使用带顶空捕集阱的气相色谱质谱联用仪测定葡萄酒中的 …

使用带顶空捕集阱的气相色谱质谱联用仪测定葡萄酒中的 …
使用带顶空捕集阱的气相色谱质谱联用仪测定葡萄酒中的 …

使用带捕集阱顶空的气相色谱/质谱联用仪测定葡萄酒中的2,4,6-三氯苯甲醚

作者:

Miles S. Snow

珀金埃尔默生命与

分析科学部

710 Bridgeport Avenue

Shelton, CT 06484

简介

在用于密封玻璃葡萄酒瓶的软木塞中测定2,4,6-三氯苯甲醚(TCA)。由于通过感官知觉发现葡萄酒中的TCA 的可能性极低,因此必须对葡萄酒进行检测以确定是否存在此化合物。本材料报告白葡萄酒的味觉阈值在万亿分之 4 到10 (ppt) 之间,而口感醇厚的红葡萄酒的味觉阈值在万亿分之10 到30 (ppt) 之间。1超出这些味觉阈值,葡萄酒则不会有很好的味道。

用于存储葡萄酒的软木塞包含许多固有的苯酚化合物。这些苯酚化合物可能会在软木塞的生产过程中和/或使用氯基制剂消毒期间发生氯化。生成的氯化苯酚(图2)之后会通过葡萄酒中的自然微生物甲基化,生成TCA。还会生成其它氯化苯酚(如2,3,4,6-四氯茴香醚)。这些苯酚有较高的感官阈值- 因此它们不会对葡萄酒的品质产生不良影响,也不需要进行检测。

酿酒厂需要可靠的技术迅速生成精确的TCA 分析结果。现有的顶空进样技术能够满足所需的准确性和精确性以及高通量要求,但是它们的检出限无法达到味觉阈值的万亿分之一要求。2静态(平衡)顶空进样技术通常仅能将可用顶空进样的小等分试样(1/100) 进样到色谱系统中。如果能将大量可用顶空蒸汽进样到色谱系统中,则此项技术会更加完美。

图 1. TCA 结构。

图 2. 产生途径。

https://www.360docs.net/doc/211663269.html,

PerkinElmer? TurboMatrix? 带捕集阱顶空进样系统和Clarus? 500 气相色谱/质谱联用仪(图3)完全满足TCA 分析的所有要求。HS捕集阱的工作方式为:将顶空进样瓶中的样品蒸汽浓缩到低质量捕集阱中(该捕集阱含有略微高于室温的色谱吸附剂)。然后,此捕集阱的温度迅速升高,将分析物蒸汽迅速挥发到色谱系统中。此项技术的灵敏度要比标准顶空技术的灵敏度高100倍。

实验

从加拿大安大略省的多伦多购买一瓶加利福尼亚白葡萄酒(2000 年装瓶)。选择此酒的原因是因为酒瓶上使用了人造软木塞,而这种软木塞应该包含最低水平的TCA。将10克这样的葡萄酒添加到22 毫升的顶空进样瓶中(珀金埃尔默部件号B0104236)。然后使用硅制/PTFE 隔垫(珀金埃尔默部件号B0104241)密封此进样瓶。为了确保在使用隔垫密封顶空进样瓶前不含有任何挥发性杂质,这些隔垫已在150 °C 的高温下烘烤了一整夜。

100 ppm (μg/mL) 的储备溶液是在吹扫和捕集级甲醇中加入2,4,6-三氯苯甲醚制备而成(Sigma-Aldrich, St. Louis, MO, USA)。通过与95%的乙醇混合,此储备溶液用于制备100-ppb (μg/L) 的稀释溶液。选择乙醇是要最大限度地减少基体的变化,并使样品的自然顶空压力最低。

我们在带捕集阱顶空进样系统上对几种不同的吸附剂进行了评估,包括空气中有毒物质吸附剂(珀金埃尔默部件号

M0413628)、Tenax?(珀金埃尔默部件号M0413535)和Carbopack Y 和C (Supelco Inc., Bellefonte, PA, USA)。除Carbopack C 之外,所有这些吸附剂的捕集阱工作良好。从Carbopack C回收TCA 的情况较差,因此它不适用于此研究。此处报告的数据是使用Carbopack Y 捕集阱获得的。

