聚合物_层状硅酸盐纳米复合材料的研究现状

聚合物_层状硅酸盐纳米复合材料的研究现状
聚合物_层状硅酸盐纳米复合材料的研究现状

通信塑料光纤发展概况

通信塑料光纤发展概况 光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。光纤通信技术从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量光波传输系统和网络有了更为迫切的需求。 随着光通信产业的迅速发展, 光纤作为光信号的传输介质, 起着信息高速公路的作用。目前, 石英光纤由于其宽带、低损耗、适合长距离通信传输, 而占据着光通信的主要市场。视频电子标准协会(VESA)开展的家庭网络标准化作业分析表明, 家庭网络必须具备100 Mbit/s以上的数据传送速率。因此,短距离分布型网络(局域网、入户网等) 光纤化势在必行。然而,由于石英光纤芯径小、连接复杂、成本高, 所以在光纤入户时遇到很大的困难。随着短距离、大容量的数据通信系统及汽车等工业的迅速发展, 塑料光纤(POF)以其芯径大、柔韧性好、可塑性强、重量轻、价格低廉等优点而受到国际上的普遍关注。 塑料光纤是由高透明聚合物如聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯作为芯层材料,PMMA、氟塑料等作为皮层材料的一类光纤。不同的材料具有不同的光衰减性能和温度应用范围。塑料光纤不但可用于接入网的最后100~1000米,也可以用于各种汽车、飞机、等运载工具上,是优异的短距离数据传输介质。近几年全球塑料光纤的需求量迅速增加,2005年国际上PMMA塑料光纤销售额已经达到数十亿美元。而适用于数据传输的低损耗PMMA塑料光纤,目前只有日本三菱公司能够生产,每年我国均从日本进口大量的PMMA塑料光纤。 1968 年美国杜邦公司开发的PMMA (有机玻璃) 芯阶跃型塑料光纤(S IPO F) 是最早的塑料光纤(Plastic optic fiber, 简称POF ) , 其损耗大约1000dB/km。1974 年,日本Mitsubishi Rayon公司,申请了一项芯-包层塑料光波导专利,以PMMA或PS (聚苯乙烯)为芯材,氟塑料为包层,其衰减为3500dB/km (未指出波长)。70年代中期,Schleinitz提出PMMA芯光纤的强度可以由定向聚合的方法提高,据 报道其损耗低于300dB/km,后来他又提出利用氘代PMMA可以在690nm的较长波长上将损耗降低到200dB/km以下。早期的塑料光纤都是大数值孔径阶跃型塑料光纤。由于这种光纤色散较大,带宽只能达到5MHz·km , 不能满足高速数据通信的要求, 故一直以照明、汽车车灯监控等非通信应用为主。1980年初, 三菱公司用高纯度单体来聚合PMMA , 使传送损耗下降到100~ 200 dB/km。1983 年,NTT Ibaraki实验室Kaino及其同事将PMMA中的氢原子(H)用氘(D)置换,使光波传输范围从可见光扩展到近红外,其传输损耗下降到20dB/km。1995 年Rayon 公司的Eska MEGA小数值孔径阶跃型塑料光纤使带宽扩展到210MHz·100 m ,适合于ATM 论坛于1997年5月通过的155Mbps·50 m的塑料光纤通信标准。210 MHz·100 m 的

