超宽带

超宽带
超宽带

学术活动报告二

姓名:张建松

学号:101120087

学院:物理与信息工程学院专业:通信与信息系统

年级:2010级

导师签字:

2013 年04 月11 日

超宽带通信系统中的关键技术分析

摘要:先对超宽带技术的概念和特点进行介绍,然后对超宽带通信系统中使用的关键技术进行分析。

关键词:超宽带技术;脉冲信号;调制方式;接收技术

0 引言

随着计算机通信技术的不断发展,无线传输技术得到了广泛的应用,而超带宽(UWB)技术作为一种新型短距离高速无线通信技术正占据主导地位。UWB技术不需载波,能直接调制脉冲信号,产生带宽高达几兆赫兹的窄脉冲波形,其带宽远远大于目前任何商业无线通信技术所占用的带宽。UWB信号的宽频带、低功率谱密度的特性,目前,UWB技术在商业多媒体设备、家庭和个人网络方面的应用正在不断发展。

1 超宽带技术概述

超带宽技术又被称为脉冲无线发射技术,是指占用带宽大于中心频率的1/4或带宽大于1.5 GHz的无线发射方案。超宽带技术的主要特点如下:

1) 共享频谱资料

UWB 技术以一种新的、与其它系统共享的方式使用频谱。它使用的频谱从3.1GHz 到10.6GHz,宽度高达7500MHz, 而无需划分特定的、专有的频段。UWB 的极宽的频谱和极低的发射功率, 也使UWB 系统具有传输速率高, 系统相对简单、成本低, 功耗低等优点。

2) 传输速率高, 系统相对简单、成本低, 功耗低

UWB 通信利用其超宽带的优势, 传输速率可达1Gbps以上。传统的无线通信系统, 因为频带较窄, 要实现100Mbps以上的高传输速率, 必须采用高阶调制等方法达到较高的频谱使用效率,但这样必须需要更高的信噪比,才能保证系统的误码性能。另外,由于UWB 的发射功率受到了严格的限制,所以UWB 系统在信号发射上的功耗也很低。

3) 定位精度高

信号的定位精度与其带宽直接相关。UWB 信号的带宽一般在500MHz 以上, 远远高出一般的无线通信信号, 因此, 其所能实现的定位精度也很高。基带窄脉冲形式的信号, 因为其带宽通常在数GHz, 所以其定位精度更是可以高达厘米量级。

4)多径分辨能力强

超宽带无线电发射的是持续时间极短的单周期脉冲且占空比极低,多径信号在时间上是可分离的。

2超宽带通信系统中的关键技术

超宽带通信系统中的关键技术包含以下的几个部分。

2.1脉冲成形技术

脉冲成型的主要目的是要发射信号的功率谱密度满足美国联邦通信委员会FCC 的规定,同时要尽可能地利用规定的频谱空间以求尽可能大的发射功率。,脉冲成形技术中最具代表性的无载波脉冲是高斯单周脉冲。高斯单周脉冲是高斯脉冲的各阶导数,各阶脉冲波形可由高斯一阶导数通过逐次求导得到。随着脉冲信号阶数的增加,过零点数逐渐增加,信号中心频率向高频移动,但信号的带宽无明显变化,相对带宽逐渐下降,早期UWB系统采用1阶、2阶脉冲、信号频率成分从直流延续到2GHz,按照FCC对UWB的新定义,必须采用4阶以上的亚纳秒脉冲方能满足辐射谱要求。

2.2调制技术

调制方式是指信号以何种方式承载信息,他不但决定着通信系统的有效性和可靠性,是也影响信号的频谱结构、接收机复杂度,在UWB系统中常用的调制方式可以分为两大类:基于超宽带脉冲的调制,基于OFDM的正交多载波调制。其中基于超带宽脉冲的调制常用的有脉位调制(PPM)和脉幅调制(PAM)。

脉位调制(PPM)

PPM调制方式一般和跳时TH(Time Hoping)方式结合,适用于低速通信系统。PAM是数字通信系统最为常用的调制方式之一。在UWB系统中,考虑到实现复杂度和功率有效性,不宜采用多进制PAM(MPAM)。UWB系统常用的PAM 有两种方式:开关键控(OOK)和二进制相移键控(BPSK)。OOK可以采用非相干检测降低接收机复杂度,而BPSK采用相干检测可以更好地保证传输可靠性。

正交多载波调制(OFDM)是一种高效的数据传输方式,其基本思想是把高速数据流分散到多个正交的子载波上传输,从而使子载波上的符号速率大幅度降低,符号持续时间大大加长,因而对时延扩展有较强的抵抗力,减小了符号间干扰的影响,通常在OFDM符号前加入保护间隔,只要保护间隔大于信道的时延扩展则可以完成消除符号间干扰,OFDM相对于一般的多载波传输的不同之处是他允许子载波频谱部分重叠,只要满足子载波间相互正交则可以从混迭的子载

