沥青混合料抗车辙性能的分形描述方法_黄宝涛

沥青混合料抗车辙性能的分形描述方法_黄宝涛
沥青混合料抗车辙性能的分形描述方法_黄宝涛

第7卷 第6期2007年12月

交通运输工程学报

Journal of Traffic and T ransport ation Engineering

Vo l 17 No 16Dec.2007

收稿日期:2007-04-10

基金项目:国家西部交通建设科技项目(200631800007);国家863计划项目(2006AA11Z110)作者简介:黄宝涛(1975-),男,山东邹城人,东南大学工学博士研究生,从事路面结构与材料的振动研究。导师简介:黄晓明(1963-),男,江苏常州人,东南大学教授。

文章编号:1671-1637(2007)06-0059-05

沥青混合料抗车辙性能的分形描述方法

黄宝涛1,梁 轶2,3,崔 娥2,黄晓明1,田伟平2,李家春2

(11东南大学交通学院,江苏南京 210096;21长安大学特殊地区公路工程教育部重点实验室,

陕西西安 710064;31威海市公路局,山东威海 264200)

摘 要:为了准确模拟沥青混合料抗车辙性能,采用分形理论分析了沥青混合料微观结构,研究了粗细集料不同级配分形维数对沥青混合料抗车辙性能的影响,并根据级配分形维数公式计算了沥青混合料的分形值,进行了沥青混合料车辙试验和微观结构的电子扫描。分析结果表明:4175mm 通过率是集料尺度的分界点,集料分形维数与抗车辙性能有一致相关性,分形值越大,抗车辙能力

越高;根据路用性能设计集料级配可以定量地分析沥青混合料的级配差异和路面性能,及路面微观结构与宏观路用性能的关系。

关键词:路面工程;沥青混合料;抗车辙;粗细集料性能;分形维数中图分类号:U 414 文献标识码:A

Fractal description method of asphalt mixture rut resistance

H uang Bao -tao 1

,Liang Yi 2,3

,Cui E 2

,H uang Xiao -ming 1

,T ian We-i ping 2

,Li Jia -chun

2

(11Schoo l o f T ranspo rtat ion,So utheast U niver sity,N anjing 210096,Jiang su,China;21K ey L abor ator y fo r

Special A rea H ig hway Eng ineering of M inistr y o f Educat ion,Chang p an U niv ersity ,Xi p an 710064,

Shaanx i,China;31Weihai H ig hway Bureau,W eihai 264200,Shandong ,China)

Abstract:In o rder to accurately simulate rut r esistance capability of asphalt mixture,its micro structure w as analy zed by using fractal theor y,the influences of different fractal dimensio ns for coarse and fine aggr eg ates o n the capability w er e studied,the fractal values w ere calculated acco rding to gr adation fractal dimensio n form ulas,and the rutting test o f asphalt mixture and the electro nic scanning o f the micr ostructure w ere carried out.Analysis result show s that 4175mm passing rate is the dividing point o f agg regate scales,agg regate fractal dim ension has co nsistent pertinence w ith the capability,the big ger fractal dimension value is,the finer the capability is;gradation difference,pavement performance and the relationship betw een pav em ent micro structure and m acroscopical perform ance can be quantitativ ely analyzed by using ag gr eg ate gradation design method.2tabs,3fig s,11refs.

Key w ords:pav em ent engineering;asphalt mix ture;rut resistance;co ar se and fine ag gr eg ate performances;fractal dim ensio n

Author resumes:H uang Bao -tao (1975-),male,doctoral student of engineering,+

86-25-83791654,

hbtlf2002@https://www.360docs.net/doc/291181453.html,;H uang Xiao -ming(1963-),male,professor,+

86-25-83795184,huangxm@

https://www.360docs.net/doc/291181453.html,.

0引言

沥青混合料是具有复杂结构的非均值、多相(气相、液相、固相)和多层次(微观、细观、宏观)的复合体系,其宏观力学行为呈现出不确定性、不规则性、模糊性和非线性。宏观力学行为的复杂性是沥青混凝土材料微观结构复杂性的反映,这种复杂性需要应用相关交叉学科的最新成果进行研究,而分形几何方法正是研究非线性系统的有力工具[1]。李立寒等分析了初始空隙率大小对沥青混合料抗车辙能力影响[2];陈忠达等研究表明动抗压强度指标能较好地体现工程实际中车辙的形成规律[3-4]。本文采用分形理论对不同集料分维数的沥青混合料抗车辙性能进行分析,得出了沥青混合料分维数与宏观路用性能具有很好的相关性,从而提出了一种与路用性能相联系的沥青集料级配设计新思路。

1分形理论模型

分形的基本特征是具有层次性、不光滑、连续但处处不可微,而分维数D则是关于分形对象复杂程度与空间填充能力的一种度量,是一个稳定参数。集料分形可以简单地定义为H usdor ff维严格拓扑维的集合。分维数是一个描述复杂性的定量参数,可以起到连接材料微观结构与宏观性能之间的桥梁作用。在欧几里德几何中,可以很容易测量长度为L的直线,如用码尺l去测量,则[1,5]

L=Nl=C(1)式中:N为用码尺测量直线所需的次数。显然,不管l与N取何值,其测量长度为常数C。然而,许多自然物体是不规则的,不存在以上的简单测量关系,例如,像海岸线这样的不规则自然曲线,N l并不为常数。事实上,当l取得越小,被测量的海岸线长度L就越大,乃至趋于无穷,即

lim

l y0

L(l)=N(l)=L0l1-D y](2)式中:L0为常数;D为分维数,D I(1,2]。

对任一不规则曲线有如下关系成立

L*=N l D=C(3)式中:L*为不规则曲线的特征长度;D反映了自然物体的不规则程度。比较式(1)、(2),可以看到不规则物体用欧氏几何的经典分析是不精确的,式(2)才是不规则曲线的正确量度。

分形曲线量测推广到多维情况时,设E为欧几里德维数,则式(2)推广为

G(l)=G0l E-D(4)式中:G0为常数。式(4)适用于分形曲线、分形面积和分形体积的量测。当D为1时,G(l)和l对应于线;当D为2时,G(l)和l对应于面积;当D为3时,G(l)和l对应于体积[5-7]。

2粗细骨料的分形特征

沥青混合料是由集料、沥青胶浆和空气组成的三相体系,其中集料是由粗细集料组成,是不连续的分散相,而沥青胶浆是由填料和沥青组成,是分散介质。沥青混合料固相颗粒基质或孔隙不能完全填满剖面,且在剖面上并不是均匀分布的。在很多情况下,孔隙或颗粒基质的面积具有分形的特征,称之为质量分形维数或基质质量分形维数(在1~2之间),这些分形维数反映了混合料的微观静态结构参数。国内外已有学者采用4次Koch曲线模型评价沥青混合料孔隙特征,并通过试验确定了其相似维数,得出的结论与真实情况更为接近,评价更为合理。

2.1Koch曲线

Koch曲线的构造是取单位长度为生成元,将生成元三等分,去掉中间一份,并以2条交成60b角的等长直线连接保留的2段直线(图1),形成等长的4段直线组成的折线。以同样的方法可使每条折线变成由4N条折线组成的图形,且每条折线与生成元长度之比为1/3l。每条折线以同样的方法无穷次地作下去,得到Koch曲线,其维数为[5-7]

D=ln(N)/ln(1/l)