光纤水质检测技术的研究现状与发展趋势

结课论文 仪表与控制A 学生姓名 学生学号 专业班级 环境与市政工程学院 2015年10月15日

光纤水质检测技术的研究现状与发展趋势 摘要 本文论述了不同原理下的光纤传感技术在水质检测领域的研究和应用情况,比如水质的氢离子浓度(pH)值、化学需氧量(COD)值、溶解氧和重金属离子污染物等的检测,介绍了基于不同光学原理的光纤水质检测技术,同时分别阐述了这些不同原理用于水质检测的优缺点。最后对光纤水质检测技术的发展趋势进行了分析和预测。 关键词光通信;光纤传感;水质 1引言 水是极其重要的一个因素,是维持人类生命活动不可缺少的物质,是大多生命机体的重要组成物质之一,是生命代谢活动所必须的物质。社会的快速发展,使人类对水资源的需求量不断增加,同时带来的水污染问题也越来越严重,因此水质检测技术显得尤为重要。传统的水质检测主要是利用电化学检测或者实验室化学试剂反应检测水质成分,这些方法不仅会浪费大量人力资源和物质资源,还容易引起二次污染。基于光纤技术的水质检测具有灵敏度高、检测速度快、可实现实时在线监测、分布式和准分布式监测等优点,被广泛用于水质检测传感领域;同时利用光纤水质传感器能够实现多参量无损和无污染监测,便于微型化和智能化,是一种很有前景的水质检测传感器。现在关于光纤水质传感器的研究有很多,涵盖了水质检测的方方面面,本文将重点介绍基于不同光学原理的光纤水质检测技术研究现

状,分析这些原理的优缺点,并对光纤水质检测技术的发展趋势做了展望和预测。 2基于不同原理的光纤水质检测技术 利用光纤进行水质传感检测一直是水质检测领域的研究热点,根据光纤在水质检测中所起的作用不同可将光纤水质传感器分为功能型与非功能型两大类,其中功能型光纤水质传感器直接利用光纤作为敏感单元对被测水质进行测量,也称为传感型光纤水质检测传感器;非功能型光纤水质传感器中光纤只是起到传光作用,并不作为水质检测的敏感单元,而是利用其他非光纤敏感单元进行水质检测,因此这种传感器也被称为传光型光纤水质检测传感器。 2.1基于光纤倏逝波原理 光纤利用光的全反射原理进行光信号传输,根据麦克斯韦方程组分析可知,在光纤纤芯和包层界面处发生全反射时会有一部分光能量进入光纤包层并建立起倏逝波光场,如果以待测物质代替光纤的部分包层,待测物质会吸收倏逝波,使光纤透射能量发生衰减,通过衰减分析可得到被测物质的相关信息,因此从 20世纪 70 年代开始美国的 Naval Research Laboratory和Research International公司就致力于光纤传感器的研究和应用。典型光纤倏逝波传感器结构,传感单元一般通过腐蚀或拉锥方法获得。通过腐蚀或拉锥方法得到的光纤倏逝波传感器,可用于水质折射率、物质浓度、色度和化学需氧量(COD)的测量,并且在传感区通过覆盖不同的物质还可以实现水质的pH值检测和某些离子浓度检测,如:Raikai等在多模光纤中利用光纤倏

聚合物

聚合物 聚合物也叫高分子化合物,是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 聚合物是由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。一般把相对分子质量高于10000的分子称为高分子。高分子通常由103~105个原子以共价键连接而成。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体。聚合物几乎无挥发性,常温下常以固态或液态存在。固态高聚物按其结构形态可分为晶态和非晶态。前者分子排列规整有序;而后者分子排列无规则。同一种高分子化合物可以兼具晶态和非晶态两种结构。大多数的合成树脂都是非晶态结构。 聚合物的基本分类和特点 高分子化合物的种类很多,主要分类方法有如下四种:1、按来源分类可把高分子分成天然高分子和合成高分子两大类。2、按材料的性能分类可把高分子分成塑料、橡胶和纤维三大类3、按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。4、按高分子主链结构分类可分为碳链高分子、元素有机高分子和无机高分子四大类。 热固性聚合物:环氧、酚醛、双马、聚酰亚胺树脂等。分子量较小的液态或固态预聚体,经加热或加固化剂发生交联化学反应并经过凝胶化和固化阶段后,形成不溶、不熔的三维网状高分子。 热塑性聚合物:包括各种通用塑料(聚丙烯、聚氯乙烯等)、工程塑料(尼龙、聚碳酸酯等)和特种耐高温聚合物(聚酰胺、聚醚砜、聚醚醚酮等)。线形或有支链的固态高分子,可溶可熔,可反复加工而无化学变化。

