程中的应用291 关于贝塞尔函数的补充内容 5.5 勒让德微分方程300 5.6 勒让德多项式和勒让德级数展开308 5.7 连带勒让德函数和连带勒让德级数展开319 6施图姆-刘维尔理论及其在工程中的应用325 6.1 正交函数326 6.2 施图姆-刘维尔理论333 6.3 悬链346 6.4 四阶施图姆-刘维尔理论353 6.5 梁的弹性振动和屈曲360 6.6 双调和算子371 6.7 圆板的振动377 7傅里叶变换及其应用389 7.1 傅里叶积分表示390 7.2 傅里叶变换398 7.3 傅里叶变换法411

圆和半平面上的迪利希莱(Dirichlet)问题—泊松积分公式

圆和半平面上的狄利克雷(Dirichlet )问题—泊松积分公式 在第一章的§2.5中,我们曾讨论过调和函数与解析函数之间的密切联系。在这一节中,我们将继续阐述这种联系。 具有物理应用的一类重要的数学问题是迪利希莱(Dirichlet )问题,即要找一个未知函数,它在某个区域内是调和的,而且在这个区域的边界上取得预先指定的值。例如图2.8所示,一半径为1的圆柱体充满导热的物质。我们知道,圆柱体内的温度是由调和函数(,)T r θ来描述的。若圆柱体表面的温度是已知的,是由2sin cos θθ所给定的,由于(1,)T θ在01,02r θ≤≥≤≥上是连续的,因此,我们的问题是要求一个单位圆上的调和函数(,)T r θ,使得2(1,) sin cos T θθθ=。这就是我们所要解的迪利希莱问题。 图 2.8 我们刚才所讨论的迪利希莱问题,其边界是简单的几何形状,如在大多数关于偏微分方程的教科书中所述的,通常用变量分离法来解,对更复杂的形状,有时要用共形映照的方法。这种方法将在以后讨论。在这节里,我们只讨论区域的边界是圆周或无限直线的情况。 一.圆的迪利希莱问题 对解边界为圆周的迪利希莱问题,柯西积分公式是有帮助的。考虑z-复平面上半径为R ,中心为原点的圆(见图2.9)设f(z)是在圆周z R =上及其内解析的函数。 图2.9 对这函数f(z)和这圆周应用柯西积分公式,对圆内的任何一点z ,我们有 1() ()2w R f w f z dw i w z π== -? (2-25)

令2 R z z =,它位于过圆点和点z 的射线上,且 2 1R z R z =>,因此,1z 位于圆的 外部。于是,由柯西定理,我们有 2 11()1 () 02-2w R w R w f w f w dw dw R i w z i z ππ==- = =? ? . (2-26) 将式(2-25)与式(2-26)的两边分别相减,我们获得 2 21 ()().2()()w R R z z f z f w dw R i w z w z π=??-?? = ???? --???? ? (2-27) 令e i i w R z re φθ==,,于是θi re z -=。将它们代入(2-27)式,我们有 222 ()e 1 ()(e )2(e )(e )i i i i i i i i R re e R r f z f R d R R re R e r θθφ π φφθφθφπ ??-??= ???? --???? ? . 将分子和分母同时乘以()()i r e R φθ-+-,则分子22R r =-, 分母2 22()()2cos()i i i i i i Re re Re re Re re R r Rr φθφθφθφθ--=--=-=+--。于是,最后我们有 22 2220 1 ()()(e ).22cos() i R r f z f R d R r Rr π φφπ φθ-= +--? 现将解析函数f(z)表示成其实部U 和V ,于是, ()(,)(,)i f re U r iV r θθθ=+, ()(,)(,)i f Re U R iV R φφφ=+, 上述方程成为 []22 22201(,)(,)(,)(,)22cos() R r U r iV r U R iV R d i R r Rr πθθφφφπφθ-+=++--? 由于这个方程两边的实部必相等,于是我们得到下列泊松(Poisson )公式 22222 1 (,)() (,)22cos() U R R r U r d R r Rr π φθφπ φθ-= +--? , (2-28)

泊松方程

泊松方程 泊松方程只得是数学中一个常见于静电学、机械工程和理论物理的偏微分方程,因法国数学家、几何学家及物理学家泊松而得名的。 在数学以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator 或Laplacian)是一个微分算子,通常写成Δ或;这是为了纪念皮埃尔-西蒙·拉普拉斯而命名的。 拉普拉斯算子有许多用途,此外也是椭圆型算子中的一个重要例子。在物理中,常用于波方程的数学模型、热传导方程以及亥姆霍兹方程。在静电学中,拉普拉斯方程和泊松方程的应用随处可见。在量子力学中,其代表薛定谔方程式中的动能项。 在数学中,经拉普拉斯算子运算为零的函数称为调和函数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆上同调的结果。 泊松方程成立的条件 泊松首先在无引力源的情况下得到泊松方程,△Φ=0(即拉普拉斯方程);当考虑引力场时,有▽Φ=f(f为引力场的质量分布).后推广至电场磁场,以及热场分布.该方程通常用格林函数法求解,也可以分离变量法,特征线法求解.

