联想与构造解抽象可导函数问题

联想与构造解抽象可导函数问题
联想与构造解抽象可导函数问题

联想与构造解抽象可导函数问题

湖北省阳新县高级中学邹生书

在近几年高考和模拟考中,有一类抽象的可导函数问题在高考和模拟考中闪亮登场频频亮相,题目以能力立意短小精悍,难度较大区分度高,多为客观题中的压轴题。除考查可导函数的运算法则及函数的图象和性质外,重点考查构造法、创造性思维、分析问题和解决问题的能力以及创新意识。这些题目的思维起点都是从观察题设结构特征入手,通过转化和联想构造满足条件的特殊函数或抽象函数,从而打开解题的通道使问题获解。

例1(2009年高考天津文科第10题)已知的导函数为,且

,则下面在上恒成立的是()

解法1:用排除法,设,由题设得,排除B,D。设,符

合题目条件,但C不恒成立,故选A。

以上是《五年高考三年模拟》一书给出的解答,解法简洁干净利落,取特殊值和

特殊函数都恰到好处。问题是这个特殊函数的取得较难,能否取之有道?看完下面的解法2就不难找到答案。

解法2(构造满足题意的特殊函数):设,则,由此

知的图象应在抛物线的上方,满足这个条件的函数很多,其中我们最熟

悉最简单的要算二次函数,能否构造满足条件的二次函数呢?根据条件的结构特征

应是图象在抛物线上方的二次函数,据此设,则,

于是恒成立,即恒成立,所以

,这是满足题设条件的一个充分条件。当时,,

从而排除B;令得,则,由此排除C,D。综上可知,应选A。

解法3(构造满足题意的抽象函数):由左边结构特征联想到积函数的求导公式,构造抽象函数,则。当时,

;当时,因,所以,所以函数在

时严格单调递增;当时,因,所以,所以函数在

时严格单调递减。由此知函数在处取得最小值,所以

,同法1知所以必有,故应选A。

解法4 同法3构造抽象函数,可得,当时,;当

时,因,所以;当时,因,所以

。由此知函数与有相同的单调性,同法1知,故必有,故应选A。

例2(2007年陕西高考题)是定义在上的非负可导函数,且满足

,对任意正数,若,则必有()

解法1 由联想到函数积的求导公式,于是构造函数,

则,所以在内是单调减函数。又,所以

,即,两边同乘得,故选A。

解法 2 构造函数,因为,,所以

,所以在内是单调减函数,又,所以,即,所以,故选A。

解法3因为,,由得,,所以

在内是单调减函数,又,所以,由同向不等式的可

乘性知,故选A。

例3若函数满足,则当时,与之间的大小关系为()

不能确定

解:根据题设条件构造抽象函数,则

,所以是增函数,因为,所

以,即,故,从而选B。

解题好比是在一条河上架设桥梁,题目的条件即为河的一岸,题目的结论或所求则是河的另一岸,从已知到所求,也就是在已知和未知之间架起一道桥梁。从哪里架桥如何架桥,如何寻找解题的突破口和切入点,联想和转化是寻找解题突破口的重要思维途径,联想和转化往往使问题峰回路转。构造从观察题设的结构特征入手,用联想搭桥用直觉猜想,需要整体思想有时还需不断尝试和调整方能成功。构造是一种创造性思维,构造的过程充满艰辛、充满挑战也充满激情还有构造成功后的快乐体验。

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

导函数图像与原函数图像关系

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函 数()y f x '=的图象可能就是 ( ) 2. 设 函数f (x ) 在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能就是 ( ) 4. 若函 数 2()f x x b =+的图象的顶点在第 四象限,则其导函数'()f x 的图象就是( ) 类型二:已知导函数图像,判断原函数图像。

5. (2007年广东佛山)设)(x f '就是函数)(x f 的导函数,)(x f y '=的 图象如右图所示,则)(x f y =的图象最有可能的就是( ) 6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2f x ax bx c '=++()的图象如右图,则f x ()的图象可能就是( ) 7. 函数 ) (x f 的定 义域为开区间 3 (,3)2-,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间就是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数... 在区间[,]a b 上就是增函数,则函数()y f x =在区间[,] a b 上的图象可能就是 ( ) O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x C D O 1 2 x y a b a b a o x o x y o x y o x y y )(x f y '= x o y