聚合物基复合材料的制备工艺 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中 把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。 (2)嵌入的聚合物与无机网络有共价键作用 在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络 在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。 插入法大致可分为以下几种: (1)熔融插层聚合先将聚合物单体分散并插入到层状硅酸盐片层中,然后进行原位聚合。利用原位聚合时所放出的大量热量,克

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

几种常见硅酸盐水泥的特性

几种常见硅酸盐水泥的特性 一、组成部分 1)硅酸盐水泥(又称波特兰水泥) 由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成。 硅酸盐水泥熟料的主要成分为硅酸三钙3CaO·SiO2,硅酸二钙2CaO·SiO2,铝酸三钙3CaO·Al2O3和铁铝酸四钙4CaO·Al2O3·Fe2O3。 2)矿渣硅酸盐水泥(简称故渣水泥) 由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成 水泥中粒化高炉矿渣掺加量按重量计为20~70%;允许用不超过混合材料总掺量1/3的火山灰质混合材料(包括粉煤灰)、石灰石、窑灰来代替部分粒化高炉矿渣,这些材料的代替数量分别不得超过15%、10%、8%;允许用火山灰质混合材料与石灰石,或与窑灰共同来代替矿渣,但代替的总量不得超过15%,其中石灰石不得超过10%、窑灰不得超过8%;替代后水泥中的粒化高炉矿渣不得少于20%。 3) 火山灰质硅酸盐水泥(简称火山灰水泥) 由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成。 水泥中火山灰质混合材料掺加量按重量计为20~50%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,代替部分火山灰质混合材料,代替后水泥中的火山灰质混合材料不得少于20%。 4)粉煤灰硅酸盐水泥(简称粉煤灰水泥) 由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成 水泥中粉煤灰掺加量按重量计为20~40%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,此时混合材料总掺量可达50%,但粉煤灰掺量仍不得少于20%或大于40%。 5)复合硅酸盐水泥(简称复合水泥) 由硅酸盐水泥熟料和粉煤灰混合材料、适量石膏磨细制成 水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

中国光纤通信技术的现状及未来.

中国光纤通信技术的现状及未来 光纤通信是我国高新技术中与国际差距较小的领域之一。光纤通信由于其具有的一系列特点, 使其在传输平台中居于十分重要的地位。虽然目前移动通信, 甚至卫星移动通信的热浪再现高波,但 Telecom99的展示说明,光纤通信仍然是最主要的传输手段。在北美,信息量的 80%以上是通过光纤网来传输的。在我国光纤通信也得到广泛的应用,全国通信网的传输光纤化比例已高达 82%。光纤通信技术的应用基本达到国际同类水平,自主开发的光纤通信产品也比较接近国际同类产品水平, 但实验室的研究水平还有一定的差距。本文扼要回顾我国光通信走过的历程, 并从光纤光缆、光器件、光传输设备和系统等几方面介绍光通信的研发、应用现状, 展望光通信在我国的应用前景, 将激励我们为振兴我国光通信民族产业做出更大的贡献。 1 我国光通信历程的回顾 我国的光通信起步较早, 70年代初就开始了大气传输光通信的研究,随之又进行光纤和光电器件的研究,自 1977年初,研制出第一根石英光纤起,跨过一道道难关,取得了一个又一个零的突破。如今回顾起来,所经历的“里程碑”依然历历在目: 1977年,第一根短波长 (0. 85mm 阶跃型石英光纤问世,长度为 17m ,衰减系数为300dB/km。 研制出 Si-APD 。 1978年,阶跃光纤的衰减降至 5dB/km。 研制出短波长多模梯度光纤,即 G .651光纤。 研制出 GaAs-LD 。 1979年,研制出多模长波长光纤,衰减为 1dB/km。 建成 5.7km 、 8Mb/s光通信系统试验段。