泊松方程的物理内涵 泊松方程可以看做是不可压缩的流体运动方程。方程的意义相当于穿过任意封闭曲面的液体的流量等于曲面内所包含的流体源产生液体的总量。对于电动力学中静电场,电场强度相当于流密度,净电荷相当于流体源电动力学中电场对空间坐标的二次导数与空间内电荷量成正比。 半导体中的泊松方程 泊松方程表明电荷产生电场:电位的二阶导数与电荷密度成正比。近似条件:PIN结中无载流子即全部耗尽,施主和受主完全电离。PIN结的泊松方程: (0

常用材料的弹性模量及泊松比

常用材料的弹性模量及 泊松比 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

常用材料的弹性模量及泊松比 序号材料名称弹性模量\E\Gpa切变模量\G\Gpa泊松比\μ 1镍铬钢、合金钢20679.380.25~0.3 2碳钢196~206790.24~0.28 3铸钢172~202-0.3 4球墨铸铁140~15473~76- 5灰铸铁、白口铸铁113~157440.23~0.27 6冷拔纯铜12748- 7轧制磷青铜113410.32~0.35 8轧制纯铜108390.31~0.34 9轧制锰青铜108390.35 10铸铝青铜10341- 11冷拔黄铜89~9734~360.32~0.42 12轧制锌82310.27 13硬铝合金7026- 14轧制铝6825~260.32~0.36 15铅1770.42 16玻璃55220.25 17混凝土14~23 4.9~15.70.1~0.18 18纵纹木材9.8~120.5- 19横纹木材0.5~0.980.44~0.64- 20橡胶0.00784-0.47 21电木 1.96~2.940.69~2.060.35~0.38 22尼龙28.310.10.4 23可锻铸铁152-- 24拔制铝线69-- 25大理石55-- 26花岗石48-- 27石灰石41-- 28尼龙1010 1.07-- 29夹布酚醛塑料4~8.8-- 30石棉酚醛塑料 1.3-- 31高压聚乙烯0.15~0.25-- 32低压聚乙烯0.49~0.78-- 33聚丙烯 1.32~1.42-- 常用金属材料的密度表

复变函数四川大学数学学院课程号20123140

课程号:20123140 课程名称:复变函数 总学时:68 学分: 4 先修课程:数学分析 教学目的:熟练掌握复变函数的基本理论和基本方法,对解析函数、柯西积分定理、柯西积分公式、解析函数的泰勒展开与罗朗展开、留数理论、保形变换、解析开拓、调和函数等有较深入的了解。 第一章第一章复数与复变函数 一、基本内容 复数的表示,复数的性质与运算,平面图形的复数表示,区域与约当曲线,复变函数的概念,复变函数的极限与连续性,复球面,无穷远点与扩充复平面。 二、基本要求 1.1.熟练掌握复数的模与幅角、复数的三种表示、复数的基本性质,掌握复数的乘幂与方根的求法,会用复数表示平面图形,会用复数解决一些简单的几何问题。 2.2.理解平面点集的几个基本概念,理解区域与约当曲线的概念,了解约当定理,会区分单连通区域与多连通区域。 3.3.充分理解复变函数、多值函数、反函数等概念,理解复变函数的几何表示,会求简单平面图形的变换象(或原象),理解复变函数的极限,掌握极限的等价刻划 定理,理解复变函数的连续性及其等价刻划定理,熟悉有界闭集上连续函数的性质。 4.4.了解复球面,理解无穷远点与扩充复平面。 三、建议课时安排(7学时) 1.复数、复数的模与幅角、复数的乘幂与方根2学时 2.复数在几何上的应用、复平面上的点集2学时 3.复变函数的概念、复变函数的极限与连续2学时 4.复球面与无穷远点心1学时 第二章第二章解析函数 一、基本内容 复变函数的导数与微分,解析函数及其简单性质,柯西-黎曼条件,指数函数,三角函数,双曲函数,根式函数,对数函数,一般幂函数与一般指数函数,具有多个支点的多值函数,反三角函数与反双曲函数。 二、基本要求 1.1.理解复变函数的导数的概念,掌握解析函数的定义及其简单性质,熟练掌握解析函数的等价刻划定理特别是柯西-黎曼条件。 2.2.熟练掌握指数函数的定义与主要性质,掌握三角函数的定义与基本性质,了解双曲函数定义与基本性质。 3.3.掌握幂函数与指数函数的变换性质与单叶性区域,理解并逐步掌握通过限制幅角或割破平面的方法求根式函数和对数函数的单值解析分支,了解一般幂函数与一 般指数函数,理解并掌握求具有多个支点的多值函数的支点从而使其能分出单值解 析分支的方法,会由已知单值解析分支的初值计算终值,了解反三角函数与反双曲 函数。 三、建议课时安排(11学时) 1.解析函数的概念与柯西-黎曼条件3学时 2.指数函数、三角函数与双曲函数2学时 3.根式函数2学时 4.对数函数、一般幂函数与一般指数函数2学时 5.具有多个支点的多值函数、反三角函数与反双曲函数2学时