TurboMatrix HS-40带捕集阱顶空进样系统由TurboMatrix控制软件控制,并且与Clarus 500 气相色谱/质谱联用仪结合使用。Clarus 500气相色谱仪配有一个可温度编程的分流/不分流进样口(PSS)并带电子气路控制(PPC)。TurboMatrix HS-40 捕集阱使用一段去活熔硅毛细管(0.32 mm) 作为传输线。气相色谱柱使用通用接头(珀金埃尔默部件号

N9302149)直接与此传输线连接。Clarus 500 MS通过TurboMass? 5.0 控制软件控制并在EI模式下操作。SIFI? (在同一次进样中完成单一离子扫描和全离子扫描)采集技术用于收集数据。

图7 显示了全扫描模式下获取的TCA质谱。m/z 195 和210 离子是TCA中强度最大、最具特性的两个离子。,m/z 210 离子是TCA分子离子峰,而m/z 195 离子代表失去甲基组后的TCA。这些离子是为选定离子检测(SIR) 采集模式(用于TCA定量)而选择的。表 1 列出了气相色谱/质谱联用仪系统和带捕集阱顶空进样系统的仪器参数。

图 3. Clarus 500 气相色谱/质谱联用仪与TurboMatrix 带捕集阱顶空进样系统。

图 4. 在加利福尼亚白葡萄酒中加入 10-ppt 2,4,6-三氯苯甲醚。

图 5. 在相同白葡萄酒中加入10-ppt 2,4,6-三氯苯甲醚后的白葡萄酒叠加图。

图 6. 从 NIST 库中获得扩展 TCA 质谱。

参考文献

1. For Quality Control of Natural Corks, 11/23/2004, https://www.360docs.net/doc/211663269.html,/SPMEFAQ.htm。

2. M.P Marti et al, Fast Screening Method for Determining 2,4,6-Trichloroanisole in Wines using a Headspace-Mass Spectrometry (HS-MS) System and Multivariate Calibration. Anal. Bioanal. Chem (2003) 376:497-501。

图7. 从加入100-ppt TCA 的白葡萄酒的气相色谱/质谱分析结果中获得的扩展质谱。

珀金埃尔默生命与

分析科学部

710 Bridgeport Avenue

Shelton, CT 06484-4794 USA

电话:(800) 762-4000 或

(+1) 203-925-4602

https://www.360docs.net/doc/211663269.html,

要获取全球办事处的完整列表,请访问https://www.360docs.net/doc/211663269.html,/lasoffices

?2005 PerkinElmer, Inc. 保留所有权利。珀金埃尔默徽标和外观设计是珀金埃尔默有限公司的注册商标。SIFI、Tenax、TurboMass 和TurboMatrix 是珀金埃尔默有限公司及其子公司在美国或其它国家和地区的商标,Clarus 和PerkinElmer 是珀金埃尔默有限公司及其子公司在美国或其它国家和地区的注册商标。文中提及的其它非珀金埃尔默有限公司及其子公司所有的其它商标均为其各自所有者的财产。珀金埃尔默保留随时更改此文档的权利,对于编辑、图片或排版错误概不承担任何责任。

我们对“现场应用报告”中出现的数据不提供任何保证。实际性能和结果取决于使用的确切方法和实验室条件。此数据应只用于表示仪器在某一种特定分析中的应用性,而不作为对性能的保证。