图1Koch曲线

Fig.1Koch cu rve

虽然粗细集料的

实际状态是随机的不

规则分形,但依据分形

几何模型宏观与微观

的相似协调性,仍然可

以通过建立混合料宏

观的规则分形模型来

理解微观表面的分形本质,从而求得混合料粗细集料的微观结构分形特征和分维数。

2.2集料体积分维数与质量分维数的关系

由于直接测量粗细集料分维数比较困难,本文采用分形统计自相似的方法来定量描述集料分维数[5]。对于混合料,设集料的直径为r,直径大于r 的颗粒数目为N(r),则

N(r)=Q]r P(r)d r W r-D(5)式中:P(r)为r的分布密度函数。当式(2)成立时,

60交通运输工程学报2007年

N (r)与N (K r )必然成比例关系,其中K >0,因此,式(5)中的D 与式(2)中的D 是一致的。下面不直接考察直径大于r 的颗粒的数目,而是用相应的质量关系来讨论颗粒分布的分维。设M(r )为直径小于r 的颗粒累积质量,M 为总质量,有

M (r )/M W r

b

(6)

显然,b 为ln [M(r )/M ]与ln (r )关系坐标图的

斜率,则

ln M(r)/M =b ln (r)+c

(7)

对式(5)求导,得

d N W r -D -1

d r 考虑到d M W r 3d N ,则r b -1

d r W r

2-D

d r,所以粗

细集料的分维数为

D =3-b

(8)

将式(6)、(8)代入式(7),可求得粒度分布的分

维数为

ln M(r )/M

=(3-D)ln (r)+c

(9)

并可得

M(r )/M =cr

3-D 当r 为r max 时,有M (r )/M 等于1,可得

M(r)/M =(r /r max )

3-D 根据整形体积定义V =M/Q ,可得

M(r)/M =Q V (r )/Q V =(r/r max )3-D

(10)

式中:Q 为混合料毛体积密度;V (r )为级配集料中粒径小于r 集料的分形体积;V 为集料的整体总体积;c 为常数。

式(10)证明了集料级配质量分布与集料颗粒级

配体积分布相同,并都与集料颗粒级配体积分维数有关。在区间(r ,r +d r)内,体积为

d V(r)=(M /Q )d (r /r max )3-D

则级配骨料总分形体积为

V 0=V -M/Q V =1-Q r 3-D

max

Q (r 3-D max -r 3-D

min )

(11)

由式(11)可知0

D =3ln r max r min +ln

V 0Q c -Q c +Q

Q c (V 0-1)

ln (r max /r min )=

3-

ln (r max )-ln (r min )ln (V 0Q c -Q c +Q )-ln [Q c (V 0-1)]

(12)

式中:Q c 为骨料密度。

由于分维数大于拓扑维,小于分形所在的空间维,即3>D >2,故1>3-D >0。而连续级配的细

集料中r min 很小,若将r 3-D

min 忽略掉,式(11)则变为整形体积,即式(13),而式(11)则成整形空隙率

V 0=1-Q /Q c

(13)

将式(12)代入式(8),可得 b =

ln (r max )-ln (r min )

ln (V 0Q c -Q c +Q )-ln [Q c (V 0-1)]

(14)3 实例分析

3.1 沥青混合料的不同集料级配分形维数确定

本文选4种级配作为研究对象[8-9],各筛孔的通过率见表1。通过对级配中值与筛孔的双对数坐标回归,得出集料级配回归分形值如下。AC 规范级

表1 各筛孔的通过率

61

第6期 黄宝涛,等:沥青混合料抗车辙性能的分形描述方法

配中值的回归方程为

ln[M(r)/M]=014512ln(r)+312666

其分维数为

D A C=3-014512=215488

路用级配的回归方程为

ln[M(r)/M]=015037ln(r)+31008

其分维数为

D P=3-015037=214963

规范OGFC-16中值回归方程为

ln[M(r)/M]=015888ln(r)+216505

其分维数为

D OGFC=3-015888=214112

规范SM A-16中值回归方程为

ln[M(r)/M]=014301ln(r)+310615

其分维数为

D SMA=3-014301=215699

312不同级配分维数沥青混合料车辙试验分析

为了使沥青混合料车辙试验结果具有可比性,试验时采用相同标号的沥青品牌来消除沥青对混合

料抗车辙性能的影响,对上述4种类型的集料级配

分别在各自最佳的沥青用量下,来分析集料级配的

分维数对沥青混合料高温性能的影响。沥青混合料

车辙试验结果见表2。

动抗压强度计算式为

表2车辙试验结果

T ab.2Wheel rutting test resu lt

级配类型动稳定度D S/

(次#mm-1)

动压力D P/

(次#mm-1)

累积永久变形量

S0/(mm#s)

d60/m m

动抗压强度D CS1/

[次#(mm2#s)-1]

动抗压强度D CS2/

[次#(m m2#s)-1]

SM A-16

级配

路用A1-16

级配

OGFC-16

级配

规范AC-16中值级配1732515866810540561411346118101164 21000010066110045361511123212001145 16579137459106379912

11256117301120 2697715244715538971311205117901115 1490612335910036721111129113401098 2540610039710037061411072114601110 1689511145810039851311288117301115 2750613350510040121611205118701126

D CS1=D S/S0

D CS2=D P/S0

(15)

动压力计算式为

D P=t60N1C1C2/d60(16)式中:D S为动稳定度;D P为动压力;S0为累积永久变形量;t60为车辙试验结束时的总时间60min;d60为对应于t60的变形量;N1为试验轮往返碾压速度,通常为42次#min-1;C1为试验机类型修正系数,曲柄连杆驱动试件的变速行走方式C1为110,链驱动试验轮的等速方式C1为115;C2为试件系数,试验室制备的试件C2为110,从路面切割的的试件C2为018。

为了进一步分析试验结果的可靠性,在电子显微镜下对这4种沥青混合料的微观结构进行了扫描[10],黑白灰度处理以后的效果见图2~3。

通过试验结果和混合料电子扫描微观图对比可知:SM A-16集料级配的分维数最大,其具有良好的抗车辙路用性能;规范推荐的AC-16中值级配的分维数次之,其抗车辙性能也是次之;路用A1-16级配分维数第3,其抗车辙路用性能也是第3位;OGFC-16级配的集料分维数最小,其抗车辙

图2微观扫描

Fig.2M icrocosm ic view s

性能也较差。由此可知,沥青混合料集料的分维数与其路用性能(尤其是抗车辙性能)具有良好的相关性。当然在道路施工中,由于OGFC-16使用了性能优良的沥青,作为大空隙(空隙率为20%)排水抗滑功能表面层(厚度为3~4cm),其路用性能和本文的试验结果是有出入的[11]。根据分形几何学理论,分维数是物质微观结构的反映,物体的

62交通运输工程学报2007年

图3微观结构

Fig.3M icrostru ctures

分维数越大,表明物体的微观结构越复杂。对于沥青混合料的集料级配分维数,其大小在微观上反映了混合料的复杂致密程度,在宏观上表现为其路用性能的良好性。

4结语

(1)将分形维数引入到沥青混合料高温抗车辙性能的研究中,通过用分形维数的大小来描述级配集料抗车辙能力的差异情况,可定量研究混合料的路用性能。

(2)通过计算论证了集料体积分维数和质量分维数具有宏观和微观相关性,进而找到了一种依据路用性能来设计沥青混合料集料级配的方法。

(3)通过混合料微观结构电子扫描图的分析,证实集料计算分形维数与集料路用性能尤其是高温抗车辙性能有紧密一致性,从而找到了一种定量分析沥青混合料级配差异的方法。

(4)本文只是从集料的角度对混合料抗车辙性能进行分析,关于沥青、温度、交通量对沥青混合料抗车辙性能的影响,还有待于进一步研究。

参考文献:

References:

[1]李维涛,孙洪泉,邢君.混凝土中的分形效应初探[J].水利

与建筑工程学报,2004,2(1):17-19.

