两亲性

两亲性
两亲性

Amphiphilic ethyl cellulose brush polymers with mono and dual side chains:Facile synthesis,self-assembly,and tunable temperature-pH responsivities

Weizhong Yuan a ,b ,*,Jinchun Zhang a ,Hui Zou a ,Tianxiang Shen a ,Jie Ren a ,b ,*

a Institute of Nano and Bio-polymeric Materials,School of Materials Science and Engineering,Tongji University,Shanghai 201804,People ’s Republic of China b

Key Laboratory of Advanced Civil Materials,Ministry of Education,Shanghai 201804,People ’s Republic of China

a r t i c l e i n f o

Article history:

Received 19October 2011Received in revised form 10December 2011

Accepted 5January 2012

Available online 11January 2012Keywords:

Ethyl cellulose Brush polymers

Tunable temperature-pH responsivities

a b s t r a c t

Novel amphiphilic ethyl cellulose (EC)brush polymers with mono and dual side chains of poly(2-(2-methoxyethoxy)ethyl methacrylate)-co -oligo(ethylene glycol)methacrylate)(P(MEO 2MA-co -OEGMA))and poly(2-(N,N -dimethylamino)ethyl methacrylate)(PDMAEMA)were synthesized by the combination of atom transfer radical polymerization (ATRP)and click chemistry.The molar ratio of P(MEO 2MA-co -OEGMA)and PDMAEMA was varied through changing the feed ratio of these polymers and the coupling ef ?ciency of click chemistry is relatively high.The brush polymers can self-assemble into spherical micelles/aggregates.The micelles/aggregates show the tunable temperature-pH responsive properties.The cloud points and the pH-triggered phase transition were in ?uenced by EC chains and the ratio of P(MEO 2MA-co -OEGMA)and PDMAEMA side chains.The brush polymers have the great potential applications as biomedical or intelligent materials.

ó2012Elsevier Ltd.All rights reserved.

1.Introduction

Considerable attention has been paid to the amphiphilic poly-mers due to the versatile structures of self-assembly and the potential applications in nanotechnology and biomedical ?elds [1e 10].Furthermore,amphiphilic polymers with stimuli-responsive properties have attracted the increasing interest because these intelligent macromolecules can present the capa-bility of responding the external stimuli such as temperature,pH value,light,and ionic strength [11e 16].Among the stimuli-responsive properties,temperature and pH value are considered as the two most important stimuli means because they can be operated easily and have wide applications in drug or gene delivery,smart bioactive surface,and molecular recognition agents [17e 24].

Cellulose is the most abundant and renewable bio-polymeric material in nature and has been widely used in membranes and pharmaceuticals due to the nontoxicity,biocompatibility,and mechanical strength [25e 28].With the increasing demands in various areas such as smart micelles or vesicles,biological gel,and antibacterial surface,it is essential to modify the structure and

enhance the function of cellulose or its derivatives by grafting polymerization [29e 32].The synthesis and self-assembly behavior of amphiphilic cellulose-based brush polymers have attracted much interesting.Yuan et al.prepared the cellulose-graft -poly(2-(N,N -dimethylamino)ethyl methacrylate)(cellulose-g -PDMAEMA)by atom transfer radical polymerization (ATRP)and self-assemble into nano-aggregates with temperature/pH-responsive properties [33].Liu and Huang et al.investigated the synthesis and self-assembly of amphiphilic hydrox-ypropylcellulose (HPC)brush copolymers,including HPC-g -PDMAEMA and HPC-graft -poly(4-vinylpyridine)(HPC-g -P4VP)[32,33].Moreover,the cellulose brush copolymer with block copolymer side chains was also investigated.Malmstr ?m et al.reported the preparation of unimolecular nanocontainers from HPC-graft -poly(ε-caprolactone)-block -poly((acrylic acid))(HPC-g -PCL-b -PAA)by the combination of ring-opening polymerization (ROP)and ATRP [34].In general,the cellulose-based graft polymers are synthesized by “graft from ”method,but the strategy is complicated,especially to prepare the graft copolymers with complex side chains.Therefore,cellulose polymers with mono side chains and simple structure usually synthesized by “graft from ”approach.Huang and Liu et al.reported the synthesis of pH-responsive ethyl cellulose-graft -PDMAEMA (EC-g -PDMAEMA)[35],EC-g -PAA [36],EC-graft -polystyrene (EC-g -PS)[37],and EC-graft -poly(2-hydroxyethyl methacrylate)(EC-g -PHEMA)[38],and EC-graft -poly(ethylene glycol)methyl ether methacrylate (EC-g -

*Corresponding authors.Key Laboratory of Advanced Civil Materials,Ministry of Education,Shanghai 201804,People ’s Republic of China.Tel./fax:t862169580234.

E-mail addresses:yuanwz@https://www.360docs.net/doc/292345093.html, (W.Yuan),renjie@https://www.360docs.net/doc/292345093.html, (J.

Ren).

Contents lists available at SciVerse ScienceDirect

Polymer

journal homepage:www.elsev https://www.360docs.net/doc/292345093.html,/locat

e/polymer

0032-3861/$e see front matter ó2012Elsevier Ltd.All rights reserved.doi:10.1016/j.polymer.2012.01.003

Polymer 53(2012)956e 966

P(PEGMA))[39]by ATRP.Tang et al.reported the synthesis of ethyl cellulose with azobenzene-containing polymethacrylates via ATRP. These EC copolymers contained mono side chains and presented non-adjustable functions[40].The“graft to”method is to link the pre-synthesized macromolecules with clear structure into the polymer main chain easily by coupling reaction.However,new approaches should be introduced to overcome the relatively low graft ef?ciency of the common“graft to”ways.

Click chemistry,termed by Sharpless and coworkers,has been introduced into the synthesis of novel polymeric materials with well-de?ned structures and unique properties due to its high speci?city,quantitative yields,and near-perfect?delity in the presence of most functional groups[41e50].Therefore,it is promising to use click chemistry to facilely synthesize the graft polymers with complex architectures.In our previous work, chitosan graft polymers with complex side chains were synthe-sized easily by click chemistry[51].Matyjaszewski and Gao reported the synthesis of poly(2-hydroxyethyl methacrylate)-graft-poly(ethylene oxide)(PHEMA-g-PEO)molecular brush by the“graft to”method via click chemistry[52].Emrick et al.re-ported the preparation of PEG or peptide-graft aliphatic poly-esters by click chemistry[53].Wang et al.prepared amphiphilic centipede-like brush copolymers with poly(ε-caprolactone)(PCL) and poly(ethyl ethylene phosphate)side segments via click chemistry by one-pot syntheses strategy[54].Obviously,due to the unique properties of click chemistry,the pre-synthesized functional side chains can be grafted to EC main chains and to easily prepare the multifunctional or adjustable functional EC brush copolymers.

The work presented here demonstrates the synthesis of a series of ethyl cellulose(EC)brush polymers with mono and dual side chains,in which poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-oligo(ethylene glycol)methacrylate)(P(MEO2MA-co-OEGMA))and poly(2-(N,N-dimethylamino)ethyl methacrylate)(PDMAEMA)are the homo-and hetero-grafts linked into a EC backbone by click chemistry(Scheme1).

The poly(ethylene glycol)-based copolymers,P(MEO2MA-co-OEGMA),exhibit a critical phase transition temperature in water, which can be?nely tuned between26 C and90 C depending on the ratio of MEO2MA and OEGMA[55e60].Moreover,P(MEO2MA-co-OEGMA)copolymers present good properties,such as water solubility,nontoxicity,biocompatibility,and antimunogenicity [61,62].PDMAEMA,an important hydrophilic polyelectrolyte with antibacterial,hemostatic,and anticancer activity,shows dually responsive properties,namely thermo-and pH-responsivity [63e70].The brush polymers are expected to self-assemble in aqueous solutions to present temperature,temperature-pH,and tunable temperature-pH triggered phase transition behaviors respectively according to the alteration of ratio of P(MEO2MA-co-OEGMA)and PDMAEMA side chains.Such brush polymers have great potential applications as nano-carriers for therapeutic agents or gene and nano-materials for intelligent sensors[71]and nano-reactor[72].