1980年, 1300nm 窗口衰减降至 0.48dB/km, 1550nm 窗口衰减 为 0.29dB/km。 研制出短波长用的 GaAlAs-LD 。 1981年,研制出长波长用的 InGaAsP-LD 和 PIN 探测器。 多模光纤活动连接器进入实用。 研制出 34Mb/s光传输设备。 1982年,研制成功长波长用的激光器组件和探测器组件 (PIN-FET。 研制出光合波分波器、光耦合器、光衰减器、滤光器等无源器件。 研制出 140Mb/s光传输设备。 1984年,武汉、天津 34Mb/s市话中继光传输系统工程建成 (多模。 1985年,研制出 1300nm 单模光纤,衰减达 0.40dB/km。 1986年,研制出动态单纵模激光器。 1988年,全长 245km 的武汉椌V輻沙市 34Mb/s多模光缆通信系统工程通过邮电部鉴定验收。 扬州——高邮 4Mb/s单模光缆通信系统工程通过邮电部鉴定验收。 1989年,汉阳——汉南 40Mb/s单模光传输系统工程通过邮电部鉴定验收。 1990年, 研制出 G .652标准单模光纤, 最小衰减达 0.35dB/km。到 1992年降至0.26dB/km。成功地研制出 1550nm 分布反馈激光器 (DFB-LD。 1991年,研制出 G .653色散位移光纤。最小衰减达 0.22dB/km。

浅谈硅酸盐水泥特性

浅谈硅酸盐水泥特性 摘要:水泥作为建筑行业重要的基础原料,成为了国民经济建设的必要物资基础,而硅酸盐水泥因为其自身的特性,在特定环境下更是显得必不可少。 关键字:硅酸盐;水泥;特性 Abstract: Cement as the construction industry important basic material, become the national economic construction of the necessary material base, and Portland cement because its own characteristics, in certain circumstances it is to appear more indispensable. Key Word: Portland; Cement; characteristics 1.硅酸盐水泥定义及分类 硅酸盐水泥在国外又称为波特兰水泥,在我国的定义是凡是由硅酸盐水泥熟料,搀和0-5%的石灰石或者是粒化高炉矿渣,在添加适量的石膏,研磨成细粉状的水硬性胶凝材料,这是中国的国家通用标准对硅酸盐水泥的定义。 按照国家标准,硅酸盐水泥一般分为两种类型,第一种是Ⅰ型硅酸盐水泥这种硅酸盐水泥的代号是P怠,其定义为不掺加任何混合材料的硅酸盐水泥。第二种是Ⅱ型硅酸盐水泥,这种硅酸盐水泥的代号是P愠,其定义为在硅酸盐水泥粉磨时搀和石灰石或者是粒化高炉矿渣,掺加的质量不得超过水泥本身质量的5%。 2.硅酸盐水泥特性及应用 2.1硅酸盐水泥特性 (1硅酸盐水泥强度高 硅酸盐水泥的特性与一般水泥相比,最显著的特性是凝结快,凝结快预示着硬化快,硬化快意味着硅酸盐水泥的早期强度增长率比一般谁大,强度比一般水泥高。 (2硅酸盐水泥水化热高