Li We-i tao,Su n H ong-qu an,Xing Jun.T heory of fractal ap-

plied to concrete s tu dy[J].J ou rnal of Water Resources and

Architectu ral Engin eering,2004,2(1):17-19.(in C hinese) [2]李立寒,曹林涛,郭亚兵,等.初始空隙率对沥青混合料性能影

响的试验研究[J].同济大学学报:自然科学版,2006,34(6):

757-760.

Li L-i han,Cao Lin-tao,Guo Ya-bin g,et al.Influence of in-i

tial air void on p erforman ce of as phalt mixtures[J].Journal of

Tongji University:Natural Science,2006,34(6):757-760.(in

Chinese)

[3]陈忠达,袁万杰,高春海.多级嵌挤密实级配设计方法

研究[J].中国公路学报,2006,19(1):32-37.

Chen Zhong-da,Yu an W an-jie,Gao Chun-hai.Res earch on

des ign m ethod of multilevel dense bu ilt-in gradation[J].Ch-i

na Journ al of H ighw ay and Trans port,2006,19(1):32-37.

(in Chinese)

[4]陈忠达,袁万杰,薛航,等.沥青混合料高温性能评价

指标[J].长安大学学报:自然科学版,2006,26(5):1-4.

Chen Zhong-da,Yuan W an-jie,Xue H ang,et al.H igh tem-

perature stability index of hot mixed asphalt[J].J ou rnal of

Chang p an U niver sity:Natural Science Edition,2006,26(5):

1-4.(in Chinese)

[5]黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界

状态值的计算方法[J].东南大学学报:自然科学版,2007,

37(4):666-670.

Hu ang Bao-tao,Liao Gong-yun,Zh ang Jing-fang.Analytical

meth od of interlayer contact fettle in sem-i rigid-base bitum-i

nous pavemen t[J].J ournal of Southeast Un iversity:Natu ral

Science E dition,2007,37(4):666-670.(in Chin ese)

[6]Warren T L,Krajcinovic D.Random can tor set models for

the elastic-perfectly plastic contact of rough-surfaces[J].

W ear,1996,196(1/2):1-15.

[7]James P H,Luis E V.Fractal analysis of the r oug hness an d

size dis tribution of granular materials[J].Engin eering Geolo-

gy,1997,48(3/4):231-244.

[8]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解

试验[J].长安大学学报:自然科学版,2007,27(1):23-26.

Li Jia-ch un,Cui S h-i fu,T ian W e-i ping.Eros ion characteris-

tic of r oad slope and test of soil disintegration[J].Journal of

Chang p an U niver sity:Natural Science Edition,2007,27(1):

23-26.(in Chinese)

[9]吕文江,陈爱文,郝培文,等.贝雷法参数CA比对沥青混合料

性能的影响[J].长安大学学报:自然科学版,2005,25(4):5-8.

Lu Wen-jiang,Ch en A-i w en,H ao Pe-i w en,et al.E ffect of

CA ratio on asph alt mix tu re property based on Bailey

meth od[J].J ou rnal of Chang p an U niver sity:Natural Science

Edition,2005,25(4):5-8.(in Ch ines e)

[10]唐明.混凝土空隙分形特征的研究[J].混凝土,2000,

12(8):3-5.

T ang M in g.Research on the fractal characteristics of the

concrete proe[J].Concrete,2000,12(8):3-5.(in Chinese) [11]徐皓,倪富健,陈荣生,等.排水性沥青混合料耐久性[J].交

通运输工程学报,2005,5(2):27-31.

Xu H ao,Ni Fu-jian,Chen Rong-sheng,et al.Durability of

porous asphalt mix tu re[J].J ou rnal of T raffic and Transp or-

tation Engineering,2005,5(2):27-31.(in Chinese)

63

第6期黄宝涛,等:沥青混合料抗车辙性能的分形描述方法

抗车辙剂沥青混凝土施工工艺

抗车辙剂施工工艺 1、施工控制要点 1.1施工准备 施工现场的抗车辙剂应选择较高较平的位置存放,避免雨淋和长时间浸泡。 1.2拌和 (1)控制集料的加热温度为185~200 ℃。只有在高温条件下,抗车辙剂才能被充分熔融和分散,发挥出最佳效果。 (2)混合料拌和时间以沥青均匀裹覆矿料为度,干拌时间应在原来的基础上延长5~10s左右为宜。 1.3 摊铺 摊铺前熨平板应提前0.5~1小时预热至不低于120℃。 1.4 碾压 (1)根据抗车辙剂沥青混合料的温度特性,抗车辙剂沥青混合料必须在高温区(120~145℃)范围内完成达到规定压实度所必需的压实遍数,最后在80℃进行终压收光。 (2)碾压过程若出现推移现象,应立即停止钢轮压路机碾压,改用胶轮碾压。 1.5 质量控制 施工过程中,不得随意更改混合料的配合比例,施工现场油石比的检测建议采用燃烧炉法。 2、沥青混合料的拌和 为使抗车辙剂能够均匀地分散到沥青混合料中,抗车辙剂加入后应与集料进行干拌,然后再喷入热沥青进行湿拌。掺加抗车辙剂沥青混合料的施工温度应高于普通沥青混合料5℃~10℃。应严格控制拌和温度及拌和时间,每盘料拌和温度差异应小于5℃,拌和时间差异小于5秒。 (1)干拌时间:在拌合加料计量控制下,将抗车辙剂和热集料同时加入到拌合缸中进行干拌。干拌时间比常规集料干拌时间延长5~10秒左右,建议干拌总时间为20秒左右,不超过30秒;

(2)沥青温度:普通沥青预热温度控制在160℃-170℃; (3)湿拌时间:在抗车辙剂和热集料干拌后,喷入预热到160℃-170℃的热沥青,进行湿拌。湿拌时间比常规湿拌时间延长5秒左右,建议湿拌总时间控制在35~40秒左右,以拌合均匀无花白料为宜; (4)出料温度:沥青混合料出厂温度约为170℃-180℃。 3、沥青混合料的运输 3.1运输车辆 根据运距、拌和产量配备数量足够的自卸汽车,要求运力必须大于拌和机产量,要求每台汽车载重量不小于15吨。汽车应有紧密、清洁、光滑的金属底板和墙板,底板应涂一薄层适宜的防粘剂,不得有余残液积留在车厢底部。 防粘剂可以采用洗衣粉水、废机油水等,但不宜采用柴油水混合液。汽车必须备有用于保温、防雨、防污染用的毡布,其大小应能完全覆盖整个车厢。 3.2装料 装料时汽车应按照前、后、中的顺序来回移动,避免混合料级配离析。无论运距远近,无论气温高低,装完料后必须覆盖保温毡布,以防止混合料温度离析。 3.3运输 车辆在进入工程现场时,可以在沥青面层前设置湿草袋等措施,确保轮胎洁净,以免造成污染。 4、沥青混合料的摊铺 4.1施工准备 ⑴抗车辙剂沥青路面的施工,严禁在10℃以下以及雨天、路面潮湿的情况下施工。 ⑵透层油宜采用高渗透性透层油,用量为1.0~1.2kg/m2(沥青含量50%)。 ⑶粘层油宜采用SBS改性乳化沥青,应保证路面均匀满布粘层油,用量0.5~ 0.7 kg/m2(沥青含量50%)。 4.2摊铺机 抗车辙剂沥青混合料应采用履带式摊铺机,每台摊铺机应配备两套长度不小于16m的平衡梁和两套自动滑橇。 4.3找平