007255A_01

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

顶空固相微萃取-气相色谱-质谱联用

顶空固相微萃取-气相色谱-质谱联用 分析纺织品中挥发性有机物* 蔡积进张卓旻李攻科 中山大学化学与化学工程学院,广东,广州 510275 摘要本文以顶空固相微萃取(Head Space Solid Phase Microextraction,HSSPME)和 气相色谱-质谱(GC/MS)联用技术分析纺织品中的五种常见挥发性有机物(Volatile Organic Compounds,VOCs):甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯。 优化了顶空体积、平衡时间、萃取时间、萃取温度、搅拌速率、加盐种类和浓度以及GC/MS条件。建立了快速测定纺织品中VOCs的方法,方法对五种待测物质均具有较宽线性范围,分别为0.087~870,3.32~3320,2.28~2280,0.015~150和0.5~500 ng/g;检出限分别为0.005、0.042、0.67、0.008和0.011 ng/g。分析加标实际样品,回收率在80.1~122%之间,RSD在0.8~8.6%之间。方法符合纺织品中痕量VOCs 的快速分析要求。 关键词:固相微萃取;气相色谱-质谱;纺织品;挥发性有机物 生态纺织品标准100(Oeko-Tex Standard 100)[1]是纺织品领域通行的技术标准,严格规定了残留有毒、有害VOCs的释放量。为推动纺织品质量达到出口标准,需建立有效快速的VOCs 检测方法。由于纺织品VOCs的含量很低,常规的预富集浓缩方法很难满足分析需要,达不到相应的灵敏度要求。SPME是八十年代末Pawliszyn等[2]研制开发的一种非溶剂分析萃取技术,具有操作简单、萃取速度快、选择性和适应性好等优点。而HSSPME应用于纺织品中,一方面继承了顶空技术操作简单、不受样品基体干扰的优点;另一方面又能在采样的同时进行浓缩,大大提高了分析灵敏度。国内已有学者用SPME技术对纺织品中残留干洗溶剂(如四氯乙烯和三氯乙烯等)和驱虫剂(如二氯苯和萘等)进行分析[3~5]。本文建立了HSSPME-GC-MS联用分析纺织品中常见VOCs的分析方法,方法灵敏度高,重现性好,适合于纺织品中多种痕量挥发性有机物的分析。 1 实验 1.1 仪器及操作条件 1.1.1 仪器 SPME手动取样装置,100 μm聚二甲基硅氧烷(PDMS),电磁搅拌/加热操作台,搅拌子(3.0 mm×10.0 mm),10、15、40 mL顶端带有孔盖子和聚四氟乙烯隔垫的样品瓶(Supelco 公司)。HP-6890气相色谱仪带质谱检测(MSD-5973)配G1701B.02.05工作站(Hewlett-Packard, USA),所用色谱柱为HP-VOC熔融毛细管柱(60 m×0.32 mm×1.8 μm)。 1.1.2 GC-MS的操作条件 色谱条件:进样口温度为250 ℃,进样口关闭五分钟,不分流进样。采用程序升温,初始 资金项目:国家质检总局科研资助项目(2002IK034)、 中山大学化学院第四届创新化学实验与研究基金(批准号:03002号)。 第一作者:蔡积进(1982年出生),男,中山大学化学与化工学院材料化学专业00级 指导教师:李攻科,E-mail :cesgkl@https://www.360docs.net/doc/211663269.html,.

气相色谱质谱联用仪操作规程(精)

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC 电源和MS 电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。②点击设定系统的配置。 ③点击 [Vacuum Control] 真空系统。 2. 调谐,在随即出现的对话框中点击 [Auto Startup],启动 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常 m/z18>m/z28,表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。

在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内 ⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ******************************************************************** **** 注:检查漏气的方法如 1. 点击Tuning 之中的Peak Monitor View 2. 在 Monitor Group 菜单里选择[water,air],同时确认检测器的电压是 0.7Kv 。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA ,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。

JJF气相色谱仪质谱联用仪

台式气相色谱-质谱联用仪校准规范 1 范围 本规范适用于离子阱和四极杆型台式气相色谱-质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS 的校准可参照此规范进行。 2 引用文献 JJF 1001―1998 通用计量术语及定义 JJF 1059―1999 测量不确定度评定与表示 GB/T 15481―1995 校准和检验实验室能力的通用要求 GB/T 6041―2002 质谱分析方法通则 JJG (教委) 003―1996 有机质谱仪检定规程 JJG 700―1999 气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for analysis of rganic pollutants in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3 术语和计量单位 分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位 u。 基线噪声(baseline noise) 基线峰底与峰谷之间的宽度,单位计数。 信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为S/N。 质量色谱图(mass chromatogram)质谱仪(和色谱图是两回事)质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 质量准确性(mass accuracy) 仪器测量值对理论值的偏差。 u (atomic mass unit)

