红壳 HX3 K 15W-50 技术数据表

红壳 HX3 K 15W-50 技术数据表
红壳 HX3 K 15W-50 技术数据表

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

产品技术规格书

技术规格书 一、说明 1、除采购文件明确的品牌外,欢迎其他能满足本项目技术需求且性能与所明确品牌相当的产品参加,同时填写技术规格偏离表。 2、其中打“▲”的条款为实质性条款。 3、招标范围:设备的技术规格和要求表中的所有设备供应、安装、调试、验收、技术培训、售后服务。 4、本项目所有设备必须一起投,否则将视作未响应招标文件实质性要求,从而导致该投标人投标无效。 5、设备交货及安装调试完毕时间:合同签订后30 日历天。 6、除技术规格书中标明允许进口产品外,其他均不允许进口产品参加,进口产品的认定按财办库〔2008〕248号文件及相关文件规定。 二.设备的技术规格和要求表 数据采集仪要达到的主要功能如下: 1)实时数据采集功能系统可采集模拟量和开关量形式的各类参数。 2)历史数据存储功能采集到数据,以设定的时间间隔存储,时间间 隔可根据需要任意设定。数据保存的时间≥6个月。 3)数据通讯功能通过有线/无线形式与环境监控中心进行数据通讯。 4)具有报警功能当获取的数据超过设定的报警值时,主动向环境监

控中心传输相关的报警信息。 5)实时数据、历史数据的通过曲线或数据列表的形式显示。根据需要 可进行图表的打印。 6)各种监测参数的量程、报警值、相关换算系数及其他设置内容(如 下位机的系列号,用于通讯的相关设置等)。 7)反向控制在现场仪器仪表提供相应功能和协议的条件下,可实现对 仪器仪表的反向控制,如自动清洗,量程校正、分瓶采样、视频控 制等。 8)数采仪要求视频接入模块(支持电信“全球眼”视频叠加技术)。 9)企业端2路视频数据可保留一周以上,支持智能存储/删除。 10)支持浙江省污染源在线监控系统使用。 11)提供多种通讯接口(4-20Ma、RS232、RS485等)。 12)支持间歇性排放标准的企业的监控控制,实现通过流量来控制仪器 的做样。 13)数采仪要求视频接入模块。 (二)PH分析仪 pH测量范围0.00 to 14.00 pH 分辨率0.01 pH 准确度± 0.01 pH 温度测量范围- 9.9 to + 125.0 °C 分辨率0.1 °C 相对准确度± 0.5 °C 传感器Pt 100 /Pt 1000 (连线端子选择) 温度补偿方式自动/ 手动 (参照 25.0 °C) 设定点和控制器功能 功能(可转换的) 设定点控制器 控制器特性极限控制器 加速 /减慢继电器0 to 2000 秒. pH 迟滞宽度0.1 to 1 pH 工作电压最大 250 VAC 工作电流最大. 3A 功耗最大 600 VA 电参数和连接 电源110 / 220 VAC (短路子选择) 频率48 to 62 Hz 输出信号 4 to 20 mA, 电隔离

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括: 额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电 压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA): 额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV): 变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A): 变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):

把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示.H、相数和频率: 三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、xx与冷却: 变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种: 油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平: 有绝缘等级标准。绝缘水平的表示方法举例如下: 高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为 200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为LI75AC35,表示变压器高压雷电冲击耐受电压为75kV,工频耐受电压为35kV,因为低压是400V,可以不考虑。 K、联结组标号: 根据变压器一.二次绕组的相位关系,把变压器绕组连接成各种不同的组合,称为绕组的联结组。为了区别不同的联结组,常采用时钟表示法,即把高压侧线电压的相量作为时钟的长针,固定在12上,低压侧线电压的相量作为时钟的短针,看短针指在哪一个数字上,就作为该联结组的标号.如Dyn11表示一次绕组是(三角形)联结,二次绕组是带有中心点的(星形)联结,组号为 (11)点 B1双绕组变压器损耗电量分两部分计算

产品主要技术性能指标(1)