沥青路面车辙测试

实训九沥青路面车辙测试 车辙是路面经汽车反复行驶产生流动变形、磨损、沉陷后,在车行道行车轨迹上产生的纵向带状辙槽,车辙深度以mm计,车辙面积以2 m计。车辙的控制指标,国内没有统一指标,国外以车辙深度作为评价指标。 一、仪器与材料 可选用下列仪具与材料: (1)路面横断面仪,如图9.1所示。其长度不小于一个车道宽度,横梁上有一个位移传感器,可自动记录横断面形状,测试间距小于20cm,测试精度1mm。 图 9.1 路面横断面仪 (二)激光或超声波车辙仪,包括多点激光或超声波车辙仪等类型。通过激光测距技术或激光成像和数字图像分析技术得到车道横断面相对高程数据,并按规定模式计算车辙深度。 要求激光或超声波车辙仪有效测试宽度不小于3.2m,测点不小于13点,测试精度1mm。 (3)路面横断面尺,如图9.2所示。横断面尺为硬木或金属制直尺,刻度间距5cm,长度不小于一个车道宽度。顶面平直,最大弯曲不超过1mm。两端有把

手及高度为10~20cm的支脚,两支脚的高度相同。 图 9.2 路面横断面尺 (4)量尺:钢板尺、卡尺、塞尺,量程大于车辙深度,刻度至1mm。 (5)其他:皮尺、粉笔等。 二、方法步骤 (一)确定车辙测定的基准测量宽度 (1)对高速公路及一级公路,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度。 (2)对二级及二级以下公路,有车道去划线时,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度;无车道区划线时,以形成车辙部位的一个设计车道宽度作为基准测量宽度。 (二)确定车辙测定的间距 以一个评定路段为单位,用激光车辙仪连续检测时,测定断面间隔不大于10m。用其他方法非连续测定时,在车道上每隔50m作为一测定断面,用粉笔画上标记进行测定。根据需要也可按《公路路基路面现场测试规程》(JTG E60—2008)中随机选点方法在车道上随机选取测定断面,在特殊需要的路段如交叉路口前后壳予以加密。 (三)各种仪器的测定方法

抗车辙性能强的合理沥青路面结构初探

抗车辙性能强的合理沥青路面结构初探 孙兆辉 王铁滨 侯 芸 郭祖辛 (辽宁省交通高等专科学校,沈阳110122) (哈尔滨建筑大学交通学院,哈尔滨150008) 摘 要 本文利用系统车辙预估模型,分析研究不同沥青路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。 关键词 沥青路面结构 车辙预估模型 车辙反应1 前言 综观国内外所进行的有关车辙问题的研究,可以看出普遍存在“重材料轻结构”的现象。大量的技术措施集中在表层材料的选择和沥青混合料的组成设计等方面,随着研究的深入,路面结构是一个不可忽视的因素。 由于缺乏同类地区各高等级公路的路况实测资料,本文仅以西安试验路13种路面结构为研究对象,认为应用系统车辙预估模型(简称V ESRM 模型)分析研究不同路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。2 VESR M 模型 (1)数学模型 R D = ∫ N 2 N 1U ΒSYS N -ΑSYS dN (1) 式中:U -荷载重复作用下的路表位移(轮下位移); ΑSYS 、Β SYS -路面结构体系永久变形特征参数;N -标准轴载(B ZZ -100)作用次数。 假定每次荷载作用下轮下弯沉不变,故U 值可取在一次荷载作用下的轮下弯沉。本模型U 值采用后轴重为100kN 的汽车在路面投入使用后第n (n ≥1)年不利季节实测的轮下位移值。 (2)参数确定 本模型通过大量预估值与实测值的比较,建立了模型参数ΑSYS 与ΒSYS 二者之间的相关关系,即ΒSYS = U U r (1-ΑSYS )(2) 式中:U -荷载重复作用下的路表弯沉(意义同前);U r -荷载重复作用下的路表回弹弯沉(轮下回 弹弯沉); 其余同前。 其参数确定的具体步骤如下: 1)编制V ESRM 程序,采用高斯积分法计算车辙深度。 2)输入数据U 、N 1、N 2及参数初值ΑSYS0、ΒSYS0。根据服务中的道路车辙深度实测值反算其参数,建议路面结构体系永久变形特征参数初值ΑSYS0取0.75,再由ΒSYS 与ΑSYS 的相关关系确定ΒSYS0。 3)运行V ESRM 程序,将预测结果与实测数据相比较,如果二者数值相接近 ,误差不超过±5%,则停止运行,记录所确定的参数值,否则,通过V ESRM 程序调整参数,直至预估值与实测值非常 接近,误差控制在前述容许误差范围内,从而确定模 型参数ΑSYS 和ΒSYS 值 。其模型参数确定流程见图1。3 西安试验路概况 西安试验路铺筑在西三(西安-三原)线一级公 ?8?东 北 公 路2000年

基于抗车辙性能的AC-25沥青混合料级配设计

基于抗车辙性能的AC-25沥青混合料级配设计 摘要:以密实度最大为原则,采用逐级填充方法,研究了粗集料级配和细集料级配;采用理论计算法确定了粗细集料比例和最佳油石比。在此基础上,通过室内车辙试验进行二次级配优化,提出了用于中面层的抗车辙型AC-25沥青混合料。路用性能分析表明:抗车辙型AC-25沥青混合料的高稳定性和水稳定性明显优于规范级配沥青混合料,低温稳定性与规范级配沥青混合料相差不大,表明其具有优秀的路用性能。 关键词:道路工程;AC-25沥青混合料;级配设计;抗车辙性能;路用性能Abstract: the principle of maximizing the compactness, the filling step-down method, coarse aggregate gradation and fine aggregate gradation; The theoretical calculation method is used to determine the degree of aggregate ratio and the optimum proportion. On this basis, through the indoor rutting test two subprime optimized mix, puts forward the applied in surface layer anti-rutting type AC-25 asphalt mixture. Way-use performance analysis shows that the anti-rutting type AC-25 asphalt mixture of high stability and water stability is obviously superior to standard gradation asphalt mixture, low temperature stability and the standard gradation asphalt mixture differ not quite, that it is the way of the good with performance. Keywords: road engineering; AC-25 asphalt mixture; The gradation design; Anti-rutting performance; Way-use performance 0引言 自八十年代中期以来,我国公路交通事业迅速发展,为推动现代化建设做出了巨大贡献,沥青路面因其良好的行车舒适性和优异的使用性能得到了广泛应用。但是随着公路交通量的增加、车辆轴载的增大和渠化交通的形成,沥青路面的病害问题也越发突出,车辙更是其中问题最尖锐、危害最严重的一种[1~2]。研究表明,沥青面层内部最大剪应力分布于路面深度4~10cm范围内,而该区域一般为沥青路面结构的中面层位置,因此可以确定沥青路面的中面层为主抗车辙区。目前,我国高等级公路沥青面层基本上是按全功能要求设计的,结果必然顾此失彼,很难与各沥青层力学和功能要求相适应,从而造成沥青路面早期损坏。为了最大程度的缓解路面多功能要求所引起的矛盾,且充分发挥材料潜力,降低成本,有必要针对路面各结构层的层位功能的要求对沥青面层材料组成设计进行研究。 基于此,本文首先采用逐级填充的方法,以密实度最大为原则研究了粗集料级配和细集料级配,其次采用理论计算法确定了粗细集料比例和最佳油石比,最

沥青混合料车辙试验记录表.doc

陕蒙高速公路 沥青混合料车辙试验记录表 ------------------------------------------------------------------------------------------装 订 线------------------------------------------------------------------------

