金属箔式应变片实验

金属箔式应变片实验
金属箔式应变片实验

实验A 金属箔式应变片――单臂电桥性能实验

一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、

1位数显万用表(自备)。

托盘、砝码、4

2

图1 应变片单臂电桥性能实验安装、接线示意图

四、实验步骤:

应变传感器实验模板说明:

实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R

2、R

3、R4和加热器上。传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。〕安装接线。

2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验结果填入表1画出实验曲线。

4、根据表1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δ,

δ=Δm/y FS×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g(或500g)。实验完毕,关闭电源。

五、思考题:

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

实验B 金属箔式应变片—半桥性能实验

一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。

二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。

三、需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。

四、实验步骤:

1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

图2 应变式传感器半桥接线图

2、拆去放大器输入端口的短接线,根据图2接线。注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。实验完毕,关闭电源。

表2

三、思考题:

1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。

2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。

实验C 金属箔式应变片—全桥性能实验

一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验二。

四、实验步骤:

1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

图3—1 全桥性能实验接线图

2、拆去放大器输入端口的短接线,根据图3—1接线。实验方法与实验二相同,将实验数据填入表3画出实验曲线;进行灵敏度和非线性误差计算。实验完毕,关闭电源。

表3

五、思考题:

1、测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠

R2时,是否可以组成全桥:(1)可以(2)不可以。

2某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图3—2,如何利

用这四片应变片组成电桥,是否需要外加电阻。

图3-2应变式传感器受拉时传感器圆周面展开图

实验D 金属箔式应变片单臂、半桥、全桥性能比较

一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:如图4 (a)、(b)、(c)

(a)单臂(b)半桥(c)全桥

图4 应变电桥

(a)、U0=U①-U③

=〔(R1+△R1)/(R1+△R1+R2)-R4/(R3+R4)〕E

=〔(1+△R1/R1)/(1+△R1/R1+R2/R2)-(R4/R3)/(1+R4/R3)〕E 设R1=R2=R3=R4,且△R1/R1<<1。

U0≈(1/4)(△R1/R1)E

所以电桥的电压灵敏度:S=U0/(△R1/R1)≈kE=(1/4)E

(b)、同理:U0≈(1/2)(△R1/R1)E

S=(1/2)E

(C)、同理:U0≈(△R1/R1)E

S=E

三、需用器件与单元:主机箱、应变传感器实验模板、托盘、砝码。

四、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。阐述理由(注意:实验一、二、三中的放大器增益必须相同)。实验完毕,关闭电源。

实验E直流全桥的应用—电子秤实验

一、实验目的:了解应变直流全桥的应用及电路的标定。

二、基本原理:数字电子秤实验原理如图5,全桥测量原理。本实验只做放大器输出UO 实验,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。

图5 数字电子称原理框图

三、需用器件与单元:主机箱、应变式传感器实验模板、砝码。

四、实验步骤:

1、实验模板差动放大器调零:将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连。用导线将实验模板中的放大器两输入口短接(V i=0);调节放大器的增益电位器

R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。按图3-1直流全桥接线,合上主机箱电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。

2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为

0.200V(2V档测量)或-0.200V。

3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.00V。

4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。成为一

台原始的电子秤。

5、把砝码依次放在托盘上,并依次记录重量和电压数据填入下表6。

6、根据数据画出实验曲线,计算误差与线性度。实验完毕,关闭电源。

电阻应变片粘贴实验报告

实验报告(三)电阻应变片的粘贴 实验目的: 1、初步掌握电阻应变片的粘贴技术; 2、初步掌握焊线和检查。 实验设备和器材: 1、电阻应变片 2、试件 3、砂布 4、丙酮(或酒精)等清洗器材 5、502粘接剂 6、测量导线 7、电烙铁 电阻应变片的工作原理: 1、电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化象。 2、当试件受力在该处沿电阻丝方向发生线变形时,电阻丝也随着一起变形(伸长或缩短),因而使电阻丝的电阻发生改变(增大或缩小)。 实验步骤:

1、定出试件被测位置,画出贴片定位线。 2、在贴片处用细砂布按45°方向交叉打磨。 3、然后用浸有丙酮(或酒精)的棉球将打磨处擦洗干净(钢试件用丙酮棉球,铝试件用酒精棉球)直至棉球洁白为止。 4、一手拿住应变片引线,一手拿502胶,在应变片基底底面涂上502胶(挤上一滴502胶即可)。 5、立即将应变片底面向下放在试件被测位置上,并使应变片基准对准定位线。将一小片薄膜盖在应变片上,用手指柔和滚压挤出多余的胶,然后手指静压一分钟,使应变片和试件完全粘合后再放开。从应变片无引线的一端向有引线的一端揭掉薄膜。 6、在紧连应变片的下部贴上绝缘胶布,胶布下面用胶水粘接一片连接片(焊片)。 7、将应变片的引线和连接应变仪的导线相连并焊接在连接片上,以便固定。用绝缘胶布将导线固定在梁上。 实验心得体会(必须写,不少于300字) 经过今天的这次试验我知道了电阻应变片是根据电阻应变效应作成的传感器。在发生机械变形时,电阻应变片的电阻会发生变化。使用时,用粘合剂将应变计贴在被测试件表面上,试件变形时,应变

实验一 金属箔式应变片实验报告

厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三 金属箔式应变片 ——单臂、半桥、全桥 实验台号: 专 业: 物联网工程 年 级: 2014级 班 级: 1班 学生学号: ITT4004 学生姓名: 黄曾斌 实验时间: 2016 年 5 月 20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

实验二箔式应变片三种桥路的性能比较(实验讲义)

实验二 箔式应变片三种桥路性能的比较 一、实验目地: 1. 了解金属箔式应变片的的原理、结构以及粘贴方式。 2. 了解电阻应变片测量电桥的工作原理,比较直流单臂电桥、半桥差动电桥 和全桥差动电桥的性能。 二、实验所需部件:(CSY 10B 型传感器系统实验仪) 直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、双孔悬臂梁称重传感器、称重砝码(20g ×10个)、电压表(2V 档)。 三、实验原理: 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过非平衡电桥测量电路,可以将待测量转换成电信号输出显示。如图所示。直流单臂电桥测量电路中只有R 1为电阻应变片。半桥差动电桥中电阻应变片R 1和R 2构成差动形式。全桥差动电桥中由四个应变片组成两个差动对工作。采用差动电桥测量电路,不仅可以提高电桥的灵敏度,还可以进行温度补偿和消除非线性误差。 (a) 直流单臂电桥

(b) 半桥差动电桥 (c) 全桥差动电桥 四、实验步骤: 1.差动放大器调零。 开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表(2V 档)。用“差动调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为 ±4V 。 3.确认接线无误后开启仪器电源,并预热数分钟。 调整电桥W D 电位器,使测试系统输出为零。

电阻应变片的三个实验

第一章传感器实验台介绍ZY13Sens12SB传感器技术实验台由主控台、三源板(温度源、转动源、振动源)、18个传感器、相应的实验模板、数据采集卡及处理软件、实验桌等六部分组成。 一、实验台的组成 1、主控台部分:提供高稳定的±15V、+5V、±2V±4V±6V±8V±10V可调及+2V-+24V可调四种直流稳压电源;主控台面板上还装有测电压、气压、频率、转速的数显表及计时表。音频信号源(音频振荡器)1kHz~10kHz(可调);低频信号源(低频振荡器)1Hz~30Hz(可调);气压源0-20kpa可调;高精度温度转速两用仪表(控制精度±0.5℃),RS232计算机串行接口;流量计;漏电保护器。其中电源、音频、低频、均具有断电保护功能。±2V±4V±6V±8V±10V电源与其它电源、信号Fin、Vin部分不共地。如果与其它电源同时使用时,应将其共地。因断路无输出重新开机即恢复正常。调节仪置内为温度调节、置外为转速调节。 2、三源板:装有振动源1Hz-30Hz(可调);旋转源0-2400转/分(可调);加热源常温<150℃(可调)。 3、传感器:包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器共十八种。 4、实验模块部分:应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单独采样亦能连续采样。标准RS232接口,与计算机串行工作。具有网络监控功能和用户认证功能;提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 二、电路原理 传感器模块电路原理图见模块正面 三、使用方法