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

AgilentBC气相色谱质谱联用仪操作规程

1. 开机 1)打开载气钢瓶控制阀,设置分压阀压力至 0.5Mpa 。 2 ) 打开计算机,登录进入 Windows 7 系统。 3)打开 7000C(若 MSD真空腔内已无负压则应在打开 MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击 GC-MS 图标,进入 MSD 化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面 , 在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到 100 % ,否则,说明系统有漏气,应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2. 调谐 调谐应在仪器至少开机 2 个小时后方可进行,若仪器长时间未开机为得到好的调谐结果将时间延长至 4 小时。 1)首先确认打印机已连好并处于联机状态。 2 ) 在操作系统桌面双击 7000C 图标进入工作站系统。 3)在上图仪器控制界面下,单击仪器菜单,选择MS调谐进入调谐与真空控制界面。 4 ) 进行自动调谐 , 调谐结果自动打印。 5 ) 如果要手动保存或另存调谐参数,将调谐文件保存到 atune.u 中。 6 ) 然后点击视图然后选择仪器控制返回到仪器控制界面。注意 : 自动调谐文件名为 ATUNE.U 标准谱图调谐文件名为 STUNE.U 其余调谐方式有各自的文件名 . 3. 样品测定 3.1 方法建立 1 ) 7890B配置编辑 点击仪器菜单 , 选择编辑 GC 配置进入画面。在连接画面下,单击【仪器】【GC 参数】,设置ALS,进样口,色谱柱,柱温箱参数。 2)分流不分流进样口参数设定,点击【仪器】【GC参数】在空白框内输入进样口的温度为250℃,选择隔垫吹扫流量模式标准,输入隔垫吹扫流量为 3ml/min 。对于特

气相色谱-质谱联用技术..-共15页

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

Agilent7890A5975C气相色谱质谱联用仪操作规程

Agilent 7890 A/ 5975C气相色谱质谱联用仪操作规程 1.开机 1)打开载气钢瓶控制阀,设置分压阀压力至0.5Mpa。 2打开计算机,登录进入Windows XP系统,初次开机时使用5975C的小键盘LCP 输入IP地址和子网掩码,并使用新地址重起,否则安装并运行Bootp Service。 3)依次打开7890AGC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击GC-MS图标,进入MSD化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面,在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到100%,否则,说明系统有漏气,应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2.调谐 调谐应在仪器至少开机2个小时后方可进行,若仪器长时间未开机为得到好的调

谐结果将时间延长至4小时。 1)首先确认打印机已连好并处于联机状态。 2在操作系统桌面双击GC-MS图标进入工作站系统。 3)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面。 4单击调谐菜单,选择自动调谐调谐MSD,进行自动调谐,调谐结果自动打印。 5如果要手动保存或另存调谐参数,将调谐文件保存到atune.u中。 6然后点击视图然后选择仪器控制返回到仪器控制界面。 注意: 自动调谐文件名为ATUNE.U 标准谱图调谐文件名为STUNE.U 其余调谐方式有各自的文件名. 3.样品测定 3.1方法建立 1)7890A配置编辑 点击仪器菜单,选择编辑GC配置进入画面。在连接画面下,输入GC Name:GC 7890A;可在Notes处输入7890A的配置,写7890A GC with 5975C MSD。点击获得GC配置按钮获取7890A的配置。 2)柱模式设定 点击图标,进入柱模式设定画面,在画面中,点击鼠标右键,选择从GC下载方法,再用同样的方法选择从GC上传方法;点击1处进行柱1设定,然后选中On左边方框;选择控制模式,流速或压力。 3)分流不分流进样口参数设定 ?点击图标,进入进样口设定画面。点击SSL-后按钮进入毛细柱进样口设定画

热裂解气相色谱质谱联用仪主要技术指标及配置

一、热裂解气相色谱质谱联用仪主要技术指标及配置 一、作用与用途 热裂解-气相色谱-质谱联用仪适用于挥发性复杂基质成分的定性、定量分析研究。需要的样品量少,应用领域广泛,常用于未知毒物筛查,卷烟裂解产物的分析,能准确定性定量分析。主要应用于食品中农药残留定性定量分析,食品、化妆品中添加剂分析;饮用水地表水挥发、半挥发有机物含量分析,环境中污染物的分析;卷烟烟气痕量成分分析等方面的研究。能满足于食品、化工、环境、材料科学等相关领域的分析研究需要。 二、技术要求 2.1 工作条件 2.1.1 电源:230V±10%,50Hz电源 2.1.2 环境温度:10-30?C 2.1.3 环境湿度:10%~90%RH 2.2.主要用途:用于有机化合物的定性定量分析 2.3.仪器包括毛细管进样口、质谱接口、顶空自动进样器、自动液体进样器、热裂解器,固相微萃取自动进样器。 2.4 技术指标: 2.4.1柱箱 2.4.1.1温度范围:室温以上4?C~450?C 2.4.1.2温度设定:温度1?C;程序设定升温速率0.1?C 2.4.1.3升温速度:0.1?C/min~120?C/min 2.4.1.4温度稳定性;当环境温度变化1?C时,优于0.01?C *2.4.1.5程序升温:20阶21平台 2.4.1.6最大运行时间:999.99min 2.4.1.7降温速率:从450?C降至50?C<240秒(22℃室温下) 2.4.1.8保留时间重现性: <0.008% 或<0.0008min 2.4.1.9峰面积重现性: < 1.0% RSD 2.4.2分流/不分流毛细管柱进样口(带电子气路控制,简称EPC)(含前后两个进样口) 2.4.2.1可编程电子参数设定压力、流速、分流比 2.4.2.2最高使用温度400?C 2.4.2.3压力设定范围:0~150psi