层状硅酸盐深度加工进展

专题与评述 层状硅酸盐深度加工进展 刘洪杰邹 榕 李春桃 梁玉祥 (四川大学化工学院,四川成都,610065) 摘 要 我国的层状硅酸盐含量丰富,据探明我国仅膨润土含量就达23亿吨,分布在十几个省份的400多个矿点。现年开采量仅为200万吨左右。但由于我国工艺技术水平不高、专用设备不配套、产品质量不稳定等原因导致我国的膨润土开发程度低、利用效率低,因此在国际市场上呈现一种“低出高进”的局面,即出口低级产品,进口高级产品。我国出口的钙基膨润土价格为200-300元/ t,而进口的有机膨润土价格为1500元/t。因此对我国所有的膨润土进行深度开发是摆在众多科研工作者面前的问题。近年来,我国对层状硅酸盐开发取得了长足的进步。我国科研工作者对其开发主要集中在有机插层、无机插层和聚合物插层三类,在这里对这三种插层、柱撑反应进行一定的分析与研究。 关键词:层状硅酸盐插层柱撑 层状硅酸盐在国民经济建设中有着举足轻重的作用,特别是在石油化工、工程建设、环保、建筑、能源等领域。我国层状硅酸盐分布广泛、含量丰富,主要分布在东北及沿海一带如广西、辽宁、吉林、浙江、江苏、新疆、四川、河南、内蒙古等地区[1-2]。层状硅酸盐所存在的形式较为常见的有蒙脱土、膨润土、高岭土、海泡石等。据探明我国仅膨润土就达23亿吨,估计含量在75亿吨左右,但大多数品质不佳,一般以钙基膨润土存在,并不能满足国内市场及国际市场的需要,主要的深加工产品为活性白土、钠基膨润土、锂基膨润土等,与国外的深加工产品还存在一定的差距。由于我国的生产技术落后、工艺设备不配套等多方面的原因使我国对膨润土的深度开发不尽人意,存在“高进低出”的问题。所以,更加合理、高效的利用我国硅酸盐资源,对提高经济效益和社会效益都具有十分重要的意义。 由于层状硅酸盐层间含有可交换阳离子,通过阳离子交换可以将有机阳离子与原层间阳离子进行交换从而使有机物质插入到层间并对其进行柱撑,以加大层与层之间的距离[3-4]。插层柱撑层状硅酸盐因其插层剂的不同而具有不同的作用。根据插层所用材料的不同而可将插层硅酸盐分为有机插层硅酸盐、无机插层硅酸盐、聚合物插层硅酸盐。 1 插层反应热力学 在插层过程中,有机分子在层间的作用受到限制,分子排列趋向更加有序,在热力学上是熵减的过程,即ΔS<0,在ΔG=ΔH-TΔS中,要使过程自动进行需ΔH<0,ΔH

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势 摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用. 关键词:汽油直喷技术

论光子晶体光纤技术的现状和发展

论光子晶体光纤技术的现状和发展 摘要: 光子晶体光纤,又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤的研究工作。本文阐述了PCF的一些独特光学性质、制作技术及其一些重要应用,介绍了PCF的发展以及最新成果。关键词:光子晶体,光子晶体光纤,非线性 1 引言 1987年Yabnolovitch 在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John 在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带。光子能带之间可能出现带隙,即光子带隙。具有光子带隙的周期性介电结构就是光子晶体,或叫做光子带隙材料,也有人把它叫做电磁晶体。 光子晶体光纤(photonic crystal fiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具

有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF 的发展以及最新成果。 2 光子晶体光纤概述 2.1 光子晶体光纤导光原理 光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类[3]。 带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图2-1(a)。 折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图2-1(b)