2.Experimental

2.1.Materials

EC(M n?19,000g/mol;the degree of ethyl substitution is2.3) was obtained from Luzhou North Chemical Industry Co.,Ltd.and was dried at120 C for20h under vacuum before use. 2-Bromoisobutyryl bromide(Aldrich,USA),sodium azide(NaN3, Alfa Aesar),and propargyl alcohol(Alfa Aesar)were used as received.N,N,N’,N",N"-pentamethyldiethylenetriamine(PMDETA) (Acros Organic,USA)was stirred overnight with CaH2and distilled under reduced pressure.DMAEMA(Acros Organic,USA)was dried over CaH2and distilled under reduced pressure.MEO2MA and OEGMA(M n?475g/mol)were purchased from Aldrich and passed through a column of activated basic alumina to remove inhibitors. CuCl,CuBr,and2,20-bipyridine(bpy)were recrystallized and dried under vacuum.Propargyl2-bromoisobutyrate(PBIB)was prepared from2-bromoisobutyryl bromide and propargyl alcohol according to the literature[73].

2.2.Characterization

2.2.1.Attenuated Total Internal Re?ectance Fourier Transform Infrared(ATR FT-IR)

ATR FT-IR spectra of samples were recorded on a Hyperion2000 spectrometer(Bruker,Germany).

2.2.2.Nuclear Magnetic Resonance Spectroscopy(NMR)

1H NMR spectra were obtained from a Bruker DMX500NMR spectrometer with CDCl3or DMSO-d6as the solvent.The chemical shifts were relative to tetramethylsilane at d?0ppm for protons.

2.2.

3.Gel Permeation Chromatography(GPC)

The molecular weight and molecular weight distribution were measured on a Viscotek TDA302gel permeation chromatography equipped with two columns(GMHHR-H,M Mixed Bed).THF was used as eluent at a?ow rate of1mL/min at30 C.

2.2.4.Turbidity Measurement

The optical transmittance of the brush polymers micellar solu-tions was monitored as a function of temperature at a?xed wave number of500nm by means of a Lambda35UV e vis spectropho-tometer(Peking-Elmer,USA)equipped with a circulating water bath.The aqueous polymer solution concentration of2mg/mL was used.The cloud point was de?ned as the temperature to10% decrease of optical transmittance.

2.2.5.Dynamic Light Scattering(DLS)

Morphology of the micelles/aggregates of brush polymers in water was investigated using DLS techniques.The experiments were performed on a Malvern Autosizer4700DLS spectrometer. DLS was performed at a scattering angle90 .The R h was obtained by a cumulant analysis.

2.2.6.Transmission Electron Microscopy(TEM)

The morphology of brush polymers micelles/aggregates was observed with a JEOL JEM-2010TEM at an accelerating voltage of 120kV.The samples for TEM observation were prepared by placing 10m L of the brush polymers micelles/aggregates solution on copper grids coated with thin?lms and carbon.

2.3.Synthesis of2-bromoisobutyryl ethyl cellulose(EC-Br)and azide-ethyl cellulose(EC-N3)

The synthetic procedure of EC-Br was as follows.EC(6.08g, 0.32mmol)was dissolved in anhydrous chloroform(80mL)under stirring.To this solution was added triethylamine(3.8g, 37.6mmol)under argon at room temperature.The mixture was stirred and cooled to0 C with ice bath.Then2-bromoisobutyryl bromide(8.65g,37.6mmol)in anhydrous chloroform(20mL) was added dropwise to the mixture within40min the reaction mixture was stirred for30h at room temperature before it was washed with saturated NaHCO3aqueous solution and deionized water.EC-Br was obtained by?ltration and dried in vacuum.Then, EC-Br(4.76g,0.2mmol),NaN3(13g,0.4mmol),and DMF(80mL) were added into a150-mL round-bottom?ask equipped with

W.Yuan et al./Polymer53(2012)956e966957

a magnetic stirrer,and the reaction was carried out at 45 C for 24h.Then the solution was poured into excess deionized water for three times and EC-N 3was obtained after ?ltration and dried in vacuum.

EC-Br:ATR FT-IR (cm à1):2974(n C-H ),2830e 2940(n C-H ),1742(n C ?O ).1H NMR (CDCl 3,d ,ppm): 2.96-4.38(CH and CH 2in EC backbone),1.94(C(CH 3)2Br),1.15(CH 3in EC backbone).

EC-N 3:ATR FT-IR (cm à1):2974(n C-H ),2830e 2940(n C-H ),2110(n azide group ),1748(n C ?O ).1H NMR (CDCl 3,d ,ppm):2.96-4.38(CH and CH 2in EC backbone),1.48(C(CH 3)2N 3),1.15(CH 3in EC backbone).2.4.Synthesis of alkynyl-PDMAEMA

Alkynyl -PDMAEMA was obtained by ATRP of DMAEMA mono-mer using PBIB as initiator.In a typical procedure,PBIB (0.34g,1.66mmol),DMAEMA (10.44g,66.4mmol),PMDETA (288mg,1.66mmol),CuBr (238mg,1.66mmol),and DMF (10mL)were added into a dried reaction ?ask.The reaction system was degassed with three freeze-evacuate-thaw cycles and back ?lled with argon.Then the reaction was performed at 50 C for 6h the crude product was dissolved in THF and passed through a neutral aluminum oxide column to remove the copper catalysts.The polymer was obtained by precipitation into cold hexane and dried in vacuo .

M n,NMR ?5600,M n,GPC ?5400,M w /M n ?1.26.1H NMR (CDCl 3,d ,ppm):4.65(CH ^CCH 2O),4.07(CH 2CH 2N),2.58(CH 2CH 2N),2.48(CH ^CCH 2O), 2.30(N(CH 3)2), 1.76-2.02(CH 2C(CH 3)),0.78-1.11(CH 2C(CH 3)).

2.5.Synthesis of alkynyl-P(MEO 2MA-co-OEGMA)

Alkynyl -P(MEO 2MA-co -OEGMA)was obtained by ATRP of MEO 2MA and OEGMA monomers using PBIB as initiator.In a typical procedure,a dried reaction ?ask with a magnetic stirrer was charged with PBIB (0.328g,1.6mmol),MEO 2MA (9.96g,53mmol),OEGMA (2.19g,4.6mmol),bpy (500mg,3.2mmol),CuCl (158mg,1.6mmol),and DMF (15mL).The ?ask was degassed with three freeze-evacuate-thaw cycles and back ?lled with argon.Then,the polymerization was performed at 60 C for 9h.After being cooled to room temperature,the reaction ?ask was open to air,and the crude product was diluted with ethanol and passed through a neutral alumina oxide column to remove the copper catalysts.Then the ?ltered solution was puri ?ed by dialysis (molecular weight cut-off:3000Da)against water to remove unreacted MEO 2MA and OEGMA.Water was removed by azeotropic distilla-tion with methanol and the puri ?ed alkynyl -P(MEO 2MA-co -OEGMA)was obtained.

M n,NMR ?6800,M n,GPC ?6500,M w /M n ?1.19.1H NMR (CDCl 3,d ,ppm): 4.65(CH ^CCH 2O), 4.09(COOCH 2CH 2O), 3.63(COOCH 2-CH 2O), 3.39(OCH 2CH 2OCH 3), 2.49(CH ^CCH 2O), 1.71-2.01(CH 2C(CH 3)),0.74-1.08(CH 2C(CH 3)).

2.6.Synthesis of EC-(g-P(MEO 2MA-co-OEGMA))-g-PDMAEMA EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA brush polymers were prepared via click chemistry.A typical procedure was

as

Scheme 1.Synthesis of EC brush polymers with mono and dual side chains of P(MEO 2MA-co -OEGMA)and PDMAEMA by the combination of ATRP and click chemistry.