气相色谱质谱联用仪

气相色谱-质谱联用仪 本装置用于沥青及相关材料分析,包括以下三部分: 一、气相色谱/质谱联用仪 1.工作条件 1.1电源:220V,50Hz 1.2温度:操作环境15?C-35?C 1.3湿度:操作状态25-50%,非操作状态10-95% 2.性能指标 2.1气相色谱仪 2.1.1柱箱 2.1.1.1操作温度:室温以上4?C-450?C 2.1.1.2温度分辨:1?C温度设定,0.1?C程序设定 2.1.1.3最大升温速率: 100?C/分钟 2.1.1.4最大运行时间:999.99分钟 2.1.1.5程序升温:18阶19平台 2.1.1.6温度稳定性:<0.01?C每1?C环境变化 2.1.1.7温度准确性:±1% 2.1.1.8*降温速率:从450?C降至50?C<300秒(22℃室温下) 2.1.2 毛细柱分流/无分流进样口(带电子气路控制,简称EPC)2.1.2.1 最高使用温度:400?C 2.1.2.2 电子参数设定压力,流速和分流比 2.1.2.1*压力设定范围:0-100Psi,精度0.001Psi 2.1.2.1流量范围:0-200mL/分钟N2, 0-1250mL/minH2 or He 2.1.3 氢火焰检测器(FID) 2.1. 3.1 最高使用温度:450?C 2.1. 3.2自动点火装置,具有自动灭火检测功能 *2.1.3.3最低检测限:≤ 2.0pg碳/秒(丙烷) 2.1. 3.4 线性动态范围:≥107 2.1.3自动进样器: 2.1. 3.2样品位数:8位 2.1. 3.3进样量范围:0.1-50ul,可调 2.2质谱检测器 2.2.1具有网络通讯功能,可实现远程操作 2.2.2面板控制器可显示质谱状态信息及质谱工作参数的输入2.2.3质量数范围:1.6-1020amu,以0.1amu递增