美文欣赏 1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。清风落叶舞秋韵,枝头硕果醉秋容。秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。 2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生! 3、春天来了,我要把心灵放回萦绕柔肠的远方。让心灵长出北归大雁的翅膀,乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。 4、好好享受生活吧,每个人都是幸福的。人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。 5、漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。沧桑不是自然,而是经历;幸福不是状态,而是感受。 6、疏疏篱落,酒意消,惆怅多。阑珊灯火,映照旧阁。红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。舞袖舒广青衣薄,何似院落寂寞。风起,谁人轻叩我柴扉小门,执我之手,听我戏说? 7、经年,未染流殇漠漠清殇。流年为祭。琴瑟曲中倦红妆,霓裳舞中残娇靥。冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。寂寞琉璃,荒城繁心。流逝的痕迹深深印骨。如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。邂逅的情劫,淡淡刻心。那些碎时光,用来祭奠流年,可好? 8、缘分不是擦肩而过,而是彼此拥抱。你踮起脚尖,彼此的心就会贴得更近。生活总不完美,总有辛酸的泪,总有失足的悔,总有幽深的怨,总有抱憾的恨。生活亦很完美,总让我们泪中带笑,悔中顿悟,怨中藏喜,恨中生爱。 9、海浪在沙滩上一层一层地漫涌上来,又一层一层地徐徐退去。我与你一起在海水中尽情的戏嬉,海浪翻滚,碧海蓝天,一同感受海的胸怀,一同去领略海的温情。这无边的海,就如同我们俩无尽的爱,重重的将我们包裹。

沥青混凝土路面抗滑性能的影响因素及检测方法

沥青混凝土路面抗滑性能的影响因素及检测方法 引言 随着公路事业的发展,道路的行车速度有了很大提高,与此同时,交通事故的数量也在不断增加。路面的抗滑能力直接影响高速行驶车辆的安全性,因此公路建设部门和养护管理部门越来越重视路面的抗滑性能,并将其作为高等级公路交、竣工验收及养护质量检查评定中的一项重要指标。 路面抗滑性能是指车辆轮胎受到制动时沿表面滑移所产生的力,是保证公路行车安全及维护必要的允许行车速度的一项重要指标,同时该指标也是路面设计、筑路材料、施工工艺、养护等各项技术水平的综合反映。 1 影响沥青混凝土抗滑性能的因素 一般来说,影响沥青混凝土路面抗滑性能的因素主要有两大方面:一个是路面的外在因素,另一个是路面的内在因素。 1.1 外在因素 ○1.路面潮湿程度 当路表面处于潮湿、积水状态时,摩擦系数会减小很多。因此在公路交通事故中,雨天发生的事故所占比例很高。雨水在路表面积聚,形成水膜,车速越快,轮胎与水膜接触区的水越来不及排出,使轮胎与路面不能充分接触,因此路面抗滑能力大幅度下降。 ○2路面的污染 当路面有杂物,如矿物质的尘埃、路面的油渍、轮胎磨损产生的橡胶粉末等时,也会降低路面的抗滑能力。经测试,受污染路面的摩擦系数会降低5~20%。 1.2 内在因素 ○1沥青混凝土配合比设计中沥青的用量 沥青用量对沥青混凝土路面抗滑性能的影响是非常明显的。沥青在沥青混凝土中起粘合作用,沥青用量过大,除在混凝土中形成结构沥青外,还将有自由沥青存在,自由沥青在夏季高温状态下较不稳定,会溢出路面表面,形成路面沥青膜,俗称“泛油”。泛油的沥青路面被车辆碾压后形成高低不平的形状,造成雨水排不出去,路面抗滑性能大大下降,极易导致交通事故;另外在高温时的重交通情况下,由于沥青高温强度较低,会使路面表面矿料被压入下层,而使沥青被

沥青混凝土路面的车辙预估方法

浅析沥青混凝土路面的车辙预估方法摘要:车辙是高等级沥青混凝土路面的常见病害,合适的车辙预估模型有利于预防车辙产生,延长路面寿命,提高路面的经济利用水平。介绍了车辙的产生和危害,介绍了车辙预估方法的演进,系统总结了国内外主流的车辙预估方法,以便为国内的车辙预估研究提供借鉴。 关键词:沥青混凝土路面; 车辙; 预估模型; abstract: the rut is common disease of high grade asphalt concrete pavement, appropriate rutting prediction model is conducive to the prevention of rutting, prolong the service life of road, and improve the level of utilization of pavement. introduces the origin and harm of rutting, introduces the evolution of rutting prediction method, summarized the domestic and foreign main rutting prediction method, so as to provide a reference for the prediction of rutting. key words: asphalt concrete pavement; rut; prediction model; 中图分类号:tv544+.924 文献标识码:a文章编号: 前言: 近年来,随着我国经济的不断发展,公路建设突飞猛进,高速 公路里程也随之呈直线增长,横连东西、纵贯南北、通江达海、联

层间接触对沥青路面抗车辙性能的影响

层间接触对沥青路面抗车辙性能的影响 ? 层间接触对沥青路面抗车辙性能的影响层间接触对沥青路面抗车辙性能的影响彭妙娟,赵文宣(上海大学,上海200444) 摘要:针对沥青路面车辙的影响因素,建立了沥青路面车辙分析的有限元模型,采用黏弹塑性理论,利用有限元软件ABAQUS分析了层间接触对沥青路面车辙的影响。对不同荷载、不同层间接触和不同路面结构的沥青路面的剪应力和车辙深度进行了计算。结果表明:对半刚性基层路面和柔性基层路面,良好的层间接触均能提高沥青路面的抗车辙能力;在相同荷载和层间摩阻力下,柔性基层沥青路面的车辙变形要大于半刚性基层沥青路面;对于半刚性基层路面,基面层的接触状态对沥青路面车辙的影响要比中下面层的接触状态大;在不同的层间接触和不同的沥青路面结构下,随着荷载的增大,层间接触较差的路面车辙变形大,超载对柔性基层路面车辙变形的影响要大于半刚性基层路面。关键词:道路工程;沥青路面;有限元法;车辙;黏弹塑性理论;层间接触0引言车辙是在渠化交通的道路上,沥青路面在车辆荷载反复作用下产生的竖向累积永久变形,表现为沿行车轨迹产生纵向的带状凹槽,严重时车辙的两侧会有隆起变形,是沥青路面主要的早期破坏形式之一,而层间接触状态直接影响车辙的产生。我国的道路设计一般

假设道路是层状弹性体系,然而在道路设计与施工中,由于各层材料的差异性,要达到完全黏结的状态几乎无法实现,特别是铺筑沥青面层之前,由于水稳性基层需要经过一段时间的养护,表面的灰尘清除不净等问题,经常造成层间不连续程度的加剧,导致沥青道路的使用寿命大大缩短。因此,对沥青路面层间接触的研究非常必要。Romanoschi应用弹性层状理论对层间接触和水平轮载对柔性路面使用寿命的 影响进行了研究,研究结果表明应力和应变分布受沥青路面层间接触条件影响很大[1]。Mariana对柔性路面路用性能的影响进行了研究,通过水平剪切模量定量反映层间接触情况,利用层状线弹性程序对路面结构进行了分析。结果表明,由于联结层与基层的不良接触导致路面寿命缩短可多达80%;在表面层和联结层接触不良的情况下,路面寿命对水平交通荷载特别敏感,水平力是引起表面层和联结层层间接触不良的主要原因[2]。Hyunwook等人利用大型有限元软件ANSYS对考虑层间接触状态下的半刚性基层沥青路面结构进行了模拟计算[3]。张起森根据弹性层状体系层间接触的实际状态,提出了一种考虑层间非线性的有限元增量子结构分析法,研究结果表明,这种分析方法较弹性层状体系理论假定接触界面完全滑动或完全连续的分析结果更为合理[4]。关昌余等引用古德曼(Goodman)层间结合力学模型来描述多层柔性路面结构层间的半结合状态,并基于这种力学模型给出