W.Yuan et al./Polymer 53(2012)956e 966

958

follows.EC-N3(0.21g,containing0.2mmol of azide groups), alkynyl-PDMAEMA(0.56g,0.1mmol),and alkynyl-P(MEO2MA-co-OEGMA)(0.68g,0.1mmol)were dissolved in DMF.Then CuBr (29mg,0.2mmol)and PMDETA(35mg,0.2mmol)were added into the above solution.After degassed via three freeze-evacuate-thaw cycles and back?lled with argon,the reaction was carried out at 70 C for48h the result polymers was obtained by dialysis against water to remove unreacted alkynyl-PDMAEMA and alkynyl-P(MEO2MA-co-OEGMA).Water was removed by azeotropic distillation with methanol and the puri?ed EC-(g-P(MEO2MA-co-OEGMA))-g-PDMAEMA was obtained.

ATR FT-IR(cmà1):2762e3002(n C-H),1730(n C?O).1H NMR (CDCl3,d,ppm): 4.10(COOCH2CH2O), 4.08(CH2CH2N), 3.68 (COOCH2CH2O), 3.42(OCH2CH2OCH3), 2.59(CH2CH2N), 2.30 (N(CH3)2), 1.55e2.00(CH2C(CH3)), 1.18(CH3in EC backbone), 0.81e1.11(CH2C(CH3)).

2.7.Preparation of self-assembled micelles/aggregates of brush polymers

Samples for transmittance,TEM and DLS were prepared as follows.Brush polymer(50mg)was dissolved in DMF(10mL)and

subsequently dialyzed against distilled water for72h(molecular weight cut-off:14,000Da).During the dialysis process,the brush polymers self-assembled into micelles/aggregates with EC core and PDMAEMA and(or)P(MEO2MA-co-OEGMA)corona.For different measurements,the micelles/aggregates solutions can be diluted to different concentrations by distilled water and equilibrated at20 C for48h.The micelles/aggregates solutions had a concentration of 2mg/mL for transmittance measurement and1mg/mL for TEM and DLS.

3.Results and discussion

3.1.Preparation of amphiphilic ethyl cellulose brush polymers with mono and dual side chains

Amphiphilic ethyl cellulose brush polymers with mono and dual side chains of PDMAEMA and P(MEO2MA-co-OEGMA)were prepared via the combination of ATRP and click chemistry.In order to adjust the pH/temperature responsivity,the feed ratio of PDMAEMA/P(MEO2MA-co-OEGMA)was varied(mol%/mol%:0/100, 25/75,50/50,75/25,100/0).

EC-Br was obtained by the reaction of the remaining hydroxyl groups of EC with2-bromoisobutyryl bromide under moderate conditions.Fig.1a and b show the ATR FT-IR spectra of EC and EC-Br.

Compared to the spectrum of EC,the intensity of the peak absorption band at3370e3560cmà1corresponding to hydroxyl groups decreased obviously and a new peak at1742cmà1corre-sponding to carbonyl absorption of2-bromoisobutyryl group appeared in Fig.1b.1H NMR spectrum of EC-Br was shown in Fig.2a.The signal at1.94ppm assigned to the methyl protons(c)of 2-bromoisobutyryl group can be observed besides the signals assigned to protons of EC main chains.According to the integral ratio between peaks c and a,it can be calculated that54.8%of hydroxyl groups of EC has been transferred into2-bromoisobutyryl groups.EC-N3was obtained by the reaction of EC-Br with excess NaN3.Fig.1c shows the ATR FT-IR spectrum of EC-N3and the characteristic absorption peak of the azide group at about 2110cmà1can be observed.As shown in Fig.2b,the peak of the methyl protons of2-bromoisobutyryl group shifted to1.48ppm. But according to the integral ratio between peaks c and a(in Fig.2b),it can be calculated that67.4%of Br atoms has been replaced by azide https://www.360docs.net/doc/292345093.html,ly,the number of azide groups in the EC-N3is about26per100glucose units.

Alkynyl-P(MEO2MA-co-OEGMA)was prepared by ATRP of MEO2MA and OEGMA monomers using PBIB as the initiator.The feed molar ratio of MEO2MA and OEGMA is92%/8%.1H NMR spectrum of alkynyl-P(MEO2MA-co-OEGMA)was shown in Fig.3a. All the resonance signals can be attributed to the protons of the alkynyl-terminated polymer.The virtual molar ratio of PMEO2MA and OEGMA calculated from1H NMR analysis by comparing inte-gration areas of peaks f and g(in Fig.3a)is92.2%/7.8%(mol%/mol%). The actual degree of polymerization(DP)was calculated to be from 1H NMR analysis by comparing integration areas of peaks e and b(in Fig.3a).

Alkynyl-PDMAEMA was prepared by ATRP of DMAEMA mono-mer using PBIB as the initiator.1H NMR spectrum of alkynyl-PDMAEMA was shown in Fig.3b.All the resonance signals can be ascribed to the protons of the alkynyl-terminated polymer.The actual DP was calculated to be from1H NMR analysis by comparing integration areas of peaks e and b(in Fig.3b).

The synthesis of amphiphilic EC brush polymers with mono and dual side chains was accomplished via the click reaction of EC-N3, alkynyl-P(MEO2MA-co-OEGMA)and(or)alkynyl-PDMAEMA.

The Fig.1.ATR FT-IR spectra of(a)EC,(b)EC-Br,(c)EC-N3,and(d)EC-(g-P(MEO2MA-co-OEGMA))-g-PDMAEMA(sample

3).

Fig.2.1H NMR spectra of(a)EC-Br and(b)EC-N3.

W.Yuan et al./Polymer53(2012)956e966959

typical ATR FT-IR spectrum of EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA was shown in Fig.1d.After click reaction,the absor-bance peak of azide group disappeared.In addition,an intensive peak at 1730cm à1corresponding to carbonyl absorption of P(MEO 2MA-co -OEGMA)and PDMAEMA segments was observed.From 1H NMR of the EC-based amphiphilic copolymer (Fig.3c),all characteristic signals of P(MEO 2MA-co -OEGMA)and PDMAEMA side chains can be discerned.The virtual ratio of P(MEO 2MA-co -OEGMA)and PDMAEMA can be calculated by comparing the integration areas of peaks f and i (Fig.3c).Moreover,the number-average molecular weight (M n )of the polymer brushes

determined by 1H NMR spectrum and the grafting ef ?ciency through click reaction can be calculated by the integral ratio of peak a (methyl protons in EC backbone)to peaks d and g (d tg)(methylene protons in P(MEO 2MA-co -OEGMA)and PDMAEMA side chains,respectively).As shown in Table 1,the grafting ratios of P(MEO 2MA-co -OEGMA)to PDMAEMA measured by 1H NMR spectra were 0/100,29/71,55/45,76/24,100/0(mol%/mol%)respectively.The coupling ef ?ciency of brush polymers is above 80%,indicating the relatively high ef ?ciency of click chemistry.The GPC traces of alkynyl -P(MEO 2MA-co -OEGMA),alkynyl -PDMAEMA and brush polymer (sample 3)are shown in Fig.4

.

Fig.3.1H NMR spectra of (a)alkynyl -P(MEO 2MA-co -OEGMA),(b)alkynyl -PDMAEMA,and (c)EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA (sample 3).

Table 1

Characterization of polymers.Sample

[alkynyl -PDMAEMA]/[alkynyl -P

(MEO 2MA -co -OEGMA)](mol%/mol%)M n,NMR a M n,GPC b M w /M n b

Coupling

ef ?ciency (%)a

Feed ratio

Actual ratio a

alkynyl -PDMAEMA

e 56005400 1.26e alkynyl -P(MEO 2MA-co -OEGMA)e 68006500 1.19e 10/1000/100149,000138,000 1.4585.1225/7529/71138,000129,000 1.5181.9350/5055/45134,000123,000 1.5382.8475/2576/24126,000118,000 1.5680.65

100/0

100/0

125,000

115,000

1.48

83.6

a The actual ratio,M n,NMR,and coupling ef ?ciency of click chemistry were determined by 1H NMR spectroscopy.b

M n,GPC and M w /M n were determined by GPC analysis with polystyrene standards.THF was used as eluent.