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

构造函数利用导数解决函数问题

构造函数利用导数解决函数问题

构造函数解决不等式问题 例:[2011·辽宁卷]函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2, 则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞)C .(-∞,-1) D .(-∞,+∞) 【解析】构造函数G (x )=f (x )-2x -4,所以G ′(x )=f ′(x )-2,由于对任意x ∈R ,f ’(x )>2, 所以G ′(x )=f ′(x )-2>0恒成立,所以G (x )=f (x )-2x -4是R 上的增函数, 又由于G (-1)=f (-1)-2×(-1)-4=0,所以G (x )=f (x )-2x -4>0, 即f (x )>2x +4的解集为(-1,+∞),故选B. 训练: 1.已知函数()y f x =的图象关于y 轴对称,且当 (,0),()'()0 x f x xf x ∈-∞+<成 立0.2 0.22 (2) a f =g ,log 3(log 3) b f π π=g ,3 3log 9(log 9) c f =g ,则a,b,c 的大小关系是 ( ) A. b a c >> B.c a b >> C.c b a >> D.a c b >> 解: 因为函数()y f x =关于y 轴对称,所以函数()y xf x =为 奇函数.因为 [()]'()'() xf x f x xf x =+,所以当 (,0) x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数 () y xf x =单调递减,当 (0,) x ∈+∞时,函数() y xf x =单调递减.因为 0.2122 <<,0131og π <<,3192 og =,所以0.23013219 og og π <<<,所以

导数构造新函数类型选择题

构造函数求解导数 【知识梳理】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[]'f x xf x f x x x -= (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 【典型例题】 1、设()()x g x f ,是定义在R 上的奇函数和偶函数,当0+x g x f x g x f 且()03=-g ,则不等式()()0≠;(2)()0g x ≠;(3)''()()()()f x g x f x g x < 且(1)(1)5(1)(1) f f g g -+=-,则a =( ) A .12 B 、2 C .54 D .2或12 3、)(x f 是定义在非零实数集上的函数,)(x f '为其导函数,且0>x 时, 0)()(<-'x f x f x ,记5log )5(log 2.0)2.0(2)2(222 22.02.0f c f b f a ===,,,则 ( ) (A )、b a c << (B ) c a b << (C ) c b a << (D ) a b c <<

最新导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数 ()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函 数y=f (x )的 图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若 函 数 2()f x x bx c =++的图象的顶点在第 四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图 像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) 知函数 象可能是 7. 函数)(x f 的定 义域 为开区间( ,3)2 - ,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的 图象可能是 ( ) A . B . C . D .

9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) A B C D 10.(选做)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是 ( ) 类型四:根据实际问题判断图像。 9. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图象是( ) 10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过? 90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图 像大致是( ) 11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图 象. 10. 已知函数 )(x f y =的导函数)(x f y '=的图像如下, 则( ) 函数)(x f 有1个极大值点,1个极小值点 函数 )(x f 有2个极大值点,2个极小值点 函数)(x f 有3个极大值点,1个极小值点 函数)(x f 有1个极大值点,3个极小值点 11. (2008珠海质检理)函数)(x f 的定义域为 ),(b a , 其导函数),()(b a x f 在'内的图象如图所示,则函数)(x f 在区间),(b a 内极小值点的个 数 是( ) (A).1 (B).2 (C).3 (D).4 12. 已知函数3 2 ()f x ax bx cx =++在点0x 处取得极大值5, 其 导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求: (Ⅰ)0x 的值; (Ⅱ),,a b c 的值. 13. 函数()y f x =在定义域3 (,3)2 - 内可导, 其图象如图,记 ()y f x =的导函数为/()y f x =,则不等式 /()0 f x ≤的解集为_____________ 14. 如图为函数32()f x ax bx cx d =+++的图象, '()f x 为函 数()f x 的导函数,则不等式'()0x f x ?<的解集为_____ _ 15. 【湛江市·文】函数2 2 1ln )(x x x f - =的图象大致是 A . B . C . D . 16. 【珠海·文】如图是二次函数a bx x x f +-=2 )(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区 间是 ( )

抽象函数问题的求解策略探究完整版

抽象函数问题的求解策 略探究 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

抽象函数问题的求解策略探究 湖南省黄爱民赵长春 函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。因此备受命题者的青睐,在近几年的高考试题中不断地出现。然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。下面通过例题来探讨这类问题的求解策略。 一、具体模型策略 例1.已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)(y),且当x<0时,f(x)>1,则当x>0时f(x)的取值范围是。 解析:令f(x)=a x(0<a<1)易得0<f(x)<1。 评析:借助特殊函数直接解抽象函数客观题是常用的解题处理方法,可以迅速得到正确答案。 二、类比联想策略 例2.已知f(x)是定义在实数集R上的函数,且f(x+2)[1-f(x)]=1+f(x),f(-2)=1 则f(2006)=() A B C D+ 2121