抗车辙新型沥青路面Word版

得分:_______ 研究生课程论文 2014~2015学年 第2学期

二〇一五年五月 抗车辙新型沥青路面 摘要:我国高速公路沥青路面早期破坏现象严重,其中高温车辙破坏是一个重要的原因。我国从混合料的级配设计方法、改性沥青方法和外掺剂方法三个方面入手研发抗车辙沥青路面,其施工需要注意拌合、运输、摊铺、碾压等关键技术。 关键词:抗车辙;沥青;混合料的级配设计;改性沥青;外掺剂。 0 引言 高速公路沥青路面早期破损问题,己成为影响我国公路健康发展的突出问题,主要表现在三个方面:(1)损坏时间早。有的建成使用后1-2年,就出现严重的损坏现象,个别路段通车当年就出现大面积损坏,远远达不到设计寿命。(2)损坏范围宽。全国各地都不同程度地存在着路面过早损坏问题。(3)损坏程度重。有的损坏不是局限在沥青表面层,而是基层也发生损坏,不得不进行路面重建。在沥青路面的早期损坏中尤其以高温车辙破坏最为突日。 1 车辙的形成 车辙是行车道轮迹带上产生的永久变形,由轮迹的凹陷及两侧的隆起组成。根据车辙的不同形成过程,可将车辙分成三大类型:失稳型车辙,是指当沥青混合料的高温稳定性不足时,沥青路面结构层在车轮荷载作用下,其内部材料因流动而产生横向位移,通常发生在轮迹处,这也是车辙的主要类型;结构型车辙,指沥青路面结构在交通荷载作用下产生的整体永久变形。这种变形主要是由于路基变形传递到路面层而产生的;磨耗型车辙,为沥青路面结构层的材料在车轮磨耗和自然环境因素作用下不断地损失而形成的车辙。汽车使用了防滑链和突钉轮胎后,这种车辙更易发生。 以上三种车辙中以失稳型车辙最为严重,其次为磨耗型车辙。由于我国大多数沥青路面

沥青混合料车辙试验

沥青混合料车辙试验 1目的与适用范围 1.1本方法适用于测定沥青混合料的高温抗车辙能力,供沥青混合料配合比设计时的高温稳定性检验使用,也可用于现场沥青混合料的高温稳定性检验。 1.2车辙试验的温度与轮压(试验轮与试件的接触压强)可根据有关规定和需要选用,非经注明,试验温度为60℃轮压为0.7Mpa。根据需要,如在寒冷地区也可采用45℃,在高温条件下试验温度可采用70℃等,对重载交通的轮压可增加至1.4MPa,但应在报告中注明。计算动稳定度的时间原则上为试验开始后45~60min之间。 1.3本方法适用于按T0703用轮碾成型机碾压成型的长300mm、宽300mm、厚50~100mm的板块状试件。根据工程需要也可采用其他尺寸的试件。本方法也适用于现场切割板块状试件,切割试件的尺寸根据现场面层的实际情况由试验确定。 2仪具与材料技术要求

2.1车辙试验机:它主要由下列部分组成: 2.1.1试件台:可牢固地安装两种宽度(300mm及150mm)规定尺寸试件的试模。 2.1.2试验轮:橡胶制的实心轮胎,外径200mm,轮宽50mm,橡胶层厚15mm。橡胶硬度(国际标准硬度)20℃时为84±4,60℃时为78±2。试验轮行走距离为230mm±10mm,往返碾压速度为42次/min±1次min(21次往返/min)。采用曲柄连杆驱动加载轮往返运行方式。 注:轮胎橡胶硬度应注意检验,不符合要求者应及时更换。 2.1.3加载装置:通常情况下试验轮与试件的接触压强在60℃时为0.7MPa±0.05MPa,施加的总荷载为780N左右,根据需要可以调整接触压强大小。 2.1.4试模:钢板制成,由底板及侧板组成,试模内侧尺寸宜采用长为300mm,宽为300mm,厚为50~100mm,也可根据需要对厚度进行调整。 2.1.5试件变形测量装置:自动采集车辙变形并记录曲

运用QC提高沥青路面抗车辙性能

运用QC提高沥青路面抗车辙性能 李建松 一、选题理由据国际性的统计资料表明,大约80%的沥青路面维修养护都因车辙变形引起。与其他开裂、水损害等病害相比,车辙病害的危险性最大,它直接威胁交通安全。与其它病害相比,车辙的维修也最难,因为它不仅发生在表面层,也经常发生在中下面层。在我国,随着汽车重车数量急剧增加及轴载的加大(特别是超载重车),车辙破坏表现为沥青混凝土路面最主要的破坏形式。产生车辙破坏的根本原因是因为沥青混凝土高温稳定性不足。如何提高沥青混合料的抗高温性能?通常采取的措施,一选用较粗级配类型,即增加粗集料用量减少细集料用量使沥青混合料类型为骨架密实结构;二采用改性沥青,仅靠混合料级配优化提高抗车辙能力是有限的,大量试验结果表明,再利用重交通A级沥青的条件下,通过减少细集料和增加粗集料将悬浮密实结构优化到骨架密实结构混合料,最多将动稳定度提高到原来的2~2.5倍。在此情况下可采用高温粘度大的低标号沥青或改性沥青,可将动稳定度在提高1~2倍。三添加外掺剂,比如说抗车辙剂、纤维、水泥、石灰等。 连霍国道主干线红山口—鄯善高速公路建设项目第十三合同段,起点:ZK3785+000,终点:ZK3844+600,全长59.6Km。本合同段位于戈壁荒漠地,属百里风区,夏季地表温度高达60多度;冬季风沙大,温度低至零下28.7度;年平均降水量25.5mm。其沥青路面设计型式为: 上面层:12.25米宽4cm中粒式沥青混凝土(AC-16C型); 下面层:12.33米宽6cm粗粒式沥青混凝土(AC-25F型)。 此结构设计与现行规范存在冲突;1结构层厚度与最大公称粒径,规范要求沥青层一层的压实厚度厚度不小于最大公称粒径的2.5~3.0倍,即AC—25沥青混凝土单层铺筑厚度为7~8CM,AC-16沥青混凝土单层铺筑厚度为5CM(在内地基本上如此设计)。结构层厚度与

抗车辙剂沥青混合料及水稳定性能分析

抗车辙剂沥青混合料及水稳定性能分析 摘要:本文研究了添加抗车辙剂以及添加抗车辙剂后再用水泥替代矿粉、加入界面改性剂对沥青混合料性能的影响。添加抗车辙荆后,沥青混合料的高温稳定性能都得到了提高,但是冻融劈裂强度比下降。再采用水泥替代矿粉作为填料后,掺加抗车辙剂的沥青混合料的冻融劈裂强度比有很大提高,而采用在沥青中混入钛酸酯偶联剂作为界面改性剂的试图改善掺加抗车辙剂的沥青混合料水稳定性的做法不理想. 关键词:抗车辙剂;沥青混合料;高温稳定性;水稳定性 Abstract: This paper studies the rutting resistance additive and rutting resistance additive and cement, and then mineral powder, the interface modifier is added to the effect on performance of asphalt mixture. Add rutting Jing, asphalt mixture high temperature stability performance is all improved, but the freeze-thaw splitting intensity ratio decreased. The cement instead of mineral powder as filler, adding anti rut asphalt mixture freeze thaw splitting strength ratio is greatly improved, and used in asphalt mixing titanate coupling agent is the interface modifier to improve mixing the anti rutting agent of water stability of asphalt mixture is not ideal. Key words: anti rutting agent; asphalt mixture; high temperature stability; water stability 为了增强中面层的抗车辙能力和耐久性,在沥青混合料中掺加了不同比例的抗车辙剂进行路用性能室内试验。室内试验结果表明,掺加抗车辙剂大幅度提高了沥青混合料的动稳定度并减小了其车辙深度,极大地改善了混合料的高温性能,但却带来了水稳定性能一定程度下降的负面影响。而我国南方地区夏季炎热高温并且降水量较大,这就意味着水损坏几率有较大程度的增加. 为减小抗车辙剂带来的负面效应,本研究试图寻找一种合适的处理措施对其水稳定性能进行改善。因此,分别采取水泥替代矿粉作为填料和在沥青中混入钛酸酯偶联剂两种措施进行试验研究,旨在改善掺加抗车辙剂沥青混合料的水稳定性能。 1 试验材料及其主要技术指标 1.1 沥青结合料 试验采用SK一90基质沥青以及国琳SBS-I—C型改性沥青。 1.2 抗车辙剂颗粒 试验中所用的PE颗粒是专门研制的用于改善热拌沥青混合料的特性尤其是其高温性能的添加剂,其主要技术指标:外观为黑色固体颗粒,粒径为2 mm-6