W.Yuan et al./Polymer 53(2012)956e 966

960

3.2.Self-assembly behavior and temperature-pH responsivities of brush polymers

As amphiphilic brush polymers,EC-g -P(MEO 2MA-co -OEGMA),EC-g -PDMAEMA,and EC-(g -P(MEO 2MA-co -OEGMA))-g

-PDMAEMA

Fig. 4.GPC curves of alkynyl -P(MEO 2MA-co -OEGMA),alkynyl -PDMAEMA,and EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA (sample

3).

Fig.5.The schematic self-assembly processes of the brush polymers (EC-g -P(MEO 2MA-co -OEGMA),EC-g -PDMAEMA,and EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA)and the photographs of the micelles/aggregates solutions at different temperatures and pH

values.

Fig.6.Temperature dependence of transmittance for the micelles/aggregates solu-tions of sample 1e 5at pH 7.

W.Yuan et al./Polymer 53(2012)956e 966961

can self-assemble into micelles/aggregates.The hydrophilic P(MEO2MA-co-OEGMA)and(or)PDMAEMA side chains are mainly in the corona of the micelles/aggregates,whereas the hydrophobic backbone of EC is mainly in the core of the micelles/aggregates. Fig.5shows the schematic reversible transformation process of micelles/aggregates and the micelles/aggregates solutions photo-graphs at different temperatures and pH values.P(MEO2MA-co-OEGMA)is temperature-responsive polymer and has a critical phase transition temperature in water.But PDMAEMA is dually responsive(temperature and pH)polymer and has a phase transi-tion temperature in water and a pH-triggered phase transition point.In this work,the cloud point of P(MEO2MA-co-OEGMA) was designed lower than that of PDMAEMA segments.Therefore,EC-(g-P(MEO2MA-co-OEGMA))-g-PDMAEMA micelles/aggregates was expected to present unique temperature-pH responsivities. The micelles/aggregates solution of EC-g-P(MEO2MA-co-OEGMA)is transparent at low temperature(such as25 C)but became turbid when the temperature is higher than the cloud point(such as 45 C).Under the cloud point,the P(MEO2MA-co-OEGMA)chains are hydrophilic and the micelles/aggregates are stable,but above the cloud point,the hydrogen bonds of ether oxygen between P(MEO2MA-co-OEGMA)chains and the water molecules are broken,P(MEO2MA-co-OEGMA)chains collapse and become hydrophobic.As for EC-g-PDMAEMA micelles/aggregates solution, at low temperature(such as25 C),the micelles/aggregates are very stable,therefore the solution is transparent.When the

micelles/ Fig.7.Temperature dependence of hydrodynamic radium(R h)for the micelles/aggregates of sample1e5at pH7.

W.Yuan et al./Polymer53(2012)956e966

962

aggregates solution is heated to the temperature higher than the cloud point (such as 75 C)or changes from neutral to basic condition (such as pH 12),the hydrophilic PDMAEMA chains become hydrophobic.

The hydrogen-bonding interaction of water molecules and N,N -dimethylaminoethyl groups are destroyed at high temperature and the conformation of PDMAEMA chains changes from an expanding shape to a compact coil.Moreover,at acidic and neutral conditions,N,N -dimethylaminoethyl groups are protonated and the PDMAEMA chains are quasi-completely charged (pKa of PDMAEMA is about 7.5).When the pH value increases,PDMAEMA chains are depronoated and transform to hydrophobic.Therefore,the micelles/aggregates solution presents turbidity.For EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA,the brush polymer presents various self-assembly behaviors due to its unique struc-ture.At low temperature (such as 25 C),the micelles/aggregates with EC core and P(MEO 2MA-co -OEGMA)/PDMAEMA corona are stable,and the micelles/aggregates solution is transparent.When the temperature increases above the cloud point of P(MEO 2MA-co -OEGMA)(such as 45 C),the P(MEO 2MA-co -OEGMA)segments become hydrophobic and the micelles/aggregates are composed of EC/P(MEO 2MA-co -OEGMA)core and PDMAEMA corona.So the micelles/aggregates are still stable and the solution is transparent.After the temperature increases above the cloud point of PDMAEMA segments (such as 75 C),the PDMAEMA chains transform to hydrophobic and the micelles/aggregates tend to aggregate into aggregates.The solution becomes turbid.In addi-tion,when pH value increases (such as pH 12),PDMAEMA segments become hydrophobic.The micelles/aggregates are made up of EC/PDMAEMA core and P(MEO 2MA-co -OEGMA)corona and still remain stable.The transparent solution can be observed.Fig.6shows the transmittance curves of EC-g -P(MEO 2MA-co -OEGMA)(sample 1),EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA (sample 2e 4),and EC-g -PDMAEMA (sample 5)micelles/aggregates solutions.

It can be seen that the transmittance curves show sharp tran-sition during heating process.The cloud point of sample 1is about 37.4 C.Moreover,the cloud point values of samples 2e 5are 44.6 C,52.1 C,56.9 C,and 62.1 C respectively.Obviously,the presence of PDMAEMA side chains can enhance the temperatures of phase transition and the cloud point values increase with the increase of PDMAEMA content in the brush polymers.Fig.7shows the plots of the hydrodynamic radius (R h )of samples 1e 5in water as a function of temperature.

For EC-g -P(MEO 2MA-co -OEGMA)(sample 1),in the lower temperature ranges,the R h values are relatively small and change slightly.In contrast,the values increased drastically in the higher temperature ranges.At low temperatures,EC-g -P(MEO 2MA-co -OEGMA)segments exist in random coil conformation owing to the hydrogen-bonding interaction between P(MEO 2MA-co -OEGMA)and water molecules.When the temperature increases above the cloud point,polymer chains shrink into a globular structure due to the break of the hydrogen bonds.Therefore,the chains collapsed and became https://www.360docs.net/doc/292345093.html,ly,at elevated temperature,P(MEO 2MA-co -OEGMA)chains within the micelles/aggregates get insoluble,and this breaks the hydrophilic/hydrophobic balances of originally formed micelles/aggregates at lower temperatures.Therefore,the intermolecular hydrophobic attractions are ther-modynamically favored and the micelles/aggregates aggregate occurred,which results in the increase of the

micelles/aggregates

Fig.8.pH dependence of hydrodynamic radium (R h )for the micelles/aggregates of sample 2e 5at 25 C.

W.Yuan et al./Polymer 53(2012)956e 966963

Fig.9.TEM images of EC-g -P(MEO 2MA-co -OEGMA)(sample 1)micelles/aggregates at (a)25 C and (b)45 C;EC-(g -P(MEO 2MA-co -OEGMA))-g -PDMAEMA)(sample 3)micelles/aggregates at (c)25 C and (d)60 C;EC-g -PDMAEMA (sample 5)micelles/aggregates at (e)25 C and (f)70 C;sample 3micelles/aggregates at (f)pH 2and (g)pH 9;sample 5micelles/aggregates at (h)pH 2and (i)pH 9.

