2015专题:二次函数的动点问题1(三角形的存在性问题)

2015专题:二次函数的动点问题1(三角形的存在性问题)
2015专题:二次函数的动点问题1(三角形的存在性问题)

_ Q

_ G

_

P

_ O

二次函数中的动点问题(一)

三角形的存在性问题

一、技巧提炼

1、利用待定系数法求抛物线解析式的常用三种形式

(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; (3)、【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。 2、二次函数y=ax 2

+bx+c 与x 轴是否有交点,可以用方程ax 2

+bx+c = 0是否有根的情况进行判定;

判别式ac b 42

-=?

二次函数与x 轴的交点情况

一元二次方程根的情况 △ > 0 与x 轴 交点 方程有 的实数根

△ < 0 与x 轴 交点 实数根 △ = 0

与x 轴 交点

方程有 的实数根

3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2

x 2

1x x +=

(2)两点之间距离公式:

已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -

+-=

练一练:已知A (0,5)和B (-2,3),则AB = 。 (3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??

?

??++222121y y ,x x 。 练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是 4、 常见考察形式

1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线

2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;

总结: 两线一圆 5、求三角形的面积:

(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:

S △ABC =1

2

ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

6、二次函数中三角形的存在性问题 解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3)后计算

二、精讲精练

1.由动点产生的等腰三角形问题

如图,抛物线y =ax 2

+bx +c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;

(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;

(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.

B

C

铅垂高

水平宽

h

a A

2.由动点产生的直角三角形问题

(2013?攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

备用图

3.由动点产生的等腰直角三角形

例.(2011?东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B.

(1)求抛物线的解析式;

(2)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

三、方法规律

1、平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆

心,线段长度为半径作圆,再作线段的垂直平分线;

2、平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点

作已知线段的垂线,再以已知线段为直径作圆;

3、平面内有两点A(x1,y1), B(x2,y3),则AB=,AB中点的坐标为。

四、实战训练

1、如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的对称轴;

(2)写出A,B,C三点的坐标并求抛物线的解析式;

(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,

是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;

不存在,请说明理由.

2、(2010?梅州)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,

D两点(D点在E点右方).

(1)求点E,D的坐标;

(2)求过B,C,D三点的抛物线的函数关系式;

(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以

BD为直角边的直角三角形?若不存在,说明理由;

若存在,求出点Q的坐标.

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

全等三角形之动点问题(综合测试)(人教版)(含答案)

全等三角形之动点问题(综合测试)(人教版) 一、单选题(共10道,每道10分) 1?如图,在长方形ABCD中,BC=8cm, AC=10cm,动点P以2cm/s的速度从点A出发,沿 AC方向向点C运动,同时动点Q以1cm/s的速度从点C出发,沿CB方向向点B运动,当P, Q两点中其中一点到达终点时,两点同时停止运动,连接PQ?设点P的运动时间为t秒, 当t为()时,△ PQC是以PQ为底的等腰三角形. A D A.5 B.- 10 C.4 D.- 答案:D 解题思路:

点只。速度已知,可判断此题为动点问题,按照动点间题 的解决方法解抉; ① 研究基本图形,标注: g ② 研究动点运动状态.包括起点、终点、状态转折点、速度、 时间范围, 如图; ③ 表达线段长,建等式. 点P 已走路程AP=2t,则CP=10-2/; 点Q 已走路程CQ=t. ^PQC 是以尸。为底的等腰三角形, 可知CP=CQ r 即 10-2t=t r 故选D. 试题难度:三颗星知识点:动点问题 2?已知:如图,在 △ ABC 中,AB=AC=18, BC=12,点D 为AB 的中点.点 P 在线段 BC 上以每 秒 3个单位的速度由B 点向C 点运动,同时点 Q 在线段CA 上以每秒a 个单位的速度由C 点向 A 点匀速运动,连接 DP, QP.设点P 的运动时间为t 秒,解答下列问题: 0

t的取值范围为() —y J C.0W£W12 D.0W(W18 答案:A 解题思路: 根据题意列动点运动的路线图为乂 (3/s)P\B 45>C F秒 (£Z/S)O:C----- A 对应的F的取值范围为OGW 4?故选A. 试题难度:三颗星知识点:动点问题 3.(上接第2题)(2)若某一时刻△ BPD与厶CQP全等,则t的值与相应的 A.t=2,CQ=9 B.t=1, CQ=3或t=2,CQ=9 C.t=1,CQ=3或t=2,CQ=6 D.t=1,CQ=3 答案:B 解题思路: ①要使△ BPD^2ACOP, 则需BD^CP且 .”=1 ":C0 = 3 ②要使△ BPD^i^CPQ, 则需BD^CQ且BP=CP f gp|9 = CG ^3r=12-3r .\t-2 "\CQ = 9 综上z=l?口2=3或戶2, CQ=9. 故选B. 试题难度:三颗星知识点:动点问题 4.(上接第2, 3题)(3)若某一时刻△ BPM A CPQ贝U a=( ) CQ的长为() (1)根据点P的运动,对应的

初三数学三角形存在性问题

1.如图2-1,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动的过程中,当△PQC为等腰三角形时,求t的值. 知识点一(等腰三角形的存在性问题) 【知识梳理】 如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况. 已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 【例题精讲】 例1.如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3, 4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标. 图1-1 【解析】分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD. ①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D在OP的垂直平分线上,所以点P的坐标为(6, 0)(如图1-2). ②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5, 0) (如图1-3).