电阻应变片

电阻应变片 一、应变计的分类 根据敏感栅材料可分为金属、半导体及金属或金属氧化物浆料等三类: 1、金属应变计包括丝式(丝绕式、短接式)应变计、箔式应变计和薄膜应变计; 2、半导体应变计包括体型半导体应变计、扩散型半导体应变计和薄膜半导体应变计; 3、金属或金属氧化物浆料主要是制作厚膜应变计。 二、应变计的主要参数 1、应变计的电阻值应变计的电阻是指应变计在室温环境、未经安装且不受力的情况下,测定的电阻值。应变计电阻值的选定主要根据测量对象和测量仪器的要求。 2、应变计的灵敏系数应变计的灵敏系数是指:当应变计粘贴在处于单向应力状态的试件表面上,且其纵向(敏感栅纵线方向)与应力方向平行时,应变计的电阻变化率与试件表面贴片处沿应力方向的应变(即沿应变计纵向的应变)的比值,即式中,K为应变计的灵敏系数;ε为试件表面测点处与应变计敏感栅纵线方向平行的应变;RRΔ为由ε所引起的应变计电阻的相对变化,常用的应变计灵敏系数为2.0~2.4。 3、应变计的疲劳寿命: 应变计的疲劳寿命是指:在恒定幅值的交变应力作用下,应变计连续工作,直至产生疲劳损坏时的循环次数。 三、金属电阻应变片应用与工作原理电阻应变计有两方面的应用:一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性元件构成传感器,用以对任何能转变成弹性元件应变的其它物理量作间接测量。用应变片测量时,将其粘贴在被测对象表面上。当被测对象受力变形时,应变片的敏感栅也随同变形,其电阻值发生相应变化,通过转换电路转换为电压或电流的变化,从而实现应变的测量。 金属电阻应变片的工作原理是电阻应变效应,即金属丝在受到应力作用时,其电阻随着所发生机械变形(拉伸或压缩)的大小而发生相应的变化。电阻应变效应的理论公式如下: R=ρ*(L/S)式中:ρ—电阻率(Ω·mm2/m) L—金属丝的长度(m) S—金属丝的截面积(mm2) 由上式可知,金属丝在承受应力而发生机械变形的过程中,ρ、L、S三者都要发生变化,从而必然会引起金属丝电阻值的变化。当受外力伸张时,长度增加,截面积减小,电阻值增加;当受压力缩短时,长度减小,截面积增大,电阻值减小。因此,只要能测出电阻值的变化,便可知金属丝的应变情况。这种转换关系为 ΔR/R=Koε式中:R—金属丝电阻值的变化量; Ko—金属材料的应变灵敏系数,它主要由试验方法确定,且在弹性极限内基本为常数值; ε—金属材料的轴向应变值,即ε=ΔL/L,因此又称ε为长度应变值,对金属丝而言,其值勤在0.24~0.4之间。 在实际应用中,将金属电阻应变片粘贴在传感器弹性元件或被测饥械零件的表面。当传感器中的弹性元件或被测机械零件受作用力产生应变时,粘贴在其上的应变片也随之发生相同的机械变形,引起应变片电阻发生相应的变化。这时,电阻应变片便将力学量转换为电阻的变化量输出。 电路原理:通常传感器采用四片等值电阻组成惠氏顿等桥电路。R,B为输入端,G,W为输出端,RS起到保护电路的作用。通过调节RS、R1调节电路的零点平衡。

金属箔式应变片性能实验报告

实验报告 姓名:学号:班级: 实验项目名称:实验一金属箔式应变片性能——单臂电桥,半桥 实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。 实验原理: 单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。 电桥的灵敏度:电桥的输出电压(或输出电流) 与被测应变在电桥的一个桥臂上引起的电阻变化率之 间的比值,称为电桥的灵敏度。如图是直流电桥,它 的四个桥臂由电阻R1、R2、R3、R4组成,U。是供桥电 压,输出电压为: 当R1×R3=R2×R4则输出电压U为零,电桥处于平 衡状态。 如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U发生变化。当臂工作时,电桥只有R4桥臂为应变片,电阻变为R+R,其余各臂仍为固定阻值R,代入上式有 组桥时,R1和R3,R2和R4受力方向一致。 实验步骤(电路图): (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 图1金属箔式应变片性能—单臂电桥电路 (4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。建议每旋动测微头一周即ΔX=0.5mm 记一个数值填入下表: (6)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F /V表显示的电压相应变化)。 (7) 将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示表显示为零,重复(5)过程同样测得读数,填入下表: 实验结果及分析: 单臂电桥结果: 位移(mm)-1.0 -0.5 0.5 1.0 1.5 电压(mv)-0.057 -0.044 0.012 0.025 0.036 灵敏度计算:电压变化的平均值=0.013mv S=ΔV/ΔX=0.026mv/mm 结果分析:半桥的灵敏度是单臂电桥灵敏度的2倍。 实验中的注意事项及实验感想、收获或建议等:

金属箔式应变片

实验一 传感器综合实验-金属箔式应变片 一、实验目的 1、了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、验证单臂、半桥、全桥的性能及相互之间关系。 二、所需模块及仪器设备: 直流恒压源 DH-VC2、电桥模块(只提供器件)、差动放大器(含调零模块)、电桥模 块、测微头及连接件、应变片、万用表、九孔板接口平台和传感器实验台一。 旋钮初始位置:直流恒压源 DH-VC2±4V 档,万用表打到 2V 档,差动放大增益中间位置。 三.实验原理: 传感器是实验测量获取信息的重要环节,通常传感器是指一个完整的测量系统或者装置,他能感受规定的被测量的信号并按一定的规律转化成输出信号。传感器给出的是电信号。 传感器的组成 传感器由图1-1所示的几部分组成。其中,敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。 图1-1 传感器的组成 由半导体材料制成的物性性传感器基本是敏感元件与转换元件二合一,直接能将被测量转换为电量输出,如压电传感器、光电池。热敏电阻等。 传感器的静态特性 传感器的静态特性是指当被测量的值处于稳定状态时的输入输出关系。只考虑传感器的静态特性时,输入量与输出量之间的关系式中不含有时间变量。衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。 1.线性度 传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。输出与输入关系可分为线性特性和非线性特性。从传感器的性能看,希望具有线性关系,即具有理想的输出输入关系。但实际遇到的传感器大多为非线性,如果不考虑迟滞和蠕变等因素,传感器的输出与输入关系可用一个多项式表示: 01122n n y a a x a x ...a x =++++ (1-1) 被测量 电量 敏感 元件 转换 元件 转换 电路

实验一-金属箔式应变片实验报告

成绩: 预习审核: 评阅签名: 厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三金属箔式应变片——单臂、半桥、全桥 实验台号: 专业:物联网工程 年级:2014级 班级:1班 学生学号:ITT4004 学生姓名:黄曾斌 实验时间:2016 年 5 月20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

电阻应变片例题与练习题

电阻应变片传感器例题与习题例题:

例2-3 采用阻值为120Ω灵敏度系数K =2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V ,并假定负载电阻无穷大。当应变片上的应变分别为1和1 000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。 解:单臂时40U K U ε=,所以应变为1时660102410244--?=??==U K U ε/V ,应变为1000时应为330102410244--?=??==U K U ε/V ;双臂时2 0U K U ε=,所以应变为1时 6 6 01042 10242--?=??==U K U ε/V ,应变为1000时应为 33 010*******--?=??==U K U ε/V ;全桥时U K U ε=0,所以应变为1时 60108-?=U /V ,应变为1000时应为30108-?=U /V 。从上面的计算可知:单臂时灵敏

度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。 例2-4 采用阻值R =120Ω灵敏度系数K =2.0的金属电阻应变片与阻值R =120Ω的固定电阻组成电桥,供桥电压为10V 。当应变片应变为1000时,若要使输出电压大于10mV ,则可采用何种工作方式(设输出阻抗为无穷大)? 解:由于不知是何种工作方式,可设为n ,故可得: 得n 要小于2,故应采用全桥工作方式。 例 2-5 解:(1)沿纵向粘贴时: 由112 10t E 0.49E 210N /m σ σεεμε=??= = =?, 6R R R K K 20.490.9810R εε-??=?=?=?=? (2)沿圆周向粘贴时: 66R 0.30.49100.14710R με--?=-=-??=-? 例2-6 解: 按题意要求圆周方向贴四片相同应变片,如果组成等臂全桥电路,当四片全感受应变 时,桥路输出信号为零。故在此种情况下,要求有补偿环境温度变化的功能,同时桥路输出电压还要足够大,应采取两片31R R 、贴在有应变的圆筒壁上做敏感元件,而另两片4 2R R 、

金属箔式应变片-电桥性能实验

实验一金属箔式应变片――电桥性能实验 (一)单臂电桥性能实验 一、实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器: 应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表(自备)。 三、实验原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。 图1-1 图1-2 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,

如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 Uo= R R R R E ??+?? 211/4 (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为L=%10021???- R R 。 四、实验内容与步骤 1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2.差动放大器调零。从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接并与地短接,输出端Uo 2接数显电压表(选择2V 档)。将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V 。关闭主控台电源。(Rw3、Rw4的位置确定后不能改动) 3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。 4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui ,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。 5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g 砝码加完,计下实验结果,填入下表1-1,关闭电源。 表1-1 重量(g) 电压(mV) 五、实验报告 根据表1-1计算系统灵敏度S =ΔU/ΔW (ΔU 输出电压变化量,ΔW 重量变化量)和非线性误差δf1=Δm/y F..S ×100%。(式中Δm 为输出值(多次测量时为平均值)与拟合直线的最大偏差;y F ·S 为满量程(200g )输出平均值) 六、注意事项 加在应变传感器上的压力不应过大,以免造成应变传感器的损坏!