W.Yuan et al./Polymer 53(2012)956e 966

964

size.For sample2,the temperature at that the R h increased dras-tically is higher than that of sample1due to the presence of some PDMAEMA side chains in the polymer.As for sample3,owing to the close molar content of P(MEO2MA-co-OEGMA)and PDMAEMA, the R h of micelles/aggregates increased to some degree at the temperatures higher than40 C.In this temperature ranges,the P(MEO2MA-co-OEGMA)side chains changed into hydrophobic polymers,so the stability of the micelles/aggregates decreased and the micelles/aggregates tend to aggregate into larger aggregates. When the temperature continually increased to higher tempera-ture,the P(MEO2MA-co-OEGMA)and PDMAEMA side chains all became hydrophobic,the aggregates further aggregated into bigger particles.For sample4(the content of PDMAEMA is much higher than that of P(MEO2MA-co-OEGMA))and EC-g-PDMAEMA(sample 5),the change tendency of R h values of the micelles/aggregates is similar to that of sample1except the temperature at that the R h increased drastically is much higher than that of sample1.Because the cloud point of PDMAEMA is higher than that of P(MEO2MA-co-OEGMA),the micelles/aggregates shrunk and began to aggregate into aggregates with larger size at higher temperature than the micelles/aggregates of EC-g-P(MEO2MA-co-OEGMA).Obviously, due to the different cloud point values,the brush polymers micelles/aggregates show tunable change of size according to the change of the ratio of P(MEO2MA-co-OEGMA)and PDMAEMA side chains in the polymers.Fig.8shows the plots of the R h of samples 2e5in water as a function of pH value.For sample2,the micelles/ aggregates size did not have the obvious change at different pH conditions because the content of pH non-responsive P(MEO2MA-co-OEGMA)segments is much higher than that of pH-responsive PDMAEMA segments in the brush polymer.For samples3and4, the R h of micelles/aggregates obviously decreased from acidic to basic solutions.In these two brush polymers,the content of PDMAEMA segments is higher than that of P(MEO2MA-co-OEGMA) segments,so the conformational change of PDMAEMA chains has the comparatively obvious effect on the size of the micelles/ aggregates.At acidic solutions,PDMAEMA chains were protonated and presented expanding conformation.At basic solutions, PDMAEMA chains were deprotonated and presented compact conformation.Therefore,the micelles/aggregates shrunk to some extent.For example,the R h values of sample3decreased from about107nm at pH2to about76nm at pH10.The polymer brushes of sample5are PDMAEMA segments,so the change of the micelles/ aggregates size is the largest in all the four samples.Because at basic solutions,all the PDMAEMA side chains of brush polymer became hydrophobic after deprotonation.At pH2,the R h of micelles/aggregates is about127nm,but at pH10,the R h decreased to about56nm.As a comparison,EC-g-PDMAEMA-g-PCL amphi-philic brush copolymer prepared by the combination of ROP and ATRP present complicated synthesis process and the multi-responsive properties(such as tunable temperature-pH responses)could be obtained.In addition,it is dif?cult to control the molecular weight and molecular weight distribution of the side chains in the brush copolymer[74].Similarly,EC-g-P(PEGMA) prepared by ATRP could not present tunable thermosensitivity under the current structure[39].

TEM images of the micelles/aggregates at different temperature and pH values are shown in Fig.9.Fig.9a and b are the micelles/ aggregates images of EC-g-P(MEO2MA-co-OEGMA)(sample1)at 25 C and45 C,respectively.It can be seen that the spherical micelles/aggregates forming at low temperature deformed and aggregated at the temperatures higher than the cloud point of sample1.Fig.9c and d are the micelles/aggregates images of EC-(g-P(MEO2MA-co-OEGMA))-g-PDMAEMA(sample3)at25 C and60 https://www.360docs.net/doc/292345093.html,pared to the micelles/aggregates at25 C,the morphology of micelles/aggregates deformed and the serious aggregation occurred at the temperature higher than the cloud point.Fig.9e and f are the micelles/aggregates images of EC-(g-P(MEO2MA-co-OEGMA))-g-PDMAEMA(sample3)at pH2and pH9,respectively.The spherical micelles/aggregates can be observed at two images,but the micelles/aggregates size at basic condition was smaller than that at acidic solution.Fig.9g and h are the images of EC-g-PDMAEMA(sample5)at25 C and70 C.At high temperature,the micelles/aggregates were instable and aggregated into large aggregates.Fig.9i and j are the images of sample5at pH2and pH9.At basic solution,the micelles/aggre-gates shrank and the size decreased comparing to the micelles/ aggregates at acidic condition.In addition,the micelles/aggregates presented in the TEM images were found to aggregate and adhere to each other.During the process of preparing samples for TEM measurements,the water evaporation may also lead to the collapse, shrinkage,and aggregate of the micelles/aggregates.But the change of the micelles/aggregates sizes can be observed at different conditions.The TEM images were in accordance with the results of the transmittance and DLS.The tunable temperature-pH respon-sivities of the micelles/aggregates self-assembled from EC brush polymers can be accomplished through adjusting the ratio of temperature responsive P(MEO2MA-co-OEGMA)and temperature-pH dually responsive PDMAEMA side chains in the brush polymers.

4.Conclusions

Amphiphilic EC brush polymers with mono and dual side chains of P(MEO2MA-co-OEGMA)and PDMAEMA were easily prepared by the combination of ATRP and click chemistry.The graft ratio of these two side chains can be adjusted via the alteration of the feed ratio of alkynyl-P(MEO2MA-co-OEGMA)and alkynyl-PDMAEMA due to the unique properties of click reaction.These brush poly-mers can self-assemble into micelles/aggregates with various conformations.The self-assembly behavior and tunable temperature-pH responsive properties of EC brush polymers were investigated by transmittance,DLS,and TEM.Investigations show that the cloud points,pH-triggered phase transition and the adjustment of micelles/aggregates size of EC brush polymer micelles/aggregates solutions were in?uenced by the EC chains and the ratio of temperature responsive P(MEO2MA-co-OEGMA)and temperature-pH dual responsive PDMAEMA side chains.The EC brush polymers with tunable temperature-pH responsivities have the potential applications in the biomedical and smart materials. Acknowledgements

The authors gratefully acknowledge the?nancial support of the National Natural Science Foundation of China(no.20804029). References

[1]Iha RK,Wooley KL,Nystr?m AM,Burke DJ,Kade MJ,Hawker CJ.Chem Rev

2009;109(11):5620e86.

[2]van Dongen SF,de Hoog HPM,Peters RJRW,Nallani M,Nolte RJM,van

Hest JCM.Chem Rev2002;102(11):4093e138.

[3]Rosen BM,Wilson CJ,Wilson DA,Peterca M,Imam MR,Percec V.Chem Rev

2009;109(11):6275e540.

[4]Savariar EN,Ghosh S,González DC,Thayumanavan S.J Am Chem Soc2008;

130(16):5416e7.

[5]Basu S,Vutukuri DR,Shyamroy S,Sandanaraj BS,Thayumanavan S.J Am Chem

Soc2004;126(32):9890e1.

[6]Ding L,Huang YY,Zhang YY,Deng JP,Yang WT.Macromolecules2011;44(4):

736e43.

[7]Feng XS,Yan LF,Wen J,Pan CY.Polymer2002;43(10):3131e7.

[8]Signori F,Chiellini F,Solaro R.Polymer2005;46(23):9642e52.

[9]Du WJ,Li YL,Nystr?m AM,Cheng C,Wooley KL.J Polym Sci Part A Polym

Chem2010;48(15):3487e96.

[10]Ren TB,Wang A,Yuan WZ,Li L,Feng Y.J Polym Sci Part A Polym Chem2011;

49(10):2303e13.

W.Yuan et al./Polymer53(2012)956e966965

[11]Kang HZ,Trondoli AC,Zhu GZ,Chen Y,Chang YJ,Liu HP,et al.ACS Nano2011;

5(6):5094e9.

[12]Liu YC,Le Ny AL,Schmidt J,Talmon Y,Chmelka BF,CTL https://www.360docs.net/doc/292345093.html,ngmuir2009;

25(10):5713e24.

[13]Chang C,Wei H,Feng J,Wang ZC,Wu XJ,Wu DQ,et al.Macromolecules2009;

42(13):4838e44.

[14]Yusa S,Sugahara M,Endo T,Morishima https://www.360docs.net/doc/292345093.html,ngmuir2009;25(9):5258e65.

[15]Oda Y,Kanaoka S,Aoshima S.J Polym Sci Part A Polym Chem2010;48(5):

1207e13.

[16]Li CH,Ge ZS,Fang J,Liu SY.Macromolecules2009;42(8):2916e24.

[17]Gao WW,Chan JM,Farokhzad OC.Mol Pharmaceutics2010;7(6):1913e20.