分析:由条件知,f(x+2)= 1()1() f x f x +-(*),又f(-1)=2 ,逐步推出f(2006),显然比较繁锁,若将(*)式与1tan tan()41tan x x x π++=-进行类比,则结构形式类似,而y=tanx 的周期为π=4×4 π .于是便产生一个念头:f(x)也有可能是周期函数,周期为4×2=8. 1() 11(2)11()(4)[(2)2],1()1(2)() 11()f x f x f x f x f x f x f x f x f x ++ ++-+=++===-+ -+-- 1(8)[(4)4]()1() f x f x f x f x ∴+=++=-=- 于是猜想成立。 ∴f(2006)=f(8×250+6)=f(6)=f(-2+8) =-(2)1f -=-从而应选B 。 评析:由于抽象函数的结论对任何满足条件的具体函数都成立,因而可以通过考察一些具 体函数,巧妙类比联想,以找到解题的突破口,最后利用具体函数的一些性质探索出抽象 函数的解题思路。 三、运用函数性质策略 例3.定义在R 上的单调函数()y f x =满足2(3)log 3f =,且对任意的x 、y R ∈都有 ()()()f x y f x f y +=+ (1)求证:()f x 为奇函数(2)若(3)(392)0x x x f k f +--<对任意x R ∈恒成立,求实数 k 的取值范围。 解:令0x y ==,代入()()()f x y f x f y +=+ 得:(0)2(0)f f = ∴(0)0f =

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。

5.(2007年广东佛山)设) (x f'是函数) (x f的导函数,) (x f y' =的图 象如右图所示,则) (x f y=的图象最有可能的是() 6.(2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2 f x ax bx c '=++ ()的图象如右图,则 f x()的图象可能是( ) 7.函数) (x f的定义域为开区间 3 (,3) 2 -,导函数) (x f'在 3 (,3) 2 -内的图象如图所示,则函数) (x f的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y ) (x f y' = x o y

8.( 2009湖南卷文) 若函数() y f x =的导函数 ...在区间[,] a b上是增函数,则函数() y f x =在区间[,] a b上的图象可能是( ) A .B.C.D. 9.若函数) ('x f y=在区间) , ( 2 1 x x内是单调递减函数,则函数) (x f y=在区间) , ( 2 1 x x内的图像可以是() A B C D 10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是 () 类型四:根据实际问题判断图像。 9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器 中匀速注水,容器中水面的高度h随时间t变化的可能图象是() o x o x y b a o x y o x y b y

构造可导函数解抽象函数

大方向教育个性化辅导教案 教师: 徐琨 学生: 张杰 学科: 数学 时间: 课 题(课型) 教 学 目 标或考 点 分 析: 导数运算中构造函数解决抽象函数问题 教学重难点: 教学方法: 知识梳理、例题讲解、归纳总结、巩固训练 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[]'f x xf x f x x x -= (3)'()()0xf x nf x -≥ 构造121()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 典型例题: 例 1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集.

构造函数法在导数不等式中应用

构造函数在导数不等式中的应用 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 1 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞-U B. (1,0)(1,)-+∞U C. (,1)(1,0)-∞--U D. (0,1)(1,)+∞U 解析:设()()f x F x x = , 则2()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增. 当(,1)x ∈-∞-时,()0F x <,()0f x >. 当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围 (,1)(0,1)-∞-U ,即答案为A.. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 【典例】 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+. 因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减. 又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减. 又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f >

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

导数构造新函数类型选择题

1、设()()x g x f ,是定义在R 上的奇函数和偶函数,当0+x g x f x g x f 且()03=-g ,则不等式()()0≠;(2)()0g x ≠;(3)''()()()()f x g x f x g x < 且(1)(1)5(1)(1) f f g g -+=-,则a =( ) A .12 B 、2 C .54 D .2或12 3、)(x f 是定义在非零实数集上的函数,)(x f '为其导函数,且0>x 时, 0)()(<-'x f x f x ,记5log )5(log 2.0)2.0(2)2(222 22.02.0f c f b f a ===,,,则 ( ) (A )、b a c << (B ) c a b << (C ) c b a << (D ) a b c << 4、已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+>,若()1111,22,ln ln 2222a f b f c f ??????==--= ? ? ??????? ,则,,a b c 的大小关系正确的是 A. a b c << B. b c a << C 、a c b << D. c a b << 5、已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时其导函数()f x '满足()2(),xf x f x ''>若24a <<则 A .2(2)(3)(log )a f f f a << B .2(3)(log )(2)a f f a f << C 、2(log )(3)(2)a f a f f << D .2(log )(2)(3)a f a f f << 6、设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有 2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( ) A .(-2,0) ∪(2,+∞) B .(-2,0) ∪(0,2) C .(-∞,-2)∪(2,+∞) D 、(-∞,-2)∪(0,2)

相关文档
最新文档