波上分离出数据信息,由于OFDM允许子载波频谱混迭起,其频谱效率大大提高,因而是一种高效的调制方式。

2.3 多址技术

在UWB系统中,多址技术方式与调制方式有密切联系。当系统采用调制PPM调制方式时,多址输入方式多采用跳时多址。若系统采用.BPSK方式。多址接入方式通常有两种:直序方式和跳时方式。基于上述两种基本的多址方式,许多其他多址方式陆续被提出,如:伪混沌跳时多址方式、DS-BPSK/TH混合多址方式等。由于UWB脉冲信号具有极低的占空比,其频谱能够达到GHz的数量级,因而UWB在时域中具有其他调制方式所不具有的特性。当多个用户的UWB信号被设计成不同的具有正交波形时,根据多个UWB用户时域发送波形的正交性,以区分用户"实现多址"这被称之为波分多址技术。

2.4天线的设计

能够有效辐射时域短脉冲的天线是UWB研究的另一个重要方面。UWB天线应该达到以下要求:一是输入阻抗具有UWB特性;二是相位中心具有超宽频带不变特性。即要求天线的输入阻抗和相位中心在脉冲能量分布的主要频带上保持一致!以保证信号的有效发射和接收。对于时域短脉冲辐射技术,早期采用双锥天线、V-,锥天线、扇形偶极子天线,这几种天线存在馈电难、辐射效率低、收发耦合强、无法测量时域目标的特性,只能用作单收发用途。随着微波集成电路的发展,研制出了UWB平面槽天线,它的特点是能产生对称波束、可平衡UWB馈电、具有UWB特性。

2.5信号检测与接收技术

目前,UWB接收机结构主要有:Rake接收机、发射-参考(TR)接收机、差分接收机和能量接收机。后三种原理相似,结构要比Rake接收机简单,而且大部分模块可以用模拟器件实现,对同步精度要求不高,但这3种都属于非相干接收机,比相干接收机有3dB的性能损耗,传输速率不高。当然可以通过多进制调制,增加占空比,提高数据的传输速率,但同时会造成性能的恶化。对于高速数据传输还是要选择相干接收机。全数字Rake接收机能达到很高的速率、可灵活重新配置和调整,但硬件目前难以实现。另外一种选择是用模拟/数字混合结构实现Rake接收机,在前段采用模拟的匹配滤波器以降低采样率和对DSP的处理能力的要求。

高数据率情况下,Rake要解决两个问题,一是同步,二是均衡。同步技术

对于UWB系统来说,十分关键。UWB信号同步问题的主要挑战是同步精度与捕捉速度。低占空比UWB信号使其频谱相当宽,低发射功率的限制加剧了UWB信号的捕获难度。同时,由于多径的存在,可能有几条多径满足同步判决的条件。这就使得UWB系统的同步具有多种捕获状态和较大的搜索空间。这里的同步可以分为:分组同步、码同步和信道估计,所要求的定时精度高、性能优良、处理速度快等。至于均衡,可以考虑联合Rake与均衡器的设计方法。通过RAKE接收捕捉各条径的能量以抵抗衰落,同时利用均衡来消除符号间干扰。目前对接收机在多径和各种干扰环境下的性能分析通常基于RAKE接收机,在具体实现上,有几种路径选取方法可以用,例如选择信号最强的L条路径或是最先到达的L条路径。合并策略也可采用最大比合并或等增益合并,前者的性能更好,只是实现难度较大,从仿真结果来看,就UWB信道特性而言,选择4-6条路径进行合并已可获得接近最佳的性能,

3 总结

UWB具有因抗干扰性能强、传输速率高、带宽极宽等优势,被广泛应用于室内通信、高速无线LAN等领域。但对于其主要的技术还有待改进和进一步优化。如:克服多径、降低系统误判、减小同步系统实现的复杂度是UWB同步系统研究的主要方向。

参考文献

[1]张在琛,毕光国.超宽带关键技术分析及发展策略的思考[J].电气电子教学学报.3(26).2004.6.

[2].庞海生.朱诗兵.超宽带及其关键技术[J].电信技术.2005.年第4期.

超宽带UWB无线通信技术

超宽带(UWB)无线通信技术 摘要本文介绍了UWB的概念、主要技术特点,并把UWB与目前较为广泛使用的IEEE802.11、Bluetooth等短距离无线通信技术进行了比较,最后对UWB的应用前景进行了分析与展望。 UWB(Ultra Wide Band,超宽带)是一种以极低功率在短距离内高速传输数据的无线技术。这种原来专属军方使用的技术随着2002年2月美国联邦通信委员会(FCC)正式批准民用而备受世人的关注。UWB具有一系列优良独特的技术特性,是一种极具竞争力的短距无线传输技术。 1、UWB的概念 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,即不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB是利用纳秒级窄脉冲发射无线信号的技术,适用于高速、近距离的无线个人通信。按照FCC的规定,从3.1GHz到10.6GHz之间的7.5GHz的带宽频率为UWB 所使用的频率范围。 从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。 从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。 2、UWB的主要技术特点 UWB是一种“特立独行”的无线通信技术,它将会为无线局域网LAN和个人局域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。UWB解决了困扰传统无线技术多年的有关传播方面的重大难题,具有对信道衰落不敏感、发射信号功率谱密度低、被截获的可能性低、系统复杂度低、厘米级的定位精度等优点。 UWB具有以下特点: 2.1抗干扰性能强 UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。接收时将信号能量还原出来,在解扩过程中产生扩频增益。因此,与IEEE 802.11a、IEEE 802.11b和蓝牙相比,在同等码速条件下,UWB具有更强的抗干扰性。 2.2传输速率高