沥青混合料的车辙试验

沥青混合料得车辙试验 沥青混合料车辙试验就是用标准得成型方法,制成标准得混合料试件(通常尺寸为300mm*300mm*50mm),在60℃得规定温度下,以一个轮压为0、7Mpa得实心橡胶轮胎在其上行走,测量试件在变形稳定时期,每增加1mm变形需要行走得次数,即动稳定度,以次/mm表示。 动稳定度就是评价沥青混凝土路面高稳定性得一个指标,也就是沥青混合料配合比设计时得一个辅助性检验指标。 一、试验目得 (1)测定沥青混合料得高温抗车辙能力,供混合料配合比设计时进行高温稳定性检验使用。 (2)辅助性检验沥青混合料得配合比设计。 二、仪具与材料 1、CZ-4型车辙试样成型仪(见图1-1) 1)、用途:\o\ac(○,1)主要用于车辙试验时,对沥青混合料式样做碾压成型。(图1-1)错误!适用于沥青混合料其她物理力学性能实验得轮碾法式样制作。 2、主要技术指标 碾压轮: 半径500mm宽300mm 碾压轮温度范围: (可任意设定)室温~200摄氏度 承载车走行速度:6次往返/分 承载车走行距离: 300mm 承载车走行次数:0~999次(任意设定) 碾压轮压力范围: 0~12KN 碾压轮线压力(轮宽300mm,正压应力为9KN): 300N/cm 试样模型尺寸:300*300*50 cm3 整机轮廓尺寸: 200cm(长)*63cm(宽)*136 cm(高) 整机重量: 1、2吨 2.车辙试验机(见图1-2) 主要由下列部分组成: 错误!试件台:可牢固地安装两种宽度(300mm与150mm)得规定尺寸试件得试模。(图1-1) ②试验轮:橡胶制得实心轮胎。外径φ200mm,轮宽50mm,橡胶层厚15mm。橡胶硬度(国际标准硬度)20℃时为84±4;60℃时为78±2,试验轮行走距离为230mm±10mm,往返碾压速度为42次/min±1次/min(21次往返/min),允许采用曲柄连杆驱动试验台运动(试验轮不动)得任一种方式。 ③加载装置:使试验轮与试件得接触压强在60℃时为0、7MPa±0、05MPa,施加得总荷载 为78Kg左右,根据需要可以调整。 ④试模(图1-3):钢板制成,由底板及侧板组成,试模内侧尺寸长为300mm,宽为300mm,厚为50mm。

沥青路面车辙测试方法探讨

龙源期刊网 https://www.360docs.net/doc/291181453.html, 沥青路面车辙测试方法探讨 作者:耿晓栋 来源:《城市建设理论研究》2013年第04期 摘要:车辙检测是我国公路养护的重要课题。本文首先阐述了沥青路面车辙产生的原因,进而说明沥青路面的测试方法,并提出了相关的预防及处理措施,对道路工作者施工应用可以提供一些合理的参考。 关键词:沥青路面;车辙;测试方法;防治措施 Abstract: the rut detection is an important subject of our country highway maintenance. This article discussed the causes of asphalt pavement rutting, then explain the asphalt test methods, and puts forward some prevention and treatment measures of road construction workers can be used to provide some reasonable reference. Keywords: asphalt pavement; Rutting; Test methods; Prevention and control measures 中图分类号:U416.217文献标识码:A 文章编号:2095-2104(2013) 引言 随着我国公路系统的发展,沥青公路占总公路里程的比例日益增加。但是,由于我国高速公路的建设起步比较晚,优质的道路沥青比较缺乏,而且在铺设高速公路时路面结构也存在种种问题,因此路面破损的情况也经常出现,公路养护就成为建后公路最主要的问题。车辙是道路破损的最常见的病害,对道路的危害最大。 一、沥青路面车辙的产生原因 沥青路面在缓慢移动或重交通作用下会产生变形并留下永久性的微变形。随着时间的推移,这些微变形会积累并产生车辙现象。车辙随交通荷载的增大而增加。车辙是沥青混凝土路面沿轮迹纵向方向的凹陷。 1.半刚性基层路面的车辙主要产生于沥青混凝土面层,而产生车辙的主要原因是沥青混合料的高温稳定性不足,在车辆的重复荷载作用下产生变形累积。影响沥青混合料高温稳定性主要是沥青混合料的高温抗剪切能力及内摩阻力,沥青混合料产生塑性流动变形,最终骨架结构破坏失稳。 2.由于荷载作用超过路面各层的强度。发生在沥青面层以下包括路基在内的各结构层的永久性变形。成为结构性车辙。这种车辙的宽度较大,两侧没有隆起现象。横断面成v字形。

【CN109761542A】一种抗车辙沥青混合料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910208441.3 (22)申请日 2019.03.19 (71)申请人 湖州市公路管理局 地址 313000 浙江省湖州市吴兴区龙溪北 路290号 申请人 中南大学 (72)发明人 邓海斌 邓德毅 杜银飞 王嘉诚  陆新民  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C04B 26/26(2006.01) (54)发明名称 一种抗车辙沥青混合料及其制备方法 (57)摘要 本发明公开了一种抗车辙沥青混合料及其 制备方法,属于道路工程材料领域,各组分按重 量份计包括:集料90~100份、SBS改性沥青5~ 6.5份、矿粉0~10份、漂珠0.5~2.5份、胶粉0.6 ~2.8份、沥青-胶粉相容剂0.01~0.1份;本发明 提供的这种抗车辙沥青混合料,通过加入橡胶 粉,配合漂珠进一步提高混合料的阻热性能,并 且混合料本身高温性能还能得到增强;同时本发 明在混合料中掺入沥青-胶粉相容剂,改善了沥 青和胶粉之间的相容性,进一步提高了橡胶沥青 施工时的和易性和橡胶沥青的性能,将该沥青混 合料用于上面层,其阻热性能提高后,可大幅降 低最易发生车辙的中面层温度,从而显著提高整 个路面结构的抗车辙性能。权利要求书1页 说明书5页CN 109761542 A 2019.05.17 C N 109761542 A