③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4). 在Rt△OPE中, 3 cos 5 OE DOP OP ∠==, 5 2 OE=,所以 25 6 OP=. 此时点P的坐标为 25 (,0) 6 . 图1-2 图1-3 图1-4 上面是几何法的解题过程,我们可以看到,画图可以帮助我们快速找到目标P,其中①和②画好图就知道答案了,只需要对③进行计算. 代数法先设点P的坐标为(x, 0),其中x>0,然后罗列△DOP的三边长(的平方). DO2=52,OP2=x2,PD2=(x-3)2+42. ①当DO=DP时,52=(x-3)2+42.解得x=6,或x=0. 当x=0时既不符合点P在x轴的正半轴上,也不存在△DOP. ②当OD=OP时,52=x2.解得x=±5.当x=-5时等腰三角形DOP是存在的,但是点P此时不在x轴的正半轴上(如图1-5). ③当PO=PD时,x2=(x-3)2+42.这是一个一元一次方程,有唯一解,它的几何意义是两条直线(x轴和OD的垂直平分线)有且只有一个交点. 代数法不需要画三种情况的示意图,但是计算量比较大,而且要进行检验. 图1-5 【课堂练习】 1.如图2-1,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动的过程中,当△PQC为等腰三角形时,求t的值.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

全等三角形经典培优之动点问题(讲义及答案)

三角形全等之动点问题(讲义) ?课前预习 已知:如图,AB=18 cm,动点P从点A出发,沿AB以2 cm/s的速度向点B 运动,动点Q从点B出发,沿BA以1 cm/s的速度向点A运动.P,Q两点 同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间 为t秒,请解答下列问题: (1)AP=_______,QB=_______(含t的式子表达); (2)在P,Q相遇之前,若P,Q两点相距6 cm,则此时t的值为_______. ?知识点睛 由点(___________)的运动产生的几何问题称为动点问题. 动点问题的解决方法: 1.研究_____________; 2.分析_____________,分段; 3.表达_____________,建等式. ?精讲精练 1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边AD上一点,且 AE=7.动点P从点B出发,以每秒2个单位的速度沿BC A E D 向点C运动,连接AP,DP.设点P运动时间为t秒. (1)当t=1.5时,△ABP与△CDE是否全等?请说明理由; (2)当t为何值时,△DCP≌△CDE. B C P A E D B C

2. 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =12,BC =24,动 点P 从点A 出发以每秒1个单位的速度沿AD 向点D 运动,动点Q 从点C 出发以每秒2个单位的速度沿CB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,连接PQ ,DQ .设点P 运动时间为x 秒,请求出当x 为何值时,△PDQ ≌△CQD . Q P D C B A D C B A

三角形存在性问题

二次函数中三角形问题(复习补充) 1、如图,抛物线y=ax 2+bx+c经过A(-1,0) 、B(3,0)、C(0 , 3 )三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB. (1)求该抛物线的解析式;二次函数式为y=-x2+2x+3; (2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等?若存在,求点Q的坐标;若不存在,说明理由; (3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.2、如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式;y=-x2-2x+3; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.

3、如图,抛物线y=ax2 +bx+c经过点A(-3,0),B(1.0),C(0,-3). (1)求抛物线的解析式;y=x2+2x-3; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由. 备用图 ①当A为直角顶点时∴点M的坐标为(0,)。 ②当D为直角顶点时∴点M的坐标为(0,) ③当M为直角顶点时,∴点M的坐标为(0,﹣1)或(0,﹣3)。4、在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B.(1)求抛物线的解析式; (2)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

八年级数学全等三角形之动点问题

八年级数学全等三角形之动点问题(全等三角形)拔高练习 解答题(本大题共8小题,共120分) 1.(本小题15分)如图,在等边△ABC的顶点A、C处 各有一只蜗牛,它们同时出发,分别以相同的速度由 A向B和由C向A爬行,经过t分钟后,它们分别爬 行到D、E处,请问(1)在爬行过程中,CD和BE始 终相等吗? (2)如果将原题中的“由A向B和由C向A爬行”, 改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件 不变,如图(2)所示,蜗牛爬行过程中∠CQE的大小保持不变.请 利用图(2)情形,求证:∠ CQE =60°; (3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行, 连接DE交AC于F”,其他条件不变,如图(3),则爬行过程中, DF始终等于EF是否正确. 核心考点:运动变化型问题 2.(本小题15分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CQP?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇? 核心考点:正数和负数 3.(本小题15分)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP. (1)请你通过观察,测量,猜想并写出AB与AP所满足的数量关系和位置关系; (2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想; (3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