普通金属应变片常见参数和使用方法

普通金属应变片常见参数和使用方法 本文档简要的介绍了应变及应变片相关的内容,包括个人在使用中应变片的关键参数,查到的一些应变片品牌,以及应变片的使用技巧,尽管最终应变用的是淘宝货,但这些查阅的资料对应变片的选型和使用很有帮助。其中应变计基础知识引自章和电气。 目录 关键参数 (2) 应变计命名规则 (2) 国产金属应变片举例 (2) 应变片基础知识 (3) 区分应力与应变的概念 (3) 应变片的构造及原理 (4) 惠斯通电桥概述 (5) 温度补偿 (7) 应变片粘贴 (8) 残余应力的概念 (11) 常见品牌: (12)

关键参数 应变计命名规则 常见应变计命名规则 应变计命名规则国产金属应变片举例

应变片基础知识 所谓“应力”,是在施加的外力的影响下物体内部产生的力。如图1所示: 在圆柱体的项部向其垂直施加外力P的时候,物体为了保持原形在内部产生抵抗 外力的力——内力。该内力被物体(这里是单位圆柱体)的截面积所除后得到的值 即是“应力”,或者简单地可概括为单位截面积上的内力,单位为Pa(帕斯卡)或N/m2。 例如,圆柱体截面积为A(m2),所受外力为P(N牛顿),由外力=内力可得,应力: (Pa或者N/m2) 这里的截面积A与外力的方向垂直,所以得到的应力叫做垂直应力。 图1 ,那么圆柱体的长度则 的比值所表示的伸长率(或压缩 与外力同方向的伸长(或压缩)方向上的应变称为“轴向应变”。应变表示的是伸长率(或压缩率),属于无量纲数,没有单位。由于量值很小(1×10-6百万分之一),通常单位用“微应变”表示,或简单地用μE表示。 而单位圆柱体在被拉伸的状态下,变长的同时也会变细。直径为d0的棒产生Δd的变形时,直径方向的应变如下式所示: 这种与外力成直角方向上的应变称为“横向应变”。轴向应变与横向应变的比称为泊松比,记为υ。每种材料都有其固定的泊松比,且大部分材料的泊松比都在0.3左右。

电阻应变片的结构及工作原理

电阻应变片的结构及工作原理 电阻应变片的结构如图4-1-3所示,其中,敏感栅是应变片中把应变量转换成电阻变化量的 敏感部分,它是用金属丝或半导体材料制成的单丝 或栅状体。引线是从敏感栅引出电信号的丝状或带 状导线。 (1)粘结剂:是具有一定电绝缘性能的粘结 材料,用它将敏感栅固定在基底上。 (2)覆盖层:用来保护敏感栅而覆盖在上面的 绝缘层。 (3)基底:用以保护敏感栅,并固定引线的 几何形状和相对位置。 电阻应变片能将力学量转变为电学量是利用了金属导线的应变——电阻效应。我 们知道,金属导线的电阻R 与其长度L 成正比,与其截面积A 成反比,即 A L R ρ= (4-1-3) 式中ρ是导线的电阻率。 如果导线沿其轴线方向受力产生形变,则其电阻值也随之发生变化,这一物理现象被称为金属导线的应变——电阻效应。为了说明产生这一效应的原因,可将式(4-1-3)取对数后进行微分得 ρ ρd A dA L dL R dR +-= (4-1-4) 式中,L dL 为金属导线长度的相对变化,用轴向应变来表示,即L dL =ε;A dA 是截面积的相对变化。2r A π=(r 为金属导线的半径),,r dr A dA 2= r dr 是金属导线半径的相对变化,即径向应变 r 。导线轴向伸长的同时径向缩小,所以轴向应变与径向应变r 有下列关系: μεε-=r (4-1-5) 为金属材料的泊松比。 根据实验,金属材料电阻率相对变化与其体积的相对变化之间的关系为V dV C d =ρρ,C 为金属材料的一个常数,如铜丝C =1 。 由L A V ?= 我们可导出V dV 与、r 之间的关系。 1 2 3 4 5 图4-1-3 电阻应变片 1-敏感栅;2-引线;3-粘结剂; 4-覆盖层;5-基底