无线宽带上网使用手册

无线宽带上网使用手册 一、无线宽带上网的介绍 中国电信无线宽带上网采用了通用的无线局域网技术,是中国电信有线宽带接入的延伸和补充,可充分满足您上网便利性、个人化的需求。中国电信无线宽带用户可使用带无线网卡的电脑、等,在无线网络覆盖区快速访问中国电信宽带互联网。 中国电信无线宽带上网具有以下突出特点: 、无线互联:持续连接,移动办公,随时随地享受网上证券、视频点播、远程教育、远程医疗、视频会议、网络游戏等一系列宽带信息增值服务、高速接入:可提供最大的共享带宽,充分满足客户对宽带业务的需求,非常适合高速上网和视频服务等宽带业务。 、安全可靠:利用证书加密、加密等先进技术保障用户账号及密码的安全。 、全国漫游:在中国电信的无线宽带网络覆盖热点区域可漫游使用。 二、无线宽带上网的使用条件 、计算机硬件要求: 配置符合标准功能模块的笔记本电脑或。 、网络环境要求 申请了中国电信无线宽带上网的用户,可在中国电信无线宽带网络覆盖的热点区域高速自由上网。具备全国漫游服务功能的我的家客户和商务领航客户可实现跨省漫游。 三、无线宽带上网的使用 (一)您在家里使用无线上网

、开启电脑的功能,开启智能无线猫。 、查找并连接无线网络: 当您第一次使用无线连接时,建议使用家客户端上的“一键通”功能建立电脑与智能无线猫的连接。此后,在正常情况下,电脑开机时会主动连接上智能无线猫的家庭无线网络。 使用家客户端的“一键通”功能,您可以免去繁琐的无线密码配置过程。具体步骤如下: 第一步:点击家客户端上的“查看无线网络”->“一键通”按钮 第二步:点击“开始连接”,并在分钟内按下智能无线猫上的“”按钮;如果你先按下了智能无线猫的“”按钮,请在分钟内点击“开始连接”。

超宽带(UWB)无线定位技术

摘要 随着无线通信技术的高速发展,人们对无线通信系统的要求日益提高,超宽带(Ultra-Wideband,UWB)技术凭借其高速率的数据传输、极低的功耗以及其精准的定位等性能,逐渐成为无线通信领域研究的一个热点,受到了广泛的关注。 本文首先介绍了超宽带(UWB)技术的历史背景及其定义和特点。其次针对超宽带(UWB)的原理及其波形进行了研究和探讨。然后论述了超宽带(UWB)的调制与接收,并主要分析了PPM-TH-UW,PAM-DS-UWB,MB-OFDM-UWB这三种调制方式。最后本文重点介绍了超宽带(UWB)的无线定位技术,首先是对其发展和定义进行了概述,其次分别介绍了超宽带无线定位的参数及其几何模型,重点对UWB定位中TOA 的算法进行了研究,最后通过仿真对定位算法的实现做出了验证并得到了重要结论。关键词:超宽带(UWB),无线定位技术 论文类型:理论研究性 Title:Ultra-wideband(UWB)wireless positioning technology Major:Communications technology Name:XXXX Signature:

Supervisor:XXXX Signature: Abstract With the rapid development of wireless communication technology, the wireless communication system of the increasing demand, ultra wideband (Ultra-Wideband, UWB) technology by virtue of its high data rate, low power consumption and its precise positioning performance, has become the field of wireless communication research a hot spot, has received the widespread attention. This thesis first introduces the ultra wideband (UWB) technology to the historical background and the definition and characteristics of. Secondly, ultra wideband (UWB) principle and waveform are studied and discussed. And then discusses the ultra wideband (UWB) modulation and receiving, and primary analysis of PPM-TH-UW, PAM-DS-UWB, MB-OFDM-UWB the three modulation methods. Finally, this thesis introduces the ultra wideband (UWB) wireless positioning technology, first of its development and definition are outlined, followed by introduces UWB wireless positioning parameters and geometry model, focus on the localization of UWB TOA algorithm is studied, finally through the simulation of positioning algorithm to verify and obtained important conclusion. Key words:ultra wideband (UWB), wireless positioning technology. Type of thesis:theoretical research 目录 第一章超宽带(UWB) (3) 1.1 UWB技术的发展 (3) 1.2 UWB的定义 (3) 1.3 UWB的技术特点 (5) 第二章UWB的原理及其波形 (6)