[18]Wu XL,Kim JH,Koo H,Bae SM,Shin H,Kim MS,et al.Bioconjug Chem2010;

21(2):208e13.

[19]Du JZ,Armes SP.J Am Chem Soc2005;127(37):12800e1.

[20]Yu SY,Azzam T,Rouiller I,Eisenberg A.J Am Chem Soc2009;131(30):

10557e66.

[21]Yun SI,Gadd GE,Lo V,Gauthier M,Munam A.Macromolecules2008;41(19):

7166e72.

[22]Chen S,Li Y,Guo C,Wang J,Ma JH,Liang XF,et https://www.360docs.net/doc/292345093.html,ngmuir2007;23(25):

12669e76.

[23]De P,Li M,Gondi SR,Sumerlin BS.J Am Chem Soc2008;130(34):11288e9.

[24]Yamamoto S,Pietrasik J,Matyjaszewski K.Macromolecules2008;41(19):

7013e20.

[25]Kar N,Liu HY,Edgar KJ.Biomacromolecules2011;12(4):1106e15.

[26]Magalh?es WLE,Cao XD,Lucia https://www.360docs.net/doc/292345093.html,ngmuir2009;25(22):13250e7.

[27]Kontturi E,Suchy M,Penttil?P,Jean B,Pirkkalainen K,Torkkeli M,et al.

Biomacromolecules2011;12(3):770e7.

[28]Barsbay M,Güven O,Stenzel MH,Davis TP,Barner-Kowollik C,Barner L.

Macromolecules2007;40(20):7140e7.

[29]?stmark E,Harrisson S,Wooley KL,Malmstr?m EE.Biomacromolecules2007;

8(4):1138e48.

[30]Sui XF,Yuan JY,Zhou M,Zhang J,Yang HJ,Yuan WZ,et al.Biomacromolecules

2008;9:2615e20.

[31]Ma L,Liu RG,Tan JJ,Wang DQ,Jin X,Kang HL,et https://www.360docs.net/doc/292345093.html,ngmuir2010;26(11):

8697e703.

[32]Yuan WZ,Yuan JY,Zhang FB,Xie XM.Biomacromolecules2007;8(4):1101e8.

[33]Ma L,Kang HL,Liu RG,Huang https://www.360docs.net/doc/292345093.html,ngmuir2010;26(23):18519e25.

[34]?stmark E,Nystr?m D,Malmstr?m E.Macromolecules2008;41:4405e15.

[35]Wang DQ,Tan JJ,Kang HL,Ma L,Jin X,Liu RG,et al.Carbohydr Polym2011;84:

195e202.

[36]Kang HL,Liu WY,He BQ,Shen DW,Ma L,Huang Y.Polymer2006;47:7927e34.

[37]Liu WY,Liu RG,Li YX,Kang HL,Shen DW,Wu M,et al.Polymer2009;50:

211e7.

[38]Kang HL,Liu WY,Liu RG,Hang Y.Macromol Chem Phys2008;209:

424e30.

[39]Li YX,Liu RG,Liu WY,Kang HL,Wu M,Huang Y.J Polym Sci Part A Polym

Chem2008;46:6907e15.

[40]Tang XD,Gao LC,Fan XH,Zhou QF.J Polym Sci Part A Polym Chem2007;45:

1653e60.

[41]Kolb HC,Finn MG,Sharpless KB.Angew Chem Int Ed2001;40(11):2004e21.

[42]Billiet L,Fournier D,Prez FD.Polymer2009;50(16):3877e86.[43]Shokeen M,Pressly ED,Hagooly A,Zheleznyak A,Ramos N,Fiamengo AL,et al.

ACS Nano2011;5(2):738e47.

[44]Nulwala H,Burke DJ,Khan A,Serrano A,Hawker CJ.Macromolecules2010;

43(41):5474e7.

[45]Joralemon MJ,O’Reilly RK,Hawker CJ,Wooley KL.J Am Chem Soc2005;

127(48):16892e9.

[46]Vora A,Singh K,Webster DC.Polymer2009;50(13):2768e74.

[47]Pan PJ,Fujita M,Ooi WY,Sudesh K,Takarada T,Goto A,et al.Polymer2011;

52(4):895e900.

[48]Vestberg R,Malkoch M,Kade M,Wu P,Fokin VV,Sharpless KB,et al.J Polym

Sci Part A Polym Chem2007;45(14):2835e46.

[49]Lonsdale DE,Bell CA,Monteiro MJ.Macromolecules2010;43(7):3331e9.

[50]Durmaz H,Dag A,Hizal A,Hizal G,Tunca U.J Polym Sci Part A Polym Chem

2008;46(21):7091e100.

[51]Yuan WZ,Zhao ZD,Gu SY,Ren J.J Polym Sci Part A Polym Chem2010;48(15):

3476e86.

[52]Gao HF,Matyjaszewski K.J Am Chem Soc2007;129(20):6633e9.

[53]Parrish B,Breitenkamp RB,Emrick T.J Am Chem Soc2005;127(20):7404e10.

[54]Yuan YY,Du Q,Wang YC,Wang J.Macromolecules2010;43(4):1739e46.

[55]Lutz JF,Akdemir?,Hoth A.J Am Chem Soc2006;128(40):13046e7.

[56]Jonas AM,Glinel K,Nysten B,Huck WTS.Macromolecules2007;40(13):

4403e5.

[57]Ge ZS,Zhou YM,Xu J,Liu HW,Chen DY,Liu SY.J Am Chem Soc2009;131(5):

1628e9.

[58]Jonas AM,Hu ZJ,Glinel K,Huck WTS.Nano Lett2008;8(11):3819e24.

[59]Shen WQ,Chang YL,Liu GY,Wang HF,Cao AN,An ZS.Macromolecules2011;

44(8):2524e30.

[60]Wang W,Ding JX,Xiao CS,Tang ZH,Li D,Chen J,et al.Biomacromolecules

2011;12(7):2466e74.

[61]Jiang XZ,Zhang GY,Narain R,Liu https://www.360docs.net/doc/292345093.html,ngmuir2009;25(4):2046e54.

[62]Badi N,Lutz JF.J Control Release2009;140(3):224e9.

[63]Lin S,Du FS,Wang Y,Ji S,Liang DH,Yu L,et al.Biomacromolecules2008;9(1):

109e15.

[64]Dai S,Ravi P,Tan CH,Tam https://www.360docs.net/doc/292345093.html,ngmuir2004;20(20):8569e75.

[65]Chen SC,Kuo SW,Liao CS,Chang FC.Macromolecules2008;41(22):8865e76.

[66]Layman JM,Ramirez SM,Green MD,Long TE.Biomacromolecules2009;10(5):

1244e52.

[67]Guo ZZ,Chen XY,Xin JY,Wu D,Li JS,Xu CL.Macromolecules2010;43(21):

9087e93.

[68]Mao J,Bo SQ,Ji https://www.360docs.net/doc/292345093.html,ngmuir2011;27(12):7385e91.

[69]Mao J,Ni PH,Mai YY,Yan https://www.360docs.net/doc/292345093.html,ngmuir2007;23(9):5127e34.

[70]Gary DJ,Lee H,Sharma R,Lee JS,Kim Y,Cui ZY,et al.ACS Nano2011;5(5):

3493e505.

[71]Yuan WZ,Zhao ZD,Yuan JY,Gu SY,Zhang FB,Xie XM,et al.Polym Int2011;60:

194e201.

[72]Gao X,Ku c erka N,Nieh MP,Katsaras J,Zhu SP,Brash JL,et https://www.360docs.net/doc/292345093.html,ngmuir2009;

25(17):10271e8.

[73]Tsarevsky NV,Sumerlin BS,Matyjaszewski K.Macromolecules2005;38(9):

3558e61.

[74]Yan Q,Yuan JY,Zhang FB,Sui XF,Xie XM,Yin YW,et al.Biomacromolecules2009;

10:2033e42.