金属箔式应变片半桥性能实验报告

南京信息工程大学传感器实验(实习)报告 实验(实习)名称金属箔式应变片半桥性能实验实验(实习)日期12.2得分指导老师 系专业班级姓名学号 实验目的:比较半桥与单臂电桥的不同性能、了解其特点。 实验内容: 基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。 实验步骤: 1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实 验模板放大器的调零电位器R W4,使电压表显示为零。 图2 应变式传感器半桥接线图 2、拆去放大器输入端口的短接线,根据图2接线。注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。实验完

毕,关闭电源。 实验结果: 表2 解:S=200/80=2.5 δ=Δm/y FS×100%=1/200x100%=0.5%

金属箔式应变片实验

实验A 金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压U o1= EKε/4。 三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、4 1位数显万用表(自备)。 2 图1 应变片单臂电桥性能实验安装、接线示意图

四、实验步骤: 应变传感器实验模板说明: 实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。 1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R 2、R 3、R4和加热器上。传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。〕安装接线。 2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。 3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验结果填入表1画出实验曲线。 4、根据表1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δ, δ=Δm/y FS ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g(或500g)。实验完毕,关闭电源。 五、思考题: 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

金属箔式应变片

实验二 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验原理 应变片的安装位置如图2-2所示,应变式传感器已装到应变传感器模块上。传感器中各电阻应变片已接入到“THVZ-1 型传感器实验箱”上,从左到右依次为R1、R2、R3、R4。可用万用表进行测量,R1=R2=R3=R4=350Ω。 图2-2 应变式传感器安装示意图 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: l R S ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: R l S R l S ρρ ????=-+ (2) 式中的l l ?为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×610mm mm -)。若径向应变为r r ?,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为l r r l μ??=-(),因为S S ?=2(r r ?),则(2)式可以写成: 01212R l l l k R l l l l l ρρρμμρ??????=++=++=?()() (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个

因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρρε?(),是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过调理转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (4) 式中 ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态,对单臂电桥输出电压 U= EK ε/4,式中E 为电桥供电电压,K 为应变灵敏系数。 应变式传感器信号调理实验电路图如图2-1所示。 图2-1应变式传感器信号调理实验电路图 三、实验设备 THVZ-1型传感器实验箱中应变式传感器实验单元、砝码、万用表(自备)、信号调理挂箱、应变式传感器调理模块。 四、实验内容与步骤

金属电阻应变片的种类、材料及粘贴

1.金属电阻应变片的种类金属电阻应变片种类繁多,形式多样,但常见的基本结构有金属丝式应变片、金属箔式应变片和薄膜式应变片。其中金属丝式应变片使用最早、最多,因其制作简单、性能稳定、价格低廉、易于粘贴而被广泛使用。 2.电阻应变片的结构金属丝式电阻应变片由敏感栅、基底、盖层、黏合层和引线等组成。图2-2为金属丝式应变片的典型结构图。其中敏感栅是应变片内实现应变——.电阻转换的最重要的传感元件,一般采用的栅丝直径为0. 015~ mm。敏感栅的纵向轴线称为应变片轴线,L为栅长,n为基宽。根据不同用途,栅长可为~200 mm。基底用以保持敏感栅及引线的几何形状和相对位置,并将被测件上的应变迅速、准确地传递到敏感栅上,因此基底做得很薄,一般为0. 02~ mm。盖层起防潮、防腐、防损的作用,用以保护敏感栅。用专门的薄纸制成的基底和盖层称为纸基,用各种黏合剂和有机树脂薄膜制成的称为胶基,现多采月后者。黏合剂将敏感栅、基底及盖层黏合在一起。在使用应变片时也采用黏合剂将应变片与被测件黏牢。引线常用直径为~ mm的镀锡铜线,并与敏感栅两输出端焊接。 金属箔式应变片的基本结构如图2-3所示,其敏感栅是由很薄的金属箔片制成的,厚度只有0. 01~ mm,用光刻、腐蚀等技术制作。箔式应变片的横向部分特别粗,可大大减少横向效应,且敏感栅的粘贴面积大,能更好地随同试件变形。此外与金属丝式应变片相比,金属箔式应变片还具有散热性能好、允许电流大、灵敏度高、寿命长、可制成任意形状、易加工、生产效率高等优点,所以其使用范围日益扩大,已逐渐取代丝式应变片而占主要的地位。 但需要注意,制造箔式应变片的电阻值的分散性要比丝式的大,有的能相差几十欧姆,故需要作阻值的调整。对金属电阻应变片敏感栅材料的基本要求如下。 ①灵敏系数K。值大,并且在较大应变范围内保持常数。 ②电阻温度系数小。 ③电阻率大。 ④机械强度高,且易于拉丝或辗薄。 ⑤与铜丝的焊接性好,与其他金属的接触热电势小。