聚丙烯_层状硅酸盐纳米复合材料的剥离机理与网络结构

第38卷第5期四川大学学报(工程科学版)Vol.38No.5 2006年9月JOURNAL OF SI CHUAN UN I V ERSI TY(ENGI N EER I N G SC I ENCE ED I TI O N)Sep t.2006 文章编号:100923087(2006)0520025208 聚丙烯/层状硅酸盐纳米复合材料的剥离机理与网络结构 傅 强,王 柯,张 琴,杜荣昵 (四川大学高分子科学与工程学院,高分子材料工程国家重点实验室,四川成都610065) 摘 要:对本课题组近年来有关聚丙烯/蒙脱土纳米复合材料的研究内容及重要的研究成果进行了综述。熔体插层法是一种制备聚合物基层状硅酸盐纳米复合材料简便而有效的方法,也是所有目前制备方法中最可能实现产业化的方法。这种制备方法的一个显著特点就是涉及剪切场。对蒙脱土在剪切场中的形态发展和剥离机理进行了研究,这将对在实际熔融加工过程中制备剥离型纳米复合材料具有重要的指导意义。纳米级分散的蒙脱土粒子在含量达到一定程度时会形成介观网络结构,大分子链的运动和松弛会受到限制。同时这种介观填料网络还会对宏观性能产生影响。运用动态保压技术,往复剪切场在注塑过程中被施加到复合材料熔体上,这造成了常规注塑样品所不具有的特殊的多层次分散和取向结构。并对这种多层次结构的形成机理进行了讨论。 关键词:聚丙烯基纳米复合材料;剥离;粘土网络;多层次结构 中图分类号:T Q325文献标识码:A M echan is m of Shear2i n duced Exfoli a ti on and C l ay Network i n Polypropylene/Layered S ili ca te Nanocom posites FU Q iang,WAN G Ke,ZHAN G Q in,DU R ong2ni (School of Poly mer Sci.and Eng.,Sichuan Univ.,State Key Lab.of Poly merMaterials Eng.,Chengdu610065,China) Abstract:I n this revie w,s ome valuable results about polyp r opylene/layered silicate nanocomp sites in our gr oup have been briefly dep icted.These research subjects involve:1)mechanis m of shear2induced mor phol ogical devel2 opment and exf oliati on of layered clay particles during p ractical molten compounding;2)effect of mes oscop ic clay net w ork on the retarded moti on and relaxati on of poly mer macr omolecular chains,and on the macr oscop ic p r operties of nanoco mposites;3)unique hierarchical structure of dis persi on and orientati on in the injecti on2molded bars ob2 tained via dyna m ic packing injecti on molding,which would exert oscillat ory shear on the melt of composite during s olidificati on and cooling stage. Key words:nanocomposite;exf oliati on;clay net w ork;hierarchical structure 聚合物纳米复合材料以其优异的力学性能、耐热性、阻隔性等性能成为当今高分子材料改性研究的重点和热点,而层状硅酸盐(蒙脱土)因其价廉易得、易于插层,成为了制备聚合物纳米复合材料的主 收稿日期:2006-05-31 基金项目:国家自然科学基金资助项目(20404008,50533050) 作者简介:付 强(1963-),男,教授,博士生导师,教育部长江学者.研究方向:聚合物纳米复合材料,聚合物成品加 工中的形态控制.要填料。目前聚合物/蒙脱土纳米复合材料的研究有以下特点:1)从单体插层发展到熔体插层;2)涉及的聚合物从极性(如尼龙6、PET)发展到非极性聚合物(如PE、PP);3)着重点从只强调化学改性、表面修饰的作用发展到注重成型加工工艺对插层过程、剥离机理的影响;4)从理论研究发展到实际应用和新产品的开发。 熔体插层法制备聚合物/层状硅酸盐纳米复合材料作为一种新的制备方法已经得到广泛的应用,

聚合物无机物纳米复合材料

聚合物/无机物纳米复合材料 张凌燕 牛艳萍 (武汉理工大学资源与环境工程学院,武汉,430070) E-mail:zhly@https://www.360docs.net/doc/262737036.html,或niuyanping2004@https://www.360docs.net/doc/262737036.html, 摘 要:本文从聚合物/无机物纳米复合材料的类型、各种制备方法及原理、优异性能及应用等方面,总结了聚合物/无机物纳米复合材料的研究进展。 关键词:聚合物/无机物纳米复合材料;增韧;表面改性 1 前 言 纳米材料是指材料二相显微结构中至少有一相的一维尺度达到纳米级尺寸(100nm以下)的材料。纳米复合材料是指2种或2种以上的吉布斯固相至少在一个方向以纳米级大小(1~100nm)复合而成的复合材料[1]。聚合物/无机物纳米复合材料(简称OINC)是以聚合物为基体(连续相)、无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料[2]。按照无机物纳米粒子形态结构,OINC可分为聚合物/无机粒子纳米复合材料、聚合物/无机纤维纳米复合材料、聚合物/片层状无机物纳米复合材料。用于制备OINC的无机物包括:粘土类如滑石粉、蒙脱土、云母、水辉石等,陶瓷如SiO2、TiO2、Al2O3、AlN、ZrO2、SiC、Si3N4等,聚硅氧烷,CaCO3,分子筛,金属氧化物如V2O5、MoO3、WO3等,层状过渡金属二硫化物或硫代亚磷酸盐如MoS2、TiS2、TaS2、MPS3(M=Mn、Cd等),层状金属盐类化合物、双氢氧化物,以及碳黑、碳纤维等[3]。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。 2 无机纳米粒子的增韧机理及表面修饰 2.1 增韧机理 (1)在变形中,刚性无机粒子不会产生大的伸长变形,在大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,不致发展成破坏性裂缝;无机粒子的存在产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带)。这种界面脱粘和屈服都需要消耗更多的能量,从而起到增韧作用。 (2)由于纳米粒子的比表面积大,表面的物理和化学缺陷越多,粒子与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,材料受冲击时,会产生更多的微开裂,吸收更多的冲击能[4]。 2.2 表面修饰 刚性无机粒子的粒径越小,与基体接触面积越大,若能均匀分布,增韧增强的效果就越 1