超宽带(UWB)信号的时频特性

超宽带(UWB )信号的时频特性1 孙超,周正 摘 要:由于超宽带(UWB )信号属于非平稳信号,其时频特征更能反映信号的本质属性。为了研究UWB 信号的特征,首先介绍了目前常用的三种UWB 信号的调制方式,然后提出使用时频分析的方法对UWB 信号进行分析,使用基于布莱克曼窗的短时傅立叶变换(STFT )对采用不同调制方式生成的UWB 信号进行分析,并且根据不同UWB 信号各自的特点,结合仿真结果从时域和频域联合特征的角度对UWB 信号进行了新的认识,并提出需要进一步进行研究的问题。 关键词:超宽带;时频分析;短时傅立叶变换 美国联邦通信委员会(FCC )对超宽带(UWB )无线系统的定义是分数带宽大于20%或者10dB 带宽大于500MHz [1]。 自从2002年FCC 开放3.1~10.6GHz 频带给UWB 设备使用之后,就掀起了UWB 技术用于民用高速率、低功耗通信设备的研究热潮,新的技术、新的产品不断涌现。目前UWB 的调制方式主要有PPM ,P AM ,DS -UWB ,MB -OFDM 等,由于新的调制方式的使用,如何分析不同调制方式下的UWB 信号成为人们目前面临的新问题。由于UWB 信号的生成方式与传统的窄带信号不同,是典型的非平稳信号,目前建立在使用传统的傅立叶分析方法分析信号的手段无法完全确定UWB 信号的特征,需要采用新的分析方法以达到正确认识UWB 的目的。 本文使用基于布莱克曼窗的短时傅立叶变换分析3种常见的UWB 信号,从时频域的角度对UWB 的特征进行分析。 1、UWB 信号的生成[2] 产生UWB 信号最常用和最传统的方法是在非常短的时间内发射脉冲信号,这种方式被称为冲击无线电(Impulse Radio ,IR )。常用的调制方式包括脉冲位置调制(PPM )和脉冲幅度调制(P AM ),并且为了控制生成信号的频谱,数据符号编码需要进行伪随机化或者伪噪声化。此外,UWB 信号的调制方式还包括引入时间抖动的跳时(TH )调制方式直接序列扩频(DSSS )调制方式。根据FCC 关于UWB 信号的定义,可以将7.5GHz 的带宽分成14个子信道,其中每个子信道带宽为528MHz ,采用OFDM 调制方式,称为MB -OFDM 调制方式。本文将分析TH -PPM 、DS -P AM 和MB -OFDM 信号的时频特性,根据参考文献2,TH -PPM -UWB 信号的生成表达式为: ∑+∞ ?∞=???= j j j s a jT t p t s )()(εη (1) 其中p (t )表示发射的脉冲波形,T s 为一个码元的周期,ηj 为跳时码序列,a j 为待传输的信息,取值为0或1,ε为脉冲偏移时间。 P AM -DS -UWB 信号生成形式为 -1- 1本课题得到国家自然科学基金项目(60372097;60432040;60572158;60572020)、北京市自然科学基金项目(4052021)、教育部博士点专项基金项目(20060013008)和韩国仁荷(UWB-ITRC )合作项目的资助。 北京邮电大学无线网络实验室,北京(100876) E-mail :zzhou@https://www.360docs.net/doc/2a1338764.html,

超宽带无线通信技术及应用

超宽带无线通信技术及应用毕业设计(论文)专业 ___________ 无线电技术 班次11613 ____________________ 姓名 ___________ 曾麒麟

指导老师 ________ 杨新明 成都工业学院 二0 一四年

超宽带无线通信技术及主要应用 摘要:相对有线通信,无线通信最大的优点在于其可移动性。但是,却要面对恶劣的无线通信环境和有限的频谱资源的挑战。与此同时,人们对无线通信系统的要求在不断地提高,希望其能提供更高的数据传输速率。在这样的背景下, 超宽带技术引起了人们的重视,已逐渐成为无线通信领域研究开发的一个热点。超宽带的核心是冲激无线电技术,其带宽大于目前所有通信技术的带宽,且抗干扰性能强、传输速率髙、系统容量大、功耗低等优点,满足10m之内的无线个人局域网。本文介绍了超宽带无线通信技术(UWB)的发展背景,并对脉冲信号波形的产生、调制技术进行了分析讨论,以及对UWB接收机技术、多址技术等方面进行了论述。本文仅对UWB技术在无线个人局域网和军用中的应用进行了论述,以及提出了UWB技术的不足之处和解决方案,最后对UWB技术的开发和发展前景作了展望。 [关键词]超宽带无线通信技术;无线个人局域网;多址技术;脉冲调制