金属箔式应变片——全桥性能实验实验报告

金属箔式应变片——全桥性能实验 实验报告 一. 实验目的: 了解全桥测量电路的优点。 二. 基本原理: 全桥测量电路中,将受力性质相同的两应变片接入电桥对边,受力方向不同的接入邻边,当应变片初始阻值:1234R R R R ===,其变化值 1234R R R R ?=?=?=?时,其桥路输出电压3o U KE ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三. 需用器件和单元: 应变单元电路、应变式传感器、砝码、数显表(实验箱上电压表)、±4V 电源、万用表。 四. 实验步骤:

图1 应变式传感器全桥实验接线图

1. 保持单臂、半桥实验中的3Rw 和4Rw 的当前位置不变。 2. 根据图1接线,实验方法与半桥实验相同,全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,将实验结果填入表1;进行灵敏度和非线性误差计算。 表1 全桥输出电压与加负载重量值 3. 根据表1计算系统灵敏度S ,/S u W =??(u ?输出电压变化量;W ?重量变化量);计算非线性误差:1 /100%f F S m y δ?=??,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ?满量程输出平均值。 五. 实验结果计算 1. 计算系统灵敏度S ,/S u W =??(u ?输出电压变化量;W ?重量变化量) 表2 全桥测量灵敏度

2. 计算非线性误差:1 /100%f F S m y δ?=??,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ?满量程输出平均值。 实验时,测的最大重量为80()g ,因此,0.157()F S y ?=电压表测得、 =0.15293(LABVIEW )F S y ?测得 (1) 由电压表测得数据拟合得到的方程为:0.00170.0185y x =+ 拟合得到数据: 拟合得到图像: 01020304050607080 计算得到非线性误差为: 表3 电压表测得数据计算得到非线性误差

实验报告-电阻应变片解析

实验报告 姓名:张少典班级:F0703028 学号:5070309061 实验成绩: 同组姓名:张庆庆实验日期:2008/04/14 指导老师:批阅日期: --------------------------------------------------------------------------------------------------------------------------------- 电阻应变片传感器灵敏度的测量 【实验目的】 1、了解电阻应变片传感器的转换原理; 2、掌握电阻应变片直流电桥的工作原理和特性; 3、利用电阻应变片直流电桥测量传感器的电压输出灵敏度。 【实验原理】 电阻应变片传感器由粘贴了电阻应变敏感元件的弹性元件和变换测量电路组成。被测力学量作用在一定形状的弹性元件上(如悬臂梁等)使之产生变形。这时,粘贴在其上的电阻应变敏感元件将力学量引起的变形转化为自身电阻值的变化,再由变换测量电路将电阻的变化转化为电压变化后输出。 单臂电桥: 双臂电桥: 全桥: 电桥的灵敏度:S U=n U0 4 其中n=(?R1 R1 ??R2 R2 +?R3 R3 ??R4 R4 )/(?R R )