聚合物基纳米复合材料的近代发展

聚合物基纳米无机复合材料的应用与发展 摘要:聚合物基纳米无机复合材料是一种性能优异的新型复合材料,已成为材料科学的新热点。本文概述了聚合物基纳米无机复合材料的发展前景及发展过程中应注意的问题。及相应的解决方法。 关键词:聚合物;纳米;无机物;复合材料 1.纳米复合材料的概念、特性、背景 1.1纳米复合材料的概念 纳米复合材料是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成的一类新型复合材料。因其分散相尺寸介于宏观与微观之间的过渡区域,从而给材料的物理和化学性质带来特殊的变化,纳米复合材料正日益受到关注,被誉为“21世纪最有前途的材料”,其研究的种类已涉及无机物、有机物及非晶态材料等。聚合物基纳米无机复合材料因其综合了有机物和无机物的各自优点,且能在力学、热学、光学、电磁学与生物学等方面赋予材料许多优异的性能,正成为材料科学研究的热点之一[1]。 1.2纳米复合材料的特性 当材料粒子尺寸进入纳米量级时,因其自身具有小尺寸效应、表面效应、量子尺寸效应,以及纳米固体粒子中大量缺陷的存在,使得聚合物基纳米无机复合材料具有与众不同的特点[2]。纳米复合材料是继单组分材料、复合材料和梯度功能材料之后的第四代材料。 1.3纳米复合材料的背景 纳米复合材料的出现先于概念的形成。早在上世纪年代末, 实际上就已出现了聚合物心纳米复合材料, 只是人们还未认识到其特殊的性能与实际应用意义〕。纳米复合材料是年代初〕提出的, 与单一相组成的纳米结晶材料和纳米相材料不同, 它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级复合而成的复合材料, 这些固相可以是非晶质、半晶质、晶质或者兼而有之, 而且可以是无机、有机或二者都有。纳米相与其它相间通过化学共价键、赘合键与物理氢键等作用在纳米水平上复合, 即相分离尺寸不得超过纳米数量级。因而, 它与具有较大微相尺寸的传统的复合材料在结构和性能上有明显的区别, 近些年已成为聚合物化学和物理、物理化学和材料科学等多门学科交叉的前沿领域, 受到各国科学家和政府的重视。 2.纳米无机复合材料相关应用与发展 材料性能与组织结构有密切关系。与其他材料相比,纳米复合材料的物相之间有更加明显并呈规律变化的几何排列与空间结构属性,因此聚合物基纳米复合材料具有灵活的结构可设计性及优于一般传统复合材料的特性,在许多领域有着广泛的应用前景。 2.1吸波材料 根据目前吸波材料的发展现状,一种类型的材料很难满足日益提高的隐身技术提出的“薄、宽、轻、强”的综合要求[3 ] ,采用质量轻的有机聚合物作基体,无机吸收剂作客体进行多元复合制备吸波材料就成了必然趋势。另外,具有共轭电子体系结构,通过掺杂而成的导电聚合物(如聚乙炔、聚苯胺、聚苯硫醚、聚吡咯、聚噻吩) 本身就有较好的微波吸收性能,一些聚合物还具有红外活性或红外特征吸收带[4 ,5 ] ,利于红外吸波。聚合物基纳米无机复合材料可以方便地调节复合物的电磁参数,以达到阻抗匹配的要求,且价廉。美国F117 飞机蒙皮上的隐身材料就含有多种超微粒子,它们对不同频段的电磁波有强烈的吸收能力[6] 。

相关文档
最新文档