泊松方程

泊松方程 在很多APP或者网站中常能看到泊松分布在足球预测中的应用,很久以前笔者就曾研究过泊松分布,本文笔者将对其进行更深入的探讨,运用泊松分布的原理建立预测模型,详细说明建立过程并分析预测结果,抛砖引玉,相互探讨。 首先,我们大概了解一下什么是泊松分布。泊松分布是以法国数学家泊松(1781~1840)命名的,他是19世纪概率统计学领域里的卓越人物,在数学统计领域中以他命名的理论除了泊松分布外,还有泊松定理、泊松公式、泊松方程、泊松过程、泊松积分、泊松级数、泊松变换、泊松代数、泊松比、泊松流、泊松核、泊松括号、泊松稳定性、泊松积分表示、泊松求和法等等。

简单来说泊松分布就是假设我们知道某一个事件的平均发生次数,并且假设事件与事件之间发生是相互独立的,那么我们就可以计算出这些不确定事件的发生概率分布。泊松分布被运用到很多小概率事件上,比如二战中的V-2导弹袭击伦敦、交通事故的概率、放射性衰变等。同理,在足球场上的进球从某种程度上来说就是小概率事件,所以我们可以把定义中提到的事件换成进球。 也就是说,在足球比赛中,如果我们知道对阵双方各自的预期进球数,那么1)我们就能通过运算得到一个囊括所有可能比分的概率分布图(例如图1,每种比分都有对应的概率,左下方是主队获胜比分,右上方是客队获胜比分,夹在中间的是平局比分);2)根据比分概率分布图,进而可以得出胜平负所对应的概率;3)同样还能得到大小球、双方都进球玩法的概率。 图1 泊松分布- 比分概率分布图

1. 泊松分布详细步骤 1)选择目标联赛:笔者以26个联赛为研究标的,包括五大联赛、五大联赛各自二级别联赛、荷甲、荷乙、葡超、苏超、挪威超、俄超、瑞典超、瑞士超、土超、英甲、希腊超、巴甲、中超、日职、日职乙、澳超。 2)确定数据样本范围:笔者用2014/15至2018/19这5个赛季作为被预测赛季,假设还未进行(如果是非跨年联赛则为2014至2018赛季),样本数据库从2013/14开始向前追溯至2006/07赛季。分别以被预测赛季过去1、3、5、8个赛季跨度的数据为样本进行泊松分布的概率计算(共计4个样本,且样本包含被预测赛季已赛场次)。假设2014/15是一个还未进行的赛季,作为被预测赛季,笔者以过去1个赛季(2013/14)的数据为样本来计算泊松分布概率,并且随着模拟预测场次的进行会把2014/15已赛场次包含在样本中,同时笔者还会以过去3个赛季(2011/12至2013/14)、过去5个赛季(2009/10至2013/14)、过去8个赛季(2006/07至2013/14)的数据为样本分别进行计算。这是一个动态的过程,如果被预测赛季为2015/16赛季,那么数据样本分别选自于过去1个赛季(2014/15)、过去3个赛季(2012/13至2014/15)、过去5个赛季(2010/11至2014/15)、过去8个赛季(2007/08至2014/15)。(注:通常在研究泊松分布时研究人员会选择某一个样本范围,例如3个赛季或是5个赛季,笔者之所以选择4个样本跨度是希望观察球队的概率变动趋势,与下文的研究方向有关) 3)统计数据:确定好4个样本跨度后(被预测赛季之前的1、3、5、8个赛季),需要统计各个样本中各支球队的主场场均进球数及主场场均失球数,以及整个样