实验电路图: 【实验数据记录、结果计算】 数据记录 单臂电桥 双臂电桥

数据处理 单臂电桥 正方向: S1(+)=B*1000=135.03 V/mm

负方向: S1(-)=B*1000=113.09 V/mm

正方向: S2(+)=B*1000=264.73 V/mm

S2(-)=B*1000=267.27 V/mm

电阻应变片

电阻应变片 电阻应变片贴片技巧公开 电阻应变片贴片技巧公开 目前市面上流行的称重传感器,高压力传感器以及扭矩传感器都是贴片工艺制造的也就是粘贴电阻应变 片。电阻应变片贴的好坏影响传感器的特性,不如精度,输岀信号大小等,如果粘贴的不好,传感器也就是一个次品无法在进行下一步的工艺。因此可以说传感器最关键最基本的一步就是粘贴电阻应变片。(电阻应变片的组成及工艺原理请参见我司撰写的其他文章)。上次“扭矩传感器技术公开”的这一文章上也大致的说了下贴片的重要性。故此,着重用一篇文章来介绍如何贴电阻应变片。下面的介绍中我以实验的方式向大家介绍这一工艺。如有其他问题也可以与我司人员联系。 一、实验目的 1?了解应变片的测量原理、结构、种类; 2?掌握应变片的粘贴技术及质量检查与防潮方法。 二、实验原理(应变片) 在机械工程测试技术中,广泛应用电阻应变片,因为它能准确地测量各种力参数。对于应变片的正确选取和粘贴质量的好坏,将直接影响应变片的性能和测量的准确性。 (一)应变片的分类 应变片可分为金属式和半导体式两大类: 金属式:丝式、箔式、薄膜式;半导体式:薄膜式、扩散式。 根据基底材料不同又可分为纸基、胶基和金属片基等。 (二)基底材料 基底材料要满足如下要求:机械强度高,粘贴容易,电绝缘性好,热稳定性好,抗潮湿性能好,挠性好(能够粘贴在曲率半径很小的曲面上),无滞后和蠕变。 1?胶基:是由有机聚合材料的薄片作为基底的称为胶基应变片;(1)酚醛、环氧树脂基底(箔式片居多), 它具有良好的耐热和防潮性能,使用温度达成180 C,并且长时间稳定性好;(2)聚酰亚胺基底,使用温 度-260 'C?400 C,绝缘性能好,因此可以做得很薄,通常为0.025mm,应变片的柔韧性好;(3)石棉、 玻璃纤维增强塑料作基底,主要在高温下使用。 (三)敏感元件材料 对敏感材料的要求:灵敏度K。在尽可能大的应变范围内是常数;K。尽可能大;具有足够的热稳定性;电 阻系数高且受温度变化的影响小;在一定的电阻值要求下,电阻系数越高,电阻丝的长度越短,因此可以减小电阻应变片的尺寸。

2实验(二)金属箔式应变片:单臂 半桥 全桥比较

第 1 页 共 3 页 电子信息工程学系实验报告 课程名称:传感器与检测技术 实验项目名称:实验(二)金属箔式应变片单臂半桥全桥 实验时间: 班级:测控091 姓名:陈云 学号: 实 验 目 的: 验证单臂、半桥、全桥的性能及相互之间关系。 实 验 环 境: CSY -910型传感器实验仪:直流稳压电源、差动放大器、电桥、F/V 表、测微头、双平行梁、应变片、主、副电源。 实 验 内 容 及 过 程: 1、实验原理 已知单臂、半桥和全桥电路的ΣR 分别为△R/R 、2△R/R 、4△R/R 。根据戴维定理可以得出测试电桥的输出电压近似等于ΣR.E4,电桥灵敏度Ku=Uo/△R/R ,于是对应单臂、半桥和全桥的电压灵敏度分别为E/4、E/2和E 。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。 2、旋钮初始位置 直流稳压电源打到±2V 档,F/V 表打到2v 档,差动放大器增益打到最大。 3、实验步骤 (1)按实验一方法将差动放大器调零后,关闭主、副电源。 (2)使用一片应变片,组建单臂电桥。 按图l 接线,图中Rx=R4为工作片,r 及Wl 为电桥平衡网络。完成接线与调整测微头使双平行梁处于水平位置(目测),将直流电源打到±4V 档,选择适当的放大增益,然后调节W1,使F/V 显示零(需预热几分钟表头才能稳定下来)。记下此时的测微头的初始刻度。(Rx 接↑的应变片) (3)旋动测微头的调节旋钮,记下梁自由端的位移和F/V 表的示值。 旋转测微头,使梁移动,每隔1mm 读一个数,将测得数值填入下表,然后关闭主、副电源。 (4)使用两片应变片,组建差动半桥,保持放大器增益不变,重复步骤(3)过程,记下所测得数据。 将R3固定电阻换为与R4(取↑应变片)受力方向相反的另一应变片(↓应变片),即取两片受力方向不同应变片,形成半桥。调节测微头使梁到水平位置(目测),调节电桥Wl 使F/V 表显示为零,重复(3)

相关文档
最新文档