成都工业学院 通信工程系毕业设计论文

目录 前言 0 第1章绪论 (1) 第2章UWB技术简介 (3) 2.1超宽带无线技术的背景 (3) 2.2超宽带无线技术的概念 (4) 2.3超宽带无线技术的主要特点 (5) 2.4超宽带与其他近距离无线通信技术的比较 (6) 2.5超宽带系统对其它系统的干扰 (8) 第3章超宽带技术的关键技术 (9) 3.1超快带系统的基本模型 (9) 3.2脉冲成形技术 (9) 3.2.1超宽带系统对脉冲波形的要求 (10) 3.2.2 高斯脉冲的时域波形 (10) 3.2.3高斯脉冲的频谱特性 (12) 3.2.4形成因子〉对高斯脉冲的影响 (14) 3.3超宽带脉冲调制技术 (15) 3.3.1脉冲位置调制(PPM (16) 3.3.2脉冲幅度调制(PAM (16) 3.3.3多频带脉冲调制 (17) 3.4超宽带系统多址技术 (17) 3.4.1............................................................................................ TH-PPM 多址方 式18 3.4.2D S-CDMA 多址方式 (19) 3.4.3P CTH超宽带多址技术 (20) 3.4.4几种多址技术的比较 (20) 第4章超宽带接收机关键技术 (22) 4.1RAKE 接收机 (22) 4.2多径分集接收策略和多径合并策略 (23) 4.2.1多径分集接收策略 (23) 4.2.2多径合并策略 (24) 4.3 定时同步技术 (24) 4.4信道估计技术 (25) 第5章UWB技术的标准化进程及其应用 (26) 5.1UWB信号的频谱管理 (26) 5.1.1规范UWB言号频谱的必要性 (26) 5.1.2F CC关于UWB言号频谱的规范 (26) 5.2超宽带技术的应用 (27) 5.2.1超宽带技术在高速无线网络中的应用 (28)

超宽带信号的光学产生方法以及应用

封装、检测与设备 Package ,櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶櫶 Test and Equipment DOI :10.3969/j.issn.1003-353x.2011.09.016 September 2011 Semiconductor Technology Vol.36No.9 719 基金项目:国家自然科学基金资助项目(61077046);吉林大学基本科研业务费资助项目(200903084)超宽带信号的光学产生方法以及应用 李沫,董玮 (吉林大学电子科学与工程学院集成光电子学国家重点联合实验室吉林大学实验区,长春130012)摘要:为了实现跨越不同网络的无间断服务和随时随地的高速率数据接入,提出了采用光学 方法产生超宽带信号的技术,该技术的采用避免了额外的电光或者光电转换,节省了系统资源,有益于全光网络的形成。基于国内外的诸多研究成果,首先对利用光学方法产生超宽带信号的技术方案进行了认知与分析,在此基础上,以元器件为分类标准归纳总结出三类在光领域中产生超宽带信号的方法;然后结合实例对超宽带信号进行了应用分析,证明了超宽带信号的实用性与优越性;最后指出了超宽带系统未来的发展趋势以及存在的问题。 关键词:超宽带;色散设备;光学频率鉴别器;半导体光放大器;保偏光纤中图分类号:TN929.11文献标识码:A 文章编号:1003-353X (2011)09-0719-07 Optical Generation Methods and Applications of UWB Signals Li Mo ,Dong Wei (State Key Laboratory on Integrated Optoelectronics Jilin University Test Region ,College of Electronic Science and Engineering ,Jilin University ,Changchun 130012,China ) Abstract :In order to realize the continuous service across different network and high-speed data access of anywhere and anytime ,the technology of optical methods to generate UWB (ultra-wide band )signals was proposed.With this technology ,the extra electro-optical or photoelectric conversion was avoid ,the system resources were saved and it was beneficial to form the all-optical network.Based on many research at home and abroad ,the technology using optical methods for UWB signal generation was analyzed.On this basis ,with components for classification standard ,the three methods that generate UWB signals in optical areas were summed up.The application of UWB signal was analyzed with examples.The practicability and advantages were proved.The future development of UWB systems and problems were pointed out. Key words :ultra-wide band (UWB );dispersion equipment ;optical frequency discriminator ;semiconductor optical amplifier (SOA );polarization maintaining fiber (PMF ) EEACC :6260 0引言 超宽带(UWB )技术是近些年新兴起的一种脉冲通信技术,它具有传输速率高、多径分辨能力强、抗干扰性能强、带宽极宽、功耗低、定位精 准、保密性好等优点 [1-3] 。由于超宽带信号的无线传输距离短,常局限于几米到几十米。为了增加信 号的覆盖范围,使其能在光纤中传送,在光领域中产生超宽带信号而不需要额外的电光或光电转换是很有必要的。本文主要针对国内外的发展状况,归纳总结在光领域中产生超宽带信号的方法。 1超宽带信号的光学产生方法 UWB 是指系统的频带宽度(10dB 带宽)与 中心频率之比大于20%或者带宽大于500MHz 的通