顶空气相色谱质谱联用法测定生活饮用水中27种挥发性有机物

顶空气相色谱质谱联用法测定生活饮用水中27种挥发性有机物 发表时间:2017-10-27T14:09:48.540Z 来源:《建筑学研究前沿》2017年第15期作者:尹长军潘士钊苗军冯文[导读] 该方法操作简便,灵敏度高、检测结果准确,是生活饮用水检测中挥发性有机物较为理想的方法。 潍坊市自来水有限公司山东潍坊 261061 摘要:为了能够简便、快捷、准确的测定生活饮用水中的挥发性有机物,本文采用顶空气相色谱质谱联用法建立测定生活饮用水中1,1-二氯乙烯、顺1,2-二氯乙烯、反1,2-二氯乙烯、三氯乙烯、四氯乙烯等27种挥发性有机物的方法。在实验室所建立的实验条件下,27种挥发性有机物的回收率能够达到102.50%-129.17%,相对标准偏差(RSD)为4.08%-7.69%。该方法操作简便,灵敏度高、检测结果准确,是生活饮用水检测中挥发性有机物较为理想的方法。 关键词:气相色谱质谱联用;顶空;挥发性有机物 自《生活饮用水卫生标准》GB 5749-2006实施以来,水质指标由GB 5749-1985的35项增加至106项,其中毒理指标中有机化合物由5项增加至53项[1],如何快速准确的测定出生活饮用水中有机化合物指标,是保障居民用水安全的前提。 对于测定生活饮用水中挥发性有机物的预处理方法主要有溶剂萃取法、固相微萃取法、吹扫捕集法等。其中,溶剂萃取法萃取过程繁琐,回收率较低,检测结果的可靠性较差,且大量有机溶剂的使用容易污染工作环境,损害工作人员的身体健康;固相微萃取法所需设备偏贵,且耗时较长,试验耗材费用较高;吹扫捕集法灵敏度高,富集效果明显,回收率效果理想,但是仪器设备昂贵,成本偏高。顶空法在水质检测过程中是一种常用的较为理想的检测方法,顶空法具前处理简单,灵敏度高,并且重现性好等优点。本文建立了顶空气相色谱质谱联用法检测生活饮用水中27种挥发性有机物的检测方法,能够在较短的时间内,有效的分离27种挥发性有机物,并且灵敏度较高,检出限较低,检测结果能够满足《生活饮用水卫生标准》GB 5749-2006的要求,是较为理想的生活饮用水中挥发性有机物的快速检测方法[2-9]。 1 试验部分 1.1 仪器 美国Thermo TRACE 1300/ISQ QD气相色谱质谱联用仪;Thermo TRIPLUS RSH顶空自动进样器;TG-624(60m×0.25mm×1.4um)型毛细管色谱柱;1000μL、100μL移液枪;10μL、50μL微量注射器;20mL顶空瓶;马头牌架盘药物天平BP-Ⅱ型;100mL容量瓶。 1.2 试剂 甲醇(色谱纯,天津市科密欧化学试剂有限公司);氯化钠(分析纯,天津市科密欧化学试剂开发中心);M-502-REG VOC Mixture27种挥发性有机物(混标200mg/L 百灵威科技有限公司)。 1.3 气相色谱/质谱条件 载气:高纯氦气(99.999%);流速:1.5mL/min;进样方式:分流进样(分流比为10:1);进样口温度:200℃;传输线温度:230℃;离子源温度:250℃;数据采集和分析:质谱检测器;顶空进样瓶平衡温度:60℃;加热平衡时间40 min。 柱温箱升温程序:初始温度40℃,保持4min,以8℃/min的升温速率升温至230℃,保持5min。 1.4 标准溶液储备液的制备 移取1mL M-502-REG VOC Mixture标准溶液至100mL容量瓶中,用甲醇定容至100mL,储备液浓度为2 mg/L。 1.5 标准曲线的制作 取7个20mL容量瓶,每个瓶内准确加入1.0g NaCl,然后用移液枪、微量针分别加入5μL、10μL、30μL、50μL、100μL、200μL、300μL的标准储备液,用超纯水定容,配出混合标准系列浓度。转移至20mL顶空瓶中,用气相色谱/质谱联用仪检测,经对数据处理后,得出各有机物的线性关系。 1.6 样品的测定 在20mL的顶空瓶中,准确加入1.0g NaCl,分别准确量取10mL水样和超纯水样于顶空瓶中进行实验测定。 2 结果与讨论 2.1 定性分析 在本文所设置的试验条件下,进样1 μL储备液。分析结束后发现,27种挥发性有机物的分离效果明显,定性分析标准溶液的色谱图如图1。 2.2 线性、仪器检出限、回收率及精密度 配制各浓度分别为0.001、0.002、0.006、0.01、0.02、0.04、0.06mg/L的标准溶液,采用本文所设置的最佳试验条件,分别进样,测定混合标准系列溶液的峰面积,考察各组分的线性,试验结果表明,混合标液中所涉及的27种挥发性有机物,其中有26种组分在0.001-0.06mg/L范围内呈现良好的线性关系,有23种组分的相关系数能够达到0.999以上。对浓度为0.02mg/L的标准品平行测试6次,平均回收率的范围在102.50%-129.17%,相对标准偏差(RSD)在4.08%-7.69%之间,呈现出良好的重现性。利用该方法大部分组分的最低检出限在0.001mg/L,表现出了较高的灵敏度。详细数据见下表2。