(推荐)常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3.4.3统一取弹性模量206000MPa。泊松比约为0.3 )(有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.)(HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25 ;热膨胀系数加热: 10 冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常见材料的泊松比

常见材料的泊松比、弹性模量 (2007-08-26 16:26:46) 标签: 分类: 收集了几种常见材料的泊松比,供大家作分析时的参考. 轧制黄铜:0.36 轧制青铜:0.32-0.35 硬铝合金:0.26-0.33 锰合金:0.25-0.30 混凝土:0.1-0.22 一般取1/6即0.167 锌:0.27 铅:0.42 橡胶:0.47 碳钢:0.24-0.29 铸钢:0.3 合金钢:0.25-0.3 轧制钢:0.31-0.34 某试验数据: 中强混凝土(比如:C40)可取0.24 高强混凝土(比如:C70)可取0.23 超高强混凝土(比如:C100)可取0.20 特种超强混凝土(比如:C150~C200)可取0.17

序号材料名称弹性模量 \E\Gpa 切变模量 \G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土14~23 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

泊松 (Poisson, Simeon-Denis)

泊松(Poisson, Simeon-Denis) (1781—1840) “泊松是第一个沿着复平面上的路径实行积分的人.”──克兰“我建立了描述随机现象的一种概率分布.”──泊松 法国数学家.1781 年6月21日生于法国卢瓦雷省的皮蒂维耶,1840年4月25日卒于法国索镇.泊松是法国数学家、物理学家和力学家.1781年6月21日生于皮蒂维耶;1840年4月25日卒于巴黎附近的索镇. 1798年入巴黎综合工科学校深造.在毕业时,因优秀的研究论文而被指定为讲师.受到P.-S.拉普拉斯、J.-L.拉格朗日的赏识.1800年毕业后留校任教,1802年任副教授,1806年接替J.-B.-J.傅里叶任该校教授.1808年任法国经度局天文学家,1809年任巴黎理学院力学教授.1812年当选为巴黎科学院院士. 泊松的父亲是退役军人,退役后在村里作小职员,法国革命爆发时任村长.泊松最初奉父命学医,但他对医学并无兴趣,不久便转向数学.于1798年进入巴黎综合工科学校,成为拉格朗日、拉普拉斯的得意门生.在毕业时由于其学业优异,又得到拉普拉斯的大力推荐,故留校任辅导教师,1802年任巴黎理学院教授.1812年当选为法国科学院院士.1816年应聘为索邦大学教授.1826年被选为彼得堡科学院名誉院士.1837年被封为男爵.著名数学家阿贝尔说:“泊松知道怎样做到举止非常高贵.” 泊松是法国第一流的分析学家.年仅18岁就发表了一篇关于有限差分的论文,受到了勒让德的好评.他一生成果累累,发表论文300多篇,对数学和物理学都作出了杰出贡献. 泊松一生从事数学研究和教学,他的主要工作是将数学应用于力学和物理学中.他第一个用冲量分量形式写分析力学,使用后称为泊松括号的运算符号;

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━名称弹性模量E 切变模量G 泊松比μ GPa GPa ──────────────────镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39

几种特殊积分的计算方法

几种特殊积分的计算方法 1前言 积分发展的动力来自于实际应用中的需求.实际操作中,有时候可以粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值.要求简单几何形体或者体积,可以套用已知的公式.比如一个长方体状的游泳池的容积可以用长乘宽乘高求出.但如果游泳池是卵形、抛物型或者更加不规则的形状,就需要用积分来求出容积.物理学中,常常需要知道一个物理量(比如位移)对另一个(比如力)的累积效果,这时候也需要积分.在古希腊数学的早期,数学分析的结果是隐含给出的.比如,芝诺的两分法悖论就隐含了无限几何和.再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式.他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念. 在古印度数学(英语:Indian mathematics)的早期,12世纪的数学家婆什迦罗第二给出了导数的例子,还使用过现在所知的罗尔定理.数学分析的创立始于17 世纪以牛顿(Newton, I.)和莱布尼茨(Leibniz, G.W.)为代表的开创性工作,而完成于19世纪以柯西(Cauchy, A.-L.)和魏尔斯特拉斯(Weierstrass, K.(T.W.))为代表的奠基性工作.从牛顿开始就将微积分学及其有关内容称为分析.其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称.时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之.数学分析亦简称分析(参见“分析学”).数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容.微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法.围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容.积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法.积分的性质、计算、推广与直接应用构成积分学的全部内容.牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式反映了这种互逆关系,从而使本来各自独立发展的微分学和积分