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解 作者:王德强李长青乐光新 近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。 许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。 1 UWB的产生与发展 超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。图1给出了带宽计算示意图。可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。 为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。美国NTIA等通信团体对此大约提交了800多份意见书。 2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。图2示出了FCC对室内、室外UWB系统的辐射功率谱密度限制。当前,人们所说的UWB是指FCC给出的新定义。

超宽带技术概述

超宽带(UWB)技术 一、UWB技术简介 UWB(Ultra Wide Band)是一种短距离的无线通信方式。其传输距离通常在10m以内,使用1GHz以上带宽,通信速度可以达到几百Mbit/s以上。UWB不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。 超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。从传输带宽看,按照FCC的定义:信号带宽大于1.5G或者信号带宽与中心频率之比大于25%的为超宽带。超宽带传输技术直接使用基带传输。其传输方式是直接发送脉冲无线电信号,每秒可以发送数1O亿个脉冲。然而,这些脉冲的频域非常宽,可覆盖数Hz~数GHz。由于UWB发射的载波功率比较小,频率范围很广,所以,UWB对传统的无线电波影响相当小。UWB的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。 二、UWB技术的发展历程 现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR , Impulse Radio) 技术,出现于1960年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。通过Harmuth、Ross和Robbins等先行公司的研究, UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。到80 年代后期,该技术开始被称为"无载波"无线电,或脉冲无线电。美国国防部在1989 年首次使用了"超带宽"这一术语。为了研究UWB在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。这充分说明此项技术所具有的广阔应用前景和巨大的市场诱惑力。 2003年12月,在美国新墨西哥州的阿尔布克尔市举行的IEEE有关UWB标准的大讨论。那时关于UWB技术有两种相互竞争的标准,一方是以Intel与德州仪器为首支持的MBOA标准,一方是以摩托罗拉为首的DS-UWB标准,双方在这场讨论中各不相让,两者的分歧体现在UWB技术的实现方式上,前者采用多频带方式,后者为单频带方式。这两个阵营均表示将单独推动各自的技术。虽然标准尘埃未定,但摩托罗拉已有了追随者,三星在国际消费电子展上展示了全球第一套可同时播放三个不同的HSDTV视频流的无线广播系统,就采用了摩托罗拉公司的Xtreme Spectrum芯片,该芯片组是摩托罗拉的第二代产品,已有样片提供,其数据传输速度最高可达114Mbps,而功耗不超过200mw。在另一阵营中,Intel 公司在其开发商论坛上展示了该公司第一个采用90nm技术工艺处理的UWB芯片;同时,该公司还首次展示多家公司联合支持的、采用UWB芯片的、应用范围超过10M的480Mbps无线USB技术。在5月中旬由IEEE802.15.3a工作组主持召开的标准大讨论会议上对这种技术进行投票选举UWB标准,MBOA获得60%的支持,DS-UWB获取40%的支持,两者都没有达到成为标准必须达到75%选票的要求。因

超宽带技术的应用与发展解析

超宽带技术的应用与发展 一、引言 随着计算机通信技术的不断发展,无线传输技术得到了广泛的应用,而超带宽(UWB)技术作为一种新型短距离高速无线通信技术正占据主导地位,超带宽技术又被称为脉冲无线发射技术,是指占用带宽大于中心频率的1/4或带宽大于1.5GHz的无线发射方案,超带宽技术在2002年以前主要应用于雷达和遥感等军事领域,UWB技术不需载波,能直接调制脉冲信号,产生带宽高达几兆赫兹的窄脉冲波形,其带宽远远大于目前任何商业无线通信技术所占用的带宽,UWB信号的宽频带、低功率谱密度的特性,决定了UWB无线传输技术具有以下优势:易于与现有的窄带系统(如全球定位系统(GPS)、蜂窝通信系统、地面电视等)公用频段,大大提高了频谱利用率。易于实现多用户的短距离高速数据通信;目前,UWB技术在商业多媒体设备、家庭和个人网络方面的应用正在不断发展。 二超宽带技术的特点应用 1、超宽带技术解决了困扰无线技术多年的有关传播方面的问题,如发射信号功率谱密度低、低截获大问题,具有对信道衰落不敏感的问题,又具有能力、系统复杂程度低、能提供厘米级的定位精度等优点;它在无线局域网、城域网和个人局域网的应用中,可提供低功耗、超带宽及相对简捷的通信技术,尤其适用于室内等密集多径场所的高速无线接入,可实现PC与移动设备、消费电子等信息终端的小范围智能化互联,从而组建个人化的办公或家用信息化网络。超带宽(UWB)无线通信技术以它高速率、高性能、低成本、低功耗等特点成为最具有竞争力的WPAN实现技术,并已成功应用于多个方面。 2、超宽带技术特点 (1)体积小、成本低、系统结构实现简单、 UWB不使用载波,直接发射脉冲序列,不需要传统收发器所需要的上、下变频,从而不需要功用放大器与混频器,因此UWB设备集成更为简化。脉冲发射机和接收机前端可集成在一个芯片上,再加上时间基和一个微控制器,就可构成一部超宽带通信设备。 (2)传输速率高数字化、综合化、宽带化、智能化和个人化是通信发展的主要趋势。为确保提供高质量的多媒体业务的无线网络,其信息速率不能低于50Mbit/s。在用商品中,一般要求UWB信号的传输范围为10m以内,