权 利 要 求 书1/1页CN 109761542 A 1.一种抗车辙沥青混合料,其特征在于,由以下组分制成,各组分按重量份计包括:集料90~100份、SBS改性沥青5~6.5份、矿粉0~10份、漂珠0.5~ 2.5份、胶粉0.6~2.8份、沥青-胶粉相容剂0.01~0.1份。 2.根据权利要求1所述的抗车辙沥青混合料,其特征在于,所述沥青-胶粉相容剂为硬脂酸酰胺、2-巯基苯并噻唑、叔丁胺中的一种或多种混合物。 3.根据权利要求1所述的抗车辙沥青混合料,其特征在于,所述漂珠为粉煤灰漂珠,粒径≤200目,0.075mm通过率大于50%。 4.根据权利要求1所述的抗车辙沥青混合料,其特征在于,所述胶粉是由废旧的轮胎磨细制得,粒径为20~60目,密度为1.05~1.25g/cm3,其中,天然橡胶含量大于22%,灰分含量小于8%。 5.根据权利要求1所述的抗车辙沥青混合料,其特征在于,所述集料和矿粉的混合物为矿料,矿料级配为间断级配,最大公称粒径为9.5mm或13.2mm。 6.根据权利要求1~5中任一项所述的抗车辙沥青混合料的制备方法,其特征在于,包括以下步骤: (1)分别对集料、矿粉和SBS改性沥青进行预热; (2)将集料、矿粉、胶粉、沥青-胶粉相容剂依次倒入提前预热至预定温度的搅拌锅中进行搅拌; (3)将步骤(1)所得预热后的SBS改性沥青缓缓倒入搅拌锅中进行搅拌; (4)将步骤(3)搅拌好的混合料置于烘箱中,保温时间为1.5h以上; (5)将混合料放入150~160℃的烘箱中,待混合料温度均匀后,即得。 7.根据权利要求6所述的抗车辙沥青混合料的制备方法,其特征在于,步骤(1)中,将集料、矿粉提前预热至180±3℃,将SBS改性沥青提前预热至150~160℃。 8.根据权利要求6所述的抗车辙沥青混合料的制备方法,其特征在于,步骤(2)中,搅拌锅的温度为180±3℃,搅拌时间为30s。 9.根据权利要求6所述的抗车辙沥青混合料的制备方法,其特征在于,步骤(3)中,搅拌时间为150s。 10.根据权利要求6所述的抗车辙沥青混合料的制备方法,其特征在于,步骤(4)中,烘箱的温度为180±3℃,保温时间至少为1.5h。 2

沥青混合料车辙试验

沥青混合料车辙试验 (1)试验目的 本方法适用于测定沥青混合料的高温抗车辙能力,并作为沥青混合料配合比设计的辅助性检验使用。 (2)适用范围 ①适用于用轮碾成型机碾压成型的长300mm,宽300mm,厚50 mm的板块状试件,也适用于现场切割作长300mm,宽150mm,厚50mm 板块状试件。 ②非经注明,试验温度为60℃,轮压为0.7MPa。依需要,如在寒冷地区也可采用45℃或其它温度,但应在报告中注明。计算动稳定度的时间原则上为试验开始后45~60mm之间。 ⑶试验仪器 ①车辙试验机:主要组成部分有试件台、试验轮、加载装置、试模、变形测量装置、温度检测装置。 ②恒温室:车辙试验机必须整机安放在恒温室内,装有加热器、气流循环装置及装有自动温度控制设备,能保持恒温室温度60℃±1℃(试件内部温度60℃±0.5℃),根据需要亦可为其它须要的温度。用于保温试件并进行试验。温度应能自动连续记录。 ③台秤:秤量15kg,感量不大于5g. (4)试验前的准备 ①试验轮接地压强测定:测定在60℃时进行,在试验台上放置一块50mm厚的钢板,其上铺一张毫米方格纸,上铺一张新的复写纸,

以规定的700N荷载后试验轮静压复写纸,即可在方格纸上印出轮压面积,并由此求接地压强。若压强不符合0.7±0.05MPa时,荷载应予适当调整。 ②按规程规定用轮碾成型法制车辙试验试块。在试验室或工地制备成型的车辙试件,其标准尺寸为300mm×150mm×50mm的试件。 ③将试件脱模按规定的方法测定密度及孔隙率等各相物理指标。经水浸,应用电风扇将其吹干,然后再装回原试模中。 ④试件成型后,连同试模一起在常温条件下放置的时间不得少于12h。对聚合物改性沥青混合料,放置的时间以48h为宜,使聚合物改性沥青充分固化后方可进行车辙试验,但室温放置时间也不得长于一周。 (5)试验步骤 ①将试件连同试模一起,置于达到试验温度60±1℃的恒温室中,保温不少于5h,也不得多于24h。在试件的试验轮不行走的部位上,粘贴-个热电隅温度计(也可在试件制作时预先将热电隅导线埋入试件一角),控制试件温度稳定在60±0.5℃。 ②将试件连同试模移置于轮辙试验机的试验台上,试验轮在试件的中央部位,其行走方向须与试件碾压或行车方向一致。开动车辙变形自动记录仪,然后启动试验机,使试验轮往返行走,时间约1h,或最大变形达到25mm时为止。试验时,记录仪自动记录变形曲线及试件温度。

沥青路面抗滑性能的分析

沥青路面抗滑性能的分析

沥青路面抗滑性能的分析 论文关键词:沥青路面抗滑性能措施 论文摘要:分析影响路面抗滑性能的主要因素,提出提高路面抗滑性能的措施。 目前,随着国民经济的发展,高等级、重交通道路越来越多,对其要求也越来越高,而高等级公路的特点是通过能力大,支行速度快,客观上要求其行车安全舒适。由于大的通过能力加剧了对路面的磨耗作用,使路面的抗滑能力降低,而高速行车又要求路面有较高的抗滑能力来保证行车安全。我国干线公路沥青路面的抗滑性能较差,摆值小于45的路段占75%,小于40的占53%,因此雨天行车交通事故比较多。据报道,广东207国道某200米长路段,1987年春的雨季中,有一天发生交通事故9起,创我国单位长度

路段内的交通事故之最。江苏淮扬二级公路高邮县某段500米长路段内,在1987年6月13日二个雨天,发生交通事故11起,列1人,伤数人,直接经济损失达10万元以上,触目惊心的交通事故,给国家和人民的生命财产带来极大的威胁,当然,交通事故的发生是与人、车路、环境密切相关的,但与路面抗滑性能也是有密切关系的。 1、影响路面抗滑性能的主要因素 路面抗滑能力的大小用路面表面摩擦系数F(通常以摆式仪测定)来评价。而面层石料的性质、颗粒级配、路面潮湿程度、滑流性污染、沥青性质与用量又决定了摩擦系数的大小。 1.1路面石料的性质 1.1.1石料的磨光值(SPV)路面面层的微观构造是指面层石料表面的粗糙度,用石料的磨光值表示。它是决定轮胎

与路面之间湿摩擦力水平的决定因素,它反映了石料抵抗被磨光能力的大小。磨光值越高的石料,在轮胎的长期作用下,越能长时间保持其粗糙的微观构造,路面的抗滑能力也就越好。前面提到的高邮路段,面层石料为石灰岩,磨光值为33,路面摩擦系数为27-33,均达不到规范要求。所以,选用磨光值大的石料铺筑沥青面层是提高路面抗滑性能的主要措施之一。 1.1.2石料的磨耗值和压碎值石料的磨耗值是评价石料抵抗磨擦、撞击剪切等综合作用的性能指标。石料的压碎值是评价石料抵抗压碎性能的指标。路面石料长期经受轮胎的摩擦、冲击、碾压等综合作用,要维持较高水平的抗滑能力,必须要求石料的轮胎作用下,不至于磨损太大、压碎太多。因此,规范要求面层石料为石灰岩,经钻孔发现路面上层6-12mm为沥青和石屑的混和物,无粗滑料,这就是石料被磨耗的结果。 1.2颗粒级配路面面层的宏观构造指面层表面石料间的孔隙,即构造深度。而级配则是形成构造深度的关键,构造深度越大,则抗滑能力越强。集料的级配还影响着集料的裸露程度、尺寸大小、相互间距,而它们又影响着路面摩擦系数的大小。

相关文档
最新文档