常用材料的弹性模量及泊松比

常用材料的弹性模量及泊松比 数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土14~23 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - - 34 Q235钢筋210 35 HRB335级HRB400级 RRB400级 200 36 钢绞线195

调和函数

调和函数harmonic function 定义: 在区域D内存在二阶连续偏导数的实函数U(x,y,z),如果在D内满足拉普拉斯方程Δu=2u/x2+2u/y2+2u/z2=0,则称U(x,y,z)为区域D上的调和函数。 调和函数-----数学物理方程 如果二元函数f(x,y)在区域Ω内有二阶连续偏导数且满足拉普拉斯方程,则称f为区域二元函数Ω中的调和函数. 满足拉普拉斯方程 在某区域中满足拉普拉斯方程的函数。通常对函数本身还附加一些光滑性条件,例如有连续的一阶和二阶偏导数。当自变量为n个(从而区域是n维的)时,则称它为n维调和函数。例如,n=2时,调和函数u(x,y)在某平面区域内满足方程 若所考虑的区域包含一个闭圆域,例如x+y≤R,则有下列关于调和函数的平均值公式:即u(x,y)在圆心的值等于圆周上的积分平均值。 更一般地,圆内任何一点x=rcosφ,y=rsinφ(0≤r

拉普拉斯方程1 拉普拉斯方程2

形如上式右端的积分称作泊松积分。 设u(x,y)为平面区域G中的调和函数,且在G的闭包上连续,则借助于平均值公式可以证明,它不能在G 的内部取其最大值与最小值,除非它恒等于一常数。这就是调和函数的最大、最小值原理。 由泊松积分出发可解决下列狄利克雷问题:在区域G的边界嬠G上给定一连续函数?(x,y),要求给出G中的调和函数u(x,y),使其在嬠G上取?(x,y)的值,即拉普拉斯方程, 在G的边界嬠G满足一定的条件下,这个问题的解存在且惟一。 对于高维的调和函数,也有与上述类似的最大、最小值原理,平均值公式以及相应的狄利克雷问题解的存在和惟一性定理。 二维调和函数与解析函数论有着密切联系。在某区域内的调和函数一定是该区域内某解析函数(可能多值)的实部或虚部;反之,某区域内的解析函数其实部与虚部都是该区域内的调和函数,并称其虚部为实部的共轭调和函数。用复数z=x+iy的记法,将u(x,y)写成u(z),若u(z)在│z│

简单理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np 固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改。所以现在的大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们每天去食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数,(比如一直是200人),而应该符合某种随机规律:比如1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k 个学生到达的概率为: ,...1,0,! )(==-k k e k f k λλ 其中λ为单位时间内学生的期望到达人数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p ,如果我们让他开10枪,如果每击中一次目标就得一分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k ,但可以求出k 的概率分布,比如k=9的概率是50%,k=8的概率是30%……并且根据k 的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k 分”的概率。比如“得9分”可以是“射失第一发,而命中其余的9发”,它的概率是p 的9次方乘上(1-p ),当然,可能情况不只这种,我们用X 代表“没命中”,O 代表“命中”,“得9分”所有的可能的情况如下: XOOOO OOOOO OXOOO OOOOO OOXOO OOOOO

泊松公式的解

圆和半平面上的迪利希莱(Dirichlet)问题 —泊松积分公式 在第二章的中,我们曾讨论过调和函数与解析函数之间的密切联系. 在这一节中,我们将继续阐述这种联系. 具有物理应用的一类重要的数学问题是迪利希莱(Dirichlet)问题,即要找一个未知函数,它在某个区域内是调和的,而且在这个区域的边界上取得预先指定的值. 例如,一半径为1的圆柱体充满导热的物质. 我们知道,圆柱体内的温度是由调和函数T(r,θ)来描述的. 若圆柱体表面的温度是已知的,是由sinθcos2θ所T(r,θ)在0≤r≥1,0≤θ≥2π上是连续的,因此,我们的问题是要求一个单位圆上的调和函数T(r,θ),使得T(1,θ)= sinθcos2θ. 这就是我们所要解的迪利希莱问题. 我们刚才所讨论的迪利希莱问题,其边界是简单的几何形状,如在大多数关于偏微分方程的教科书中所述的,通常用变量分离法来解,对更复杂的形状,有时要用共形映照的方法. 这种方法将在以后讨论. 在这节里,我们只讨论区域的边界是圆周或无限直线的情况. 一.圆的迪利希莱问题 对解边界为圆周的迪利希莱问题,柯西积分公式是有帮助的. 考虑z-复平面上半径为R,中心为原点的圆. 设f(z)是在圆周z=R上及其内解析的函数. 对这函数f(z)和这圆周应用柯西积分公式,对圆内的任何一点z,我们有