超宽带天线设计与研究详解

超宽带天线的研究与设计 中文摘要 近几年来,超宽带天线的研究已经成为热潮。本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。主要利用了HFSS软件仿真和天线结构的优化设计过程。我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。 关键词:平面单极子天线;超宽带;HFSS仿真 I

Research and design of ultra-wideband antenna Abstract In recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications. Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation 目录 I

uwb超宽带无线通信技术(高精度定位)

UWB(定位技术)超宽带无线通信技术 一、UWB调制技术 超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。它源于20世纪60年代兴起的脉冲通信技术。 传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。 图1 连续波调幅信号 而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进

而实现信息传输。下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。 图2 IR-UWB调相信号 从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。

图3 IR-UWB信号频谱 在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。 主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。 ·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。

超宽带信号的研究

超宽带信号的研究 摘要 随着美国联邦通信委员会(FCC)对超宽带技术发布的初步规定及对其所作的定义,超宽带脉冲无线电技术成了民用和军用研究的热点。与传统通信技术不同的是,UWB 是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据,所占的频谱范围很宽,适用于高速、近距离的无线个人通信。UWB 脉冲极短,直达波与多径反射、折射波,在时间上不易重叠,因此,其时间分辨率强,适合于多径分量丰富的室内无线信道传输;本文首先介绍了超宽带通信的背景及意义,分析了国内外研究现状和超宽带技术的主要研究方向,然后通过对超宽带信号的研究,引出直接序列扩频超宽带信号,通过推导并分析了DS-UWB 信号的功率谱,指出DS-UWB 信号的功率谱是由发送脉冲信号的频谱和编码频谱共同决定,并且用计算机进行仿真,证实了伪随机码周期越长,频谱越平坦。 关键词:超宽带;直接序列扩频;功率谱密度;通信技术

Study of Ultra Wide Band Signal Abstract With the United States Federal Communications Commission (FCC) on the ultra wide band technology released the preliminary requirements and its definition, ultra wide band impulse radio technology has become a hot spot for civil and military research.Different from traditional communication technology, UWB is a non carrier communication technology, using nanosecond and picosecond non sine wave narrow pulse data transmission, occupied a wide spectral range for in high speed, short distance wireless personal communication .The UWB pulse is very short, direct wave and multipath reflection, refraction,which is not easy to overlap in time.Therefore, its time resolution is strong, and it is suitable for the indoor wireless channel transmission with rich multipath component.This paper firstly introduces the background and significance of ultra wide band communication.The current research status and the main research direction of ultra wide band technology are analyzed. Then through the research of ultra wide band signal and direct sequence spread spectrum ultra wide band signal.By deducing and analyzing the power spectrum of the DS-UWB signal, the power spectrum of the DS-UWB signal is determined by the spectrum of the transmitted pulse signal and the coding spectrum.And using the computer simulation, it is proved that the pseudo random code cycle is longer, the spectrum is flat. Keywords:Ultra wide band;Direct sequence spread spectrum;Power spectral density;Communication technology