W.Yuan et al./Polymer53(2012)956e966 966

两亲性及全亲水性嵌段聚合物在水溶液中的超分子自组装行为

2009年春博政考核 姓名:李昌华 学号:SA07020003 系别:高分子材料与工程(20) Email:chli@https://www.360docs.net/doc/292345093.html, 日期:二零零九年六月

两亲性及全亲水性嵌段聚合物在水溶液中的超分子自组装行为 摘要:在过去的几十年里,水溶液中嵌段聚合物的超分子自组装行为受到了越来越广泛的关注。研究报道,它们在药物释放,影像,遥感,和催化等领域的应用都取得了重大突破。除了嵌段单元的序列长度,分子量,溶剂和链结构都能极大地影响它们在一些选择性的溶剂中的自组装性能。这篇文章主要介绍了两亲性和全亲水性嵌段聚合物(DHBCs)的非线性链拓扑结构,包括杂臂星形嵌段聚合物,树状嵌段共聚物,环状嵌段共聚物,梳状共聚物刷。 发展脉络 众所周知,两亲性嵌段聚合物可以在水溶液中自组装成的多种形态,包括:球状,棒状,片状,囊泡,大型复合胶束或囊泡【1-5】。在过去的几十年中,由于嵌段共聚物组装体在药物释放【6-8】,成像【9-14】,遥感【15, 16】和催化【17-21】领域有着重要的应用,因而这一领域得到了越来越广泛的关注。全亲水性嵌段聚合物(DHBCs)是一类特殊的两亲性嵌段聚合物,由化学性质不同的两嵌段或多嵌段组成,每个嵌段都有水溶性。大多数情况下,全亲水性嵌段聚合物其中的一个嵌段的水溶性足以促进聚合物的溶解和分散,另一个嵌段为环境敏感水溶性聚合物。当外部环境如pH值,温度,离子强度和光照发生变化时,其由水溶性的嵌段转变为不溶性的嵌段并出现胶束化行为【22-26】。某些环境响应性的DHBCs甚至可以表现多重胶束化行为,通过调节外部环境条件其可以形成两种或多种具有反转结构的纳米尺度聚集体【22, 23, 26-32】。DHBCs在稀水溶液中独特的环境敏感自组装行为成为近年来高分子自组装领域研究的一个新的热点,关于其的研究将进一步扩大嵌段聚合物组装体的应用范围。 该部分主要介绍领域发展的基本脉络,主要集中描述近几年来两亲性和全亲水性嵌段聚合物超分子自组装体具有的非线性链拓扑结构,包括杂臂星型聚合物,树枝状嵌段聚合物,环状嵌段聚合物和梳型嵌段聚合物。我们课题组(20系刘世勇课题组)在该领域也做了很多工作。 两亲性和全亲水性星型聚合物 典型的星型聚合物是至少三条线性高分子链通过共价键或非共价键连接在同一个连接点上或一个微凝胶核上而形成的聚合物。多种可控聚合技术已被用来成功地制备星型聚合物或者杂臂星型聚合物,包括高真空阴离子聚合【46, 47】,原子转移自由基聚合(ATRP)【48-50】,

两亲性聚合物

两亲性纳米胶束载药系统的研究进展 摘要 本文综述了由两亲性共聚物制备纳米胶束用于载药系统的研究进展,并进一步介绍这些载药系统的优点及应用。 关键词两亲性共聚物纳米胶束 前言 两亲性共聚物是同时含有亲油性与亲水性高分子链段的大分子物质只有独特的溶液性质,聚集特性,表面活性,生物相容性,溶液选择性等。两亲性高分子在选择性溶剂中发生微相分离,可以形成具有疏溶剂核与溶剂化壳的自组装结构——聚合物纳米胶束[1]是研究得较多的一种非常重要的药物载主要用于对疏水难溶药物的增溶作用。 在肿瘤的治疗上目前采用的主要是化疗,即利用化学药物杀、抑制肿瘤细胞的生长繁殖和促进肿瘤细胞的分化,但是化疗治疗肿瘤在杀伤肿瘤细胞的同时,也将正常细胞和免疫(抵抗)细胞一同杀灭,化疗依然无法根治肿瘤且药物利用度不高。肿瘤耐药的机制错综复杂经典的产生耐药的原因是抗肿瘤药物在进入肿瘤组织后无法到达靶细胞内的分子靶点或者无法达到有效的胞内浓度。 而与传统剂型相比,纳米载药体系的优点是粒径10—100nm,能在血液中长时间循环并保持稳定;在靶位表现更好的生物膜穿透性能;可保护核苷酸,防止被核酸酶降解。具有缓释、控释与靶向给药的特点,提高了生物利用度;降低了毒副作用;增加了药物稳定性;丰富了药物的剂型选择,减少了用药量等在纳米铁微粒表面包覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。很多纳米颗粒在体内的吸收和分布具有一定的规律。如肿瘤血管对纳米颗粒有较高的通透性,因此可用纳米载体携带药物靶向作用于肿瘤组织。另外,还可以利用纳米载体的一些特异的物理性质向靶位点转运药物。 通过连接特异性抗体和配体介导载体由细胞内吞途径被摄取或通过干扰技术从基因水平减少外排蛋白表达纳米载体能够克服外排蛋白而使更高浓度的药物在胞内蓄积。另外随着新型刺激响应性材料的出现药物在肿瘤细胞内的释放时间和释放位置可通过采用不同种类和比例的聚合物进行调节也开发出了可同时包载多种药物的纳米载体使药物同时达到肿瘤部位可控制药物释放的纳米载体已成为现实。 1两亲性聚合物形成机理 与小分子表面活性剂的自组装原理相似,两亲性共聚物的亲水、疏水嵌段的溶解性存在极大差异,在水性环境中能自组装形成亚观范围的聚合物胶束。这种胶束具有相对较窄的粒经分布及独特的核-壳结

两亲性高分子聚集体在药物载体中的应用

两亲性高分子聚集体在药物载体中的应用 尹常晴隋卫平*汪源浩 (济南大学化学化工学院济南 250022) 摘要由于两亲性高分子独特的自组装性能,近年来在药物载体中的应用研究受到越来越广泛的关注。本文介绍了两亲性高分子所形成的几种自组装聚集体形式,如聚合物胶束、凝胶、微乳液、囊泡等的特点、制备及在药物载体中的应用。 关键词两亲性高分子药物载体聚合物胶束凝胶囊泡 The Application of Amphiphilic Polymer Aggregates as Drug Carrier Yin Changqing, Sui Weiping*, Wang Yuanhao (School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022) Abstract As effective drug delivery system, amphiphilic polymers have generated tremendous interest due to their special self-assembling properties. In this paper the properties, preparations and applications of the amphiphilic polymer assembling aggregates such as polymeric micelles, gel, microemulsion, vesicle as drug carriers are introduced. Key words Amphiphilic polymer, Drug carrier, Polymeric micelle, Gel, Vesicle 药物载体是指能改变药物进入人体的方式和在体内的分布、控制药物的释放速度并将药物输送到靶向器官的体系[1]。由于各种药物载体释放和靶向系统能够减少药物降解及损失,降低副作用,提高生物利用度,因而对它的研究越来越受到重视。为了寻找合适的药物载体,人们对各种体系如微球、脂质体、微乳液等进行了研究。高分子表面活性剂由于其独特的两亲性结构,可以进行自组装,形成各种形式的聚集体,如胶束、微乳液、凝胶、液晶、囊泡等。这些聚集体具有包载药物分子的能力,同时又对膜有良好的渗透性,成为药物载体的重要研究领域。本文介绍了两亲性聚合物形成的胶束、微乳液、凝胶、囊泡等作为药物载体的应用。 1 聚合物胶束作为药物载体 两亲性高分子在选择性溶剂中发生微相分离,可以形成具有疏溶剂核与溶剂化壳的自组装结构——聚合物胶束[2]。聚合物胶束是研究得较多的一种非常重要的药物载体,主要用于对疏水难溶药物的增溶作用。 1.1 聚合物胶束的特点 聚合物胶束粒径较小,一般不超过100nm,具有纳米材料的特性,是近几年正在发展的一类新型的纳米载体[3],其载药范围广、结构稳定、具有优良的组织渗透性,体内滞留时间长,能使药物有效地到达靶点。 可形成胶束的聚合物的分子结构可以分为疏水区和亲水区两部分。与小分子表面活性剂相似,在水溶液中聚合物分子在低浓度时独立存在;当浓度超过临界胶束浓度(cmc)时由于疏水、静电、氢 尹常晴女,25岁,硕士生,现从事两亲性高分子研究。*联系人,E-mail: wpsui@https://www.360docs.net/doc/292345093.html, 山东省优秀中青年科学家科研奖励基金(02BS108)和山东省自然科学基金(Y2004B13)支持项目 2005-08-14收稿,2005-12-22接受