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

气相色谱-质谱联用技术在环境检测中的应用

气相色谱-质谱联用技术在环境检测中的应用 发表时间:2019-03-04T10:51:45.093Z 来源:《防护工程》2018年第34期作者:赵鹏昱 [导读] 随着社会的发展,我国的现代化建设也突飞猛进。气相色谱—质谱联用技术主要是将气相色谱的分离分析以及质谱的高分辨结构鉴定特点有效结合到一起 赵鹏昱 黑龙江科瑞环境检测有限公司黑龙江哈尔滨 150000 摘要:随着社会的发展,我国的现代化建设也突飞猛进。气相色谱—质谱联用技术主要是将气相色谱的分离分析以及质谱的高分辨结构鉴定特点有效结合到一起,以此开展相应的检测工作,获取准确的精度。在不同环境情况下,都可以使用气相色谱—质谱联用技术,将其应用到多组分复杂样品的分析检测工作中去,能够起到较大的作用,获取很好的效果。 关键词:气相色谱-质谱;联用技术;环境检测;应用 引言:气相色谱-质谱联用技术作为在环境检测中较方便并且检测精度较高的技术被广泛的推广,这项技术主要是通过将气相色谱的分离分析和质谱的高分辨结构鉴定的特点相结合,来实现高精度的检测。气相色谱-质谱联用技术普遍适用于多种环境下的检测,同时检测方法较稳定,检测的灵敏度也比较高,准确率也有所保障,针对于痕量物质和多组分复杂样品的分析检测具有非常好的效果,主要被推广于环境中的空气以及水质、土壤、固体废弃物等方面的检测,成为了我国认可的标准化的检测方法。 1 对气相色谱—质谱联用技术前处理方式的分析 对于环境样品而言,产生的形态包含很多种类型,其中最为明显的形态为气态、固态以及液态等。在环境中的有机物检测中,主要使用气相色谱—质谱联用技术,能够取得很好的效果。 1.1 固相萃取法 近几年,随着社会经济的快速发展,我国逐渐加大了对固相萃取法的关注力度,这一技术由于性能优良,逐渐得到了一定的推广和应用。从实际情况来看,固相萃取法的基本操作原理表现为:首先,将需要检测的物体和萃取柱中的填充物相互结合在一起,实现两者的相互吸附;然后,借助萃取剂的性能把有机物从萃取柱中分离开来,以此使被检测物和基质相互脱离。这一操作原理和液相色谱的操作原理基本上是相同的。在实施处理工作前期阶段中,经常使用的萃取柱填充物包含多种类型,分别为氧化铝、硅胶材料以及活性炭等。并且,随着科学技术的快速发展,固相萃取技术得到了很大程度的改进和完善。人们对于填充料一直处于不断研制中,为固相萃取法的应用提供了有利的条件。从应用情况可以看出,固相萃取法优势较大,操作过程比较的简单、灵活性强,并且在工作期间采取的试剂量比较少,成本输出低。但固相萃取法在发挥优势的同时也存在着一些问题,比如操作不具备规定化,无法有效回收和利用萃取柱等。 1.2 液—液萃取法 在进行环境样品检测的过程中,液—液萃取法本身是一种较为传统的前处理方式。这一方式的操作原理为:使用相对独立的两种溶液对被测物质进行分配和溶解。当前,被测物质中的萃取剂溶解度和基层溶液相比较而言,溶解度更高一些,因此,将其从基质溶液中脱离出来,可以实现良好的处理效果。在液—液萃取法进行处理的时候,一般使用分液漏斗,该项仪器价格不高,并且操作简便,在各个实验室内,都离不开这一装置的辅助。由于使用起来较为方便,所以在对样品前处理过程中,经常引进此种方法。从应用情况来看,液—液萃取法也存在着一定的弊端。比如,在前处理过程中,需要较多的有机溶液,并且还会出现乳化情况,操作过程比较的长,严重的情况还会散发出有机剂,有机剂对周围环境和人员自身安全造成的危害比较大。 1.3 液相微萃取法 20世纪90年代的时候,液相微萃取技术出现,它是一种新型的预处理技术,这一技术主要的操作原理表现在:通过将有机物进行合理的分配,对以往传统的液—液萃取技术进行适当的改进。液相萃取过程具备集成化,操作起来比较方便,并且效率较高。尤其对于一些基质比较复杂以及痕量物质而言,是传统液—液萃取技术无法相比的。从运行情况可以看出,液相微萃取法主要包含两种方式,分别为直接浸入式液相微萃取、后萃取以及顶空液相微萃取。 1.4 顶空处理技术 一般来讲,在测定液态和固态样品中散发出来的有机物时,就会使用顶空处理技术。顶空处理技术的具体操作原理为:利用被测物在气相和固液相之间的合理分配。在气相中,被分析物含量比较的多,灵敏度强,效果明显。这一技术的优势为,不需要和固体以及液体样品直接接触,从一定程度上缓解了样品复杂的基层干扰性,进而提升了被测物的整体效率,保证了整体质量。另外,可以将顶空处理技术划分为静态顶空技术和动态顶空技术两个方面。 2 气相色谱-质谱联用技术在环境检测中的应用 农业生产在土壤中撒入了大量的农药以及化肥等,这些物体的聚集形成了较多的污染物,当残留的有机污染物超出规定范围之后,便会突破土壤的自净能力,从而对周围环境产生危害。相关人员借助萃取法将土壤中的七氯、氯丹用正己烷/二氯甲烷(1+1)萃取、经弗罗里柱净化浓缩定容后,然后借助气相色谱—质谱联用技术的作用,对其实施测定工作。通过使用七氯,顺、反一氯丹方法获取了相关的数据,主要包含14.7ug/kg、3.93ug/kg和5.28ug/kg,从中看出,加标回收率在76.4%~114%之间,精密度(RSD)<15%8。另外,还有的研究人员在气相色谱—质谱法的基础上,针对环境土壤中多种有机氯农药进行了检测。经过相关测定过程表明,21种有机氯农药在0.2~4.0mg/kg范围内线性关系良好,相关系数大于0.9979。4,4'-DDT和2,4'-DDT的检出限为0.02mg/kg,其余19种有机氯农药的检出限为0.01mg/kg,加标回收率为62.5%~103.0%,RSD表现在4.8%~9.1%。从中看出,气相色谱—质谱联用技术比较适合应用于环境土壤基质中21种有机氯农药的测定环节中去,其可以为土壤环境中有机氯农药检测方法的落实提供相关的借鉴依据。 2.1 气相色谱-质谱联用技术在环境水质检测中的应用 环境水体中由于各种污染物的大量排放,其残留的有机物的毒性也逐渐增强,并且稳定性也较大,还存在生物富集的特点,这在进行水质污染的研究中需要重点考虑,水体中的有机污染物在一般情况下来讲主要是有有机磷农药、有机氯农药、高分子聚合物和多环芳香烃