f(z)=i π21?=-R w z w w f )(dw. (2-25) 令z=z R 2,它位于过圆点和点z 的射线上,且1z =z R 2>R ,因此,1z 位于圆z ≤R 的外部. 于是,由柯西定理,我们有 0=i π21 ?=-R w z w z f 1)(dw =dw z R w w f i R w ?=-2)(21π. (2-26) 将式(2-25)与式(2-26)的两边分别相减,我们获得 f(z)= .))(()(21 22dw z R w z w z R z w f i R w ?=????????????---π (2-27) 令w=Re θi ,z=re θi ,于是θi re z -=. 将它们代入(2-27)式,我们有 f(z)=?ππθ?θ??θθ?d e r R re e r R re f i i i i i i i i ?????? ???????---2022))(Re (Re Re )()(Re 21 . 将分子和分母同时乘以)()(θ?+--i e R r ,则 分子=R 22r -, 分母=(Re )cos(2Re ))(Re 222)()()(θ?θ?θ?θ?--+==-------Rr r R r r r i i i , 于是,最后我们有 f(z)=.)(Re )) cos(2(21202222?θ?π?π d f Rr r R r R i ?--+- 现将解析函数f(z)表示成其实部U 和V ,于是, f(re ),(),()θθθr iV r U i +=, f(Re ),(),()???R IV R U i +=,上述方程成为 U(r,[]???θ?πθθπd R iV R U Rr r R r R i r iV ),(),() cos(221),()202222+--+-=+? 由于这个方程两边的实部必相等,于是我们得到下列泊松(Poisson )

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续 若函数)(x f 在0z 的领域内(包括0z 本身)已经单值确定,并且 )()(0lim z f z f z z =→, 则称f(z)在0z 点连续。 1.6导数 若函数在一点的导数存在,则称函数在该点可导。 f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i) x u ??、y u ??、x v ??、y v ??在点不仅存在而且连续。 (ii)C-R 条件在该点成立。C-R 条件为 ???? ?? ???-=????=??y y x u x y x v y y x v x y x u ),(),(),(),( 1.7解析 若函数不仅在一点是可导的,而且在该点的领域内点点是可导的,则称该点是解析的。 解析的必要条件:函数f(z)=u+iv 在点z 的领域内(i) x u ??、y u ??、x v ??、y v ??存在。 (ii)C-R 条件在该点成立。 解析的充分条件:函数f(z)=u+iv 在领域内(i) x u ??、y u ??、x v ??、y v ??不仅存在而且连续。 (ii)C-R 条件在该点成立。 1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数: 22x u ??+2 2y u ??=0 ①由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。 ②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)? 通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分 柯西定理:若函数f(z)在单连区域D 内是解析的,则对于所有在这个区域内而且在两个公共端点A 与B 的那些曲线来讲,积分 ?B A dz z f )(的值均相等。 柯西定理推论:若函数f(z)在单连区域D 内解析,则它沿D 内任一围线的积分都等于零。 ?=C dz z f 0)( 二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿内境界线(逆时针方向)的积分。 n+1连区域柯西定理: ???? ΓΓΓΓ+++=n i i i e dz z f dz z f dz z f dz z f )(....)()()(2 1 推论:在f(z)的解析区域中,围线连续变形时,积分值不变。 2.3柯西公式 若f(z)在单连有界区域D 内解析,在闭区域D 的边界连续,则对于区域D 的任何一个内点a ,有?Γ -= dz a z z f i a f ) (21)(π其中Γ是境 界线。 2.5柯西导数公式 ξξξπd z f i n z f C n n ?+-= 1)() () (2!)( 第三章 级数 3.2复变函数项级数 外尔斯特拉斯定理:如果级数 ∑∞ =0 )(k k z u 在境 界Γ上一致收敛,那么 (i)这个级数在区域内部也收敛,其值为F(z) (ii)由它们的m 阶导数组成的级数

相关文档
最新文档