超宽带无线通信技术解析

超宽带无线通信技术 摘要:超宽带(UWB)具有传输速率高、通信距离短、平均发射功率低等特点,非常适合于短距离高速无线通信。文章对UWB的发送接收技术和信道建模方式进行了讨论,指出UWB将定位于各种消费类电子设备和终端间的高速无线连接。对于IEEE的UWB标准,文章认为由于目前形成了脉冲无线电和多频带正交频分复用(OFDM)两大方案,因此最终采用哪种方案还需等待。 关键词:超宽带;脉冲无线电;无线个域网 无线技术在通信发展进程中一直扮演着重要角色。伴随着移动通信十几年来的蓬勃发展以及3G、B3G等概念的日益普及,无线家族中的另一成员——短距离宽带无线接入技术近年来异军突起。从蓝牙、HomeRF到IEEE 802.11(即Wi-Fi)系列,越来越多的人开始感受到了短距离无线通信技术所带来的诸多便捷,甚至有人认为短距离无线通信技术具有与3G抗衡之势。 超宽带(UWB)技术是目前备受关注的一种新型短距离高速无线通信技术。多年来,这项技术一直在军事领域中使用。UWB在民用领域开放后,有望凭借其超高的传输速度和低功率、低成本等优势给短距离无线接入市场注入新的活力。 1 UWB的特点 应用于无线通信领域的UWB是一种低功率的无线电技术。按照2002年美国联邦通信委员会(FCC)在向民用领域开放UWB时的定义,超宽带技术指的是信号相对带宽(即信号带宽与中心频率之比)不小于0.2或绝对带宽不小于500 MHz,并使用指定的3.1 GHz~10.6 GHz频段的通信方式。与其他传统的无线通信技术相比较,UWB的技术特点主要有: (1)传输速率高 UWB系统使用上千兆赫兹的超宽频带,所以即使把发送信号功率谱密度控制得很低,也可以实现高达100 Mb/s~500 Mb/s的信息速率。根据仙农信道容量公式,如使用7 GHz带宽,那么即使信噪比低至-10 dB,理论信道容量也能达到1 Gb/s[1],因此实际中实现100 Mb/s以上的速率是完全可能的。 (2)通信距离短 由于随着传播距离的增加高频信号强度衰减太快,因此使用超宽频带的系统更适合于进行短距离通信。理论分析表明,当收发机之间的距离大于12 m时,UWB的信道容量低于传统的窄带系统。 (3)平均发射功率低 在短距离应用中,UWB发射机的发射功率通常可做到低于1 mW,这是通过牺牲带宽换取的。

如何在无宽带情况下自制WIFI无线上网

将win7电脑变身WiFi热点,让手机、笔记本共享上网 用win7建立无线局域网,可以共享上网可以局域网游戏。 开启windows 7的隐藏功能:虚拟WiFi和SoftAP(即虚拟无线AP),就可以让电脑变成无线路由器,实现共享上网,节省网费和路由器购买费。宏碁、惠普笔记本和诺基亚N97mini亲测通过。 以操作系统为win7的笔记本或装有无线网卡的台式机作为主机。 主机设置如下: 1、以管理员身份运行命令提示符: 快捷键win+R→输入cmd→回车 2、启用并设定虚拟WiFi网卡: 运行命令:netsh wlan set hostednetwork mode=allow ssid=wuminPC key=wuminWiFi 此命令有三个参数,mode:是否启用虚拟WiFi网卡,改为disallow则为禁用。 ssid:无线网名称,最好用英文(以wuminPC为例)。 key:无线网密码,八个以上字符(以wuminWiFi为例)。 以上三个参数可以单独使用,例如只使用mode=disallow可以直接禁用虚拟Wifi网卡。

开启成功后,网络连接中会多出一个网卡为“Microsoft Virtual WiFi Miniport Adapter”的无线连接2,为方便起见,将其重命名为虚拟WiFi。若没有,只需更新无线网卡驱动就OK了。 3、设置Internet连接共享: 在“网络连接”窗口中,右键单击已连接到Internet的网络连接,选择“属性”→“共享”,勾上“允许其他······连接(N)”并选择“虚拟WiFi”。 确定之后,提供共享的网卡图标旁会出现“共享的”字样,表示“宽带连接”已共享至“虚拟WiFi”。

超宽带技术的发展

超宽带技术的发展 随着无线通信技术的发展,21世纪的世界将很快从网络时代进入无线互联时代。新兴的无线网络技术,例如WiFi、WiMax、ZigBee、Ad hoc、BlueT ooth和UltraWideBand(UWB),在办公室、家庭、工厂、公园等大众生活的方方面面得到了广泛应用,基于无线网络的定位技术的应用更加具有广阔的发展前景。根据投资银行Rutberg 公司、无线数据研究集团和国际数据公司等的预测,网络新技术将在未来的3年内达到几百亿甚至上千亿美元的营业收入,而无线定位技术的应用将在其中占有至少上百亿美元的份额。 除了全球定位系统(GPS)在导航和室外环境的应用定位以外,人们对室内定位、短距离定位等应用不甚了解。未来无线定位技术的趋势是室内定位与室外定位相结合,实现无缝的、精确的定位。现有的网络技术还不能完全满足这个要求,而UWB技术由于功耗低、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点,在众多无线定位技术中脱颖而出,成为未来无线定位技术的热点。 UWB的定位优势 无线定位技术和方案很多,常用的定位技术包括红外线、超声波、射频信号等,但都不适合室内定位。红外线只适合短距离传播,而且容易被荧光灯或者房间内的灯光干扰,在精确定位上有局限性;超声波受多径效应和非视距传播影响很大,不能用于室内环境;而射频信号普遍用在室外定位系统中,应用于室内定位存在局限。 GPS是目前应用最为广泛的室外定位技术,它是20世纪70年代初美国出于军事目的开发的卫星导航定位系统,主要利用几颗卫星的测量数据计算移动用户位置,即经度、纬度和高度。一般用于车辆导航和手持设备。在此基础上,还出现了增强型GPS,辅助GPS 等技术,它们可以广泛用于航空、航海和野外定位等领域。利用GPS进行定位的优势是卫

相关文档
最新文档