等腰三角形的存在性问题

10.(2016山东省临沂市)如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由. 11.(2016山东省日照市)阅读理解: 我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹. 问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM 交EF于点P,那么动点P为线段AM中点. 理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点. 由此你得到动点P的运动轨迹是:. 知识应用: 如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长. 拓展提高: 如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△A PC和等边△PBD,连结AD、BC,交点为Q. (1)求∠AQB的度数; (2)若AB=6,求动点Q运动轨迹的长.

12.(2016山东省日照市)如图1,抛物线 2 3 [(2)] 5 y x n =--+ 与x轴交于 点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC. (1)求m、n的值; (2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值; (3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由. 13.(2016山西省)综合与探究 如图,在平面直角坐标系中,已知抛物线 28 y ax bx =+-与x轴交于A,B 两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8). (1)求抛物线的函数表达式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由; (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

全等三角形之动点问题(简单题)

一、等腰三角形类:因动点产生的等腰三角形问题 1.如图,Rt△ABC在直线l上,且∠ABC= 90°,BC=6cm,AC= 10cm. (1)求AB的长; (2)若有一动点P从点B出发,以2cm/s的速度在直线l上运动,则当t为何值时,△ACP为等腰三角形? 二、直角三角形:因动点产生的直角三角形问题 2、如图,射线MB上MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P 从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t. 求:(1)△PAB为等腰三角形的t值; (2)△PAB为直角三角形的t值; (3) 若AB=5且∠ABM=45。,其他条件不变,直接写出△PAB为直角三角形的t值 三、全等三角形:因动点产生的全等三角形问题 3.如图,已知△ABC中,∠B=∠C,AB=AC=10 cm,BC=8 cm,D为AB的中点.点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动. (1)若点Q的运动速度与点P的运动速度相等,则经过1 s后,△BPD与△CQP是否全等?请说明理由; (2)若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等? 四、三角形面积:因动点产生的三角形面积问题 4.△ABC中,AB=6cm,BC=8cm,∠B=90°, P从A沿AB向B以1cm/s的速度移动,Q从B沿BC向C以2cm/s的速度移动。 (1)如果P、Q分别从A、B同时出发,几秒后△PBQ的面积等于8cm2?; (2)如果P、Q分别从A、B同时出发,点P到B点后,又继续沿BC向C移动,点Q到达C后,又继续沿CA向A移动,在这一整个移动过程中,是否存在点P、Q,使△PBQ的面积等于9cm2?若存在,试确定P、Q的位置;若不存在,请说明理由。

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

中考数学专题复习教案 全等三角形中动点问题-word文档

A B C D E F 个性化辅导授课案 教师: 学生: 日期: 星期: 时段: 课题 全等三角形的动点问题分析讲解 学情分析 .动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学目标 考点分析 思路: 1.利用图形想到三角形全等,相似及三角函数 2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动) 3.结合图形和题目,得出已知或能间接求出的数据 4.分情况讨论,把每种可能情况列出来,不要漏 5.动点一般在中考都是压轴题,步骤不重要,重要的是思路 6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学 重点 难点 利用熟悉的知识点解决陌生的问题 教学方法 教师引导,自主思考 教学过程 三角形与动点问题 1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = . 2、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).

3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2019次,点P依次落 在点P1,P2,P3,P4,…,P2019的位 置.试写出P1,P3,P50,P2019的坐标.4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF. (1)求证:△ADF≌△CEF (2)试证明△DFE是等腰直角三角形 5、如图,在等边ABC ?的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问 (1)在爬行过程中,CD和BE始终相等吗? (2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:? CQE = ∠60

等腰三角形存在性问题及真题典例分析(含解析)

等腰三角形存在性问题 几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法. 等腰三角形存在性问题 【问题描述】 如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形. 【几何法】“两圆一线”得坐标 (1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB. 【注意】若有三点共线的情况,则需排除. 作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.

C 21+23,0() C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13 34C C 、同理可求,下求5C . 显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解: 故C 5坐标为( 196,0) 解得:x = 136 3-x ()2+22=x 2 设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3, BH =2 而对于本题的5C ,或许代数法更好用一些.

【代数法】表示线段构相等 (1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3) , (2)表示线段:5AC = 5BC (3)分类讨论:根据 55AC BC = , (4)求解得答案:解得:236m =,故5C 坐标为23,06?? ??? . 【小结】 几何法:(1)“两圆一线”作出点; (2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标. 代数法:(1)表示出三个点坐标A 、B 、C ; (2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解. 问题总结: (1)两定一动:动点可在直线上、抛物线上; (2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

相关文档
最新文档