超两亲分子_可控组装与解组装

中国科学: 化学 2011年第41卷第2期: 216 ~ 220 SCIENTIA SINICA Chimica https://www.360docs.net/doc/292345093.html, https://www.360docs.net/doc/292345093.html, 《中国科学》杂志社SCIENCE CHINA PRESS 专题论述 超两亲分子: 可控组装与解组装 张希*, 王朝, 王治强 有机光电子与分子工程教育部重点实验室; 清华大学化学系, 北京 100084 *通讯作者, E-mail: xi@https://www.360docs.net/doc/292345093.html, 收稿日期: 2010-09-14; 接受日期: 2010-10-05 doi: 10.1360/032010-641 摘要与基于共价键的两亲性分子相对照, 超两亲分子系指基于非共价键构筑的两亲分子. 基于超分子体系的分子工程学的思想, 本文总结了超两亲分子的各种类型, 包括小分子型、聚合物型和响应性超两亲分子等, 以及组装超两亲分子的各种推动力, 如主客体相互作用、基于电荷转移作用和不同分子间的协同作用等. 研究表明, 超两亲分子的研究既可丰富传统的胶体界面化学, 又为高级结构的可控组装提供了新的构筑基元, 并为制备功能超分子材料开拓了新的途径. 关键词 超两亲分子 可控组装与解组装超分子工程学 功能超分子材料 1 引言 两亲分子指同时含有亲水部分和疏水部分的分子, 亲疏水两部分一般通过共价键而连接. 众所周知, 这类两亲性分子在水溶液中自组装形成各种超分子结构, 如胶束、囊泡等. 这类超分子结构形成的本质是疏水效应, 而其分子自组装的化学基础是亲水和亲脂两亲性. 因此, 如果能够可控和可逆地调控两亲性, 就可能实现可控自组装与解组装[1]. 与传统的两亲分子相对照, 超两亲分子(superam- phiphile或是supramolecular amphiphile)是指基于非共价键构筑的两亲分子[2]. 在超两亲分子中, 构筑基元通过非共价键相互连接, 因此, 这一非共价合成的方法, 可有效避免一些繁琐的化学合成, 并实现构筑基元的高效利用. 同时, 在非共价键合成中, 可以很方便地引入合适的功能基元, 组装功能超两亲分子. 另外, 由于非共价键具有良好的可控性和可逆性, 可以通过外界刺激响应, 调控其两亲性, 实现可控的自组装与解组装. 基于超两亲分子的概念, 可以构筑各种结构和功能的超两亲分子. 以我们最近的研究工作为例, 本文介绍了如何通过不同的非共价键组装超两亲分子, 包括小分子型超两亲分子、高分子型超两亲分子、响应性超两亲分子等, 并讨论以制备功能超分子材料和表面材料. 如图1所示, 我们通过构筑基元的合理设计, 可以组装具有不同拓扑结构的超两亲分子, 既可以是与传统两亲分子类似的拓扑结构, 又可以创造崭新拓扑结构的超两亲分子. 例如既可以制备传统的bola型或是gemini型这些拓扑结构的超两亲分子, 还能得到轮烷型超两亲分子这种传统两亲分子中无法得到的拓扑结构. 这一领域的发展将大大丰富功能超分子体系的分子工程学, 并发展新型的自组装功能材料. 图1 超两亲分子的分子工程学

新型超两亲分子自组装体系的设计与表征

目录 1引言....................................................................... 错误!未定义书签。 1.1两亲分子............................................................................ 错误!未定义书签。 1.1.1两亲分子的概念与应用.............................................. 错误!未定义书签。 1.1.2传统两亲分子的局限性.............................................. 错误!未定义书签。 1.2超两亲分子 (4) 1.2.1超两亲分子的概念与优势 (4) 1.2.2超两亲分子的组装推动力 (5) 1.2.2.1 主客体相互作用 (5) 1.2.2.2 静电相互作用 (5) 1.2.2.3 电荷转移相互作用 (6) 1.2.2.4氢键相互作用 (6) 1.2.2.5π-π相互作用 (6) 1.3环糊精的性质 (6) 1.4论文选题与内容 (7) 2实验部分 (8) 2.1实验试剂 (8) 2.2实验仪器 (8) 2.3实验方法 (8) 3实验结果与讨论 .................................................. 错误!未定义书签。 3.1席夫碱(FCI)的形成及表征 (8) 3.2FCI与Β-环糊精的包合物的形成 (9) 3.3超两亲分子自组装形貌的表征 (10) 4总结....................................................................... 错误!未定义书签。参考文献 ................................................................. 错误!未定义书签。

两亲分子的自组装体系及其应用

两亲分子的自组装体系及其应用 王恺王荻娜郭政铎曹烨 早在2500年前,人们就发现了肥皂的去污作用。近代的研究证明,这是因为脂肪酸盐分子中既有亲水的羧基,又有疏水的长脂肪族碳链,能包裹着亲脂污物进入水相。像脂肪酸盐这样,分子中同时具有强极性的亲水头部和弱极性的疏水尾部的分子,称为两亲分子。其 中大部分具有降低水溶液表面张力的作用,又被称为表面活性 剂。 常见的表面活性剂根据亲水基的不同,一般可分为阳离子 型、阴离子型、以及非离子型。阳离子型一般为羧酸、磺酸、膦酸盐类;阴离子型多数为季铵盐;非离子型的亲水基一般是聚乙二醇链,或是含大量氧、氮原子的基团。而疏水部分一般是一个较长的烃基,包括脂肪族长链,带脂肪族侧链的芳环,或者形状细长的脂肪族稠环(如甾环)等。 两亲分子中疏水的尾部,在极性溶剂中倾向于远离溶剂分子,而亲水的头部则相反。因此,在极性溶剂(如水等)中,它们会尽量聚集成团簇,头部向外,尾部团在内部。这就是所谓的胶束(micelle,亦称胶团)。形成胶束所需的两亲分子的最低浓度,称为临界胶束浓度(critical micelle concentration,cmc)。若浓度在cmc以下,则不足以形成完整的团状结 构,两亲分子单独,或成小簇 状分散在溶液中。胶团的形貌 根据两亲分子本身的特性以 及浓度而定。可能形成球状、 棒状、层状、双层囊泡状,等 等。一般说来,随着分子尾部 /头部的比例的上升,胶束的 形状会由球状变为棒状,之后 变为层状;溶液浓度的升高也 会造成相似的影响。胶束浓度 高,胶束间距离小时,将由于 互相排斥而趋向于均匀分布, 从而形成一定的二级结构;比 如球状胶束就可能形成类似于面心或六方密堆积的结构。 既然形成胶束的基础是亲水——疏水的互斥作用,那么 容易推想,若将合适的两亲分子分散于非极性的溶剂中,就有 可能形成疏水端在外,亲水端在里,形似胶束,但排列方向相 反的团簇,这被称为反胶束。 从古老的肥皂到如今众多人工设计合成的表面活 性剂,两亲分子的应用范围也被广泛地扩展。尤其是 它这种在纳米尺度上自组装的性质,正是当今研究的 前沿。 例如合成用作催化剂载体的介孔或大孔SiO2,一

相关主题
相关文档
最新文档