实验1 气相色谱-质谱联用仪实验

实验一(1)气相色谱-质谱联用仪的基础操作 实验目的: 1.了解气相色谱-质谱联用仪的基础操作; 2.学习正确执行仪器的开机、关机; 3.参观资源综合利用与清洁生产重点实验室。 实验原理: 1.气相色谱-质谱联用仪的调谐目的:采用标准物质全氟三丁胺(FC-43)对质 谱仪的质量指示进行校正;对质谱参数进行优化,以实现最好的峰形和分辨率;消除质量歧视; 2.EI离子源可获得特征谱图以表征组分分子结构,目前有大量的有机物标准质 谱图。由计算机自动将未知质谱图处理成归一化棒状质谱图,按一定的检索方法与谱库中的标准谱图进行比较,计算它们的相似性指数(匹配度),把最相似的谱图化合物最为未知组分的鉴定结果,并按照相似性指数大小顺序,列出其名称、相对分子质量、分子式等以供分析参考。 仪器与试剂: 仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C) 试剂:全氟三丁胺标准品、高纯氦气 实验内容: 1.打开氦气(纯度99.999%以上)瓶开关;打开UPS电源;打开打印机电源;启动联机电脑后打开气相色谱仪电源开关; 2.待气相色谱仪自检完成后,打开质谱仪电源开关。若质谱长时间未使用,真空仓侧门已打开,开质谱电源时需用手轻按真空仓侧门1min,以利于抽真空。3.开机约1.5小时后打开工作站预热;待开机约2小时,检查真空度合格后,进入调谐菜单,点击自动调谐,进行调谐。 4.待调谐完毕,进入仪器操作界面,建立方法,进行定性分析(即进行实验项目2. 苯系物的GC-MS定性分析) 5.分析完关机。进入view菜单,点击“诊断”后,进入“真空”菜单,点击“V ent”,等V ent 结束后(≥50分钟),同时气相色谱仪进样口温度降至80℃以下后,退出工作站,依次关闭气相色谱仪、质谱仪和气瓶开关,关闭UPS电源开关。 注意事项: 1.必须严格按操作手册规定顺序进行开、关机程序; 2.仪器通过调谐后才能进行样品分析; 3.谱库检索结果并非定性分析的唯一方法,匹配度大小只表示可能性大小。 思考题(任选一题简单作答即可,鼓励全部回答): 1.质谱仪为什么采用FC-43作为标准物质? 2.质谱仪真空度不好会造成什么影响? 3.溶剂延迟的意义是什么? *注:NIST质谱库是美国国家标准技术研究院建立的标准质谱库,通过未知化合物的质谱库

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

相关文档
最新文档