主要性能指标: 1.数据存储量≥2T 接入设备数≥10000 2.定位精度:<10米响应时间<5秒 3.通讯接口:串行232(sps)支持相应的国际标准,具备良好的可扩展性。 4.传输制式:SM900/DCS1800/PCS1900/CDMA800-900 传输速率:125kbps 5.移动通信:GSM 6.两种无线电业务兼容(RDSS和RVSS)系统为用户提供连续定位、无源导航定位,又可 进行无线传输的位置报告。 7.跟踪灵敏度:159dbm 捕获灵敏度:144dbm 产品主要技术性能指标 关键技术: 1.北斗导航,GIS,GSM,GPRS,计算机网络,互联网多网融合。 2.监护人和监控平台人员随时通过系统查询老年人位置信息。 3.云平台技术应用:老年人遇紧急情况时,一键呼叫、四方响应。 4.云管理:监护人千里之外可知家人安康。 5.云数据库:每位老人的基本信息和病情隐患录入服务器存储、每次测的血压、 脉搏及其他病理数据,传送至数据库永久保存,以备做参考依据。 6.系统采用出错冗余技术,保证运行的安全性。 7.北斗/GPS双模兼容信号,互相嵌入,互为增强。 一、产品功能: 1.老人健康指标远程监控,网上医疗诊断功能。 2.遇警一键报警,越界报警,关机报警,一键拨号。 3.全球定位:北斗/GPS双模兼容终端。 4.IC一卡通功能。 5.老人,弱势群体购物通过系统网络平台实现购物,付款配送一条龙服务。 6.社区人员基本信息管理,统计分析功能。 7.实时位置查询功能。 8.实时视频和录像资料自动保存。报表自动导出功能。 9.TTS语音播报,短消息功能。

10.服务对象和用户数据储存和服务功能。①监控中心录有用户的全部基本 信息资料和服务区域活动轨迹。②储存周期根据用户的实际情况和需求 设定。③数据管理功能有:注册,注销,查询,费用计算,历史轨迹, 报表。 技术创新性 1、监控平台相对于服务对象的定位终端采用:北斗/GPS双模兼容自主定位模式和AGPS辅助定位模式。 2、监控平台用于接受服务对象定位终端的信息和要求,同时负责发送指令和提醒信息给定位终端。 3、定位终端采用北斗/GPS卫星定位模块,GSM通信模块。主板和LED显示屏硬件。北斗/GPS卫星定位模块和GSM通信模块分别与通信主板系统相连接,主板系统分别与LED显示屏、报警器连接。 4、定位终端采用内置北斗/GPS芯片,共用天线,独立完成服务对象的定位,并将定位结果发送给信息采集服务器。 5、Web数据服务平台,包括:终端信息采集服务器、SMS服务器、数据储存服务器和数据处理服务器。 6、Web服务器包括用户逻辑模块、管理员逻辑模块和电子地图模块构成,所述的用户逻辑模块和管理员逻辑模块服务Web服务器的功能设计和逻辑跳转,电子地图模块负责查询定位器终端的位置信息,并将该位置信息显示到电子地图上。Web数据服务平台还包括第三方应用接口,第三方应用接口包括电信运营商的小区号Cell-ID服务应用接口和地图服务应用接口。 7、服务对象的定位由以下步骤进行: 1.定位器终端采集到GPS信号和小区号Cell-ID后分别通过GSM通信模块、GPRS网络回传至Web数据服务平台中的移动终端信息采集服务器。 2.移动终端信息采集服务器进行定位器终端鉴权操作后,对定位器终端和AGPS服务器之间的交互数据进行透传,辅助完成定位器终端的定位; 3.AGPS服务器根据定位器终端和AGPS参考站所提供的卫星信号和辅助定位信息,计算出定位器终端的位置; 4.移动终端信息采集服务器将定位结果写入数据库; 5.客户端通过SMS的形式实时获取定位器终端的设备信息和位置信息。 6.如权利要求以上所述的基于北斗/GPS面向特殊人群的安全定位方法,其特征在于:还包括步骤F:当定位器终端越出预置活动区域范围,定位器终端向客户端发送越区报警。

电力变压器技术规格书

.概述 朔黄铁路线路全长约585.8km,西起神朔线神池南站,向东经过山西省、河北省终至黄骅港站。设计为国家I 级干线、双线电气化铁路,重载路基,正线总长592公里,共计34个车站33个区间。其中,隧道总长约66.367公里,共77个隧道。 二.引用标准 GB 1094 《电力变压器》; GB/T 7328《变压器和电抗器的声级测定》; GB/T7449《电力变压器和电抗器的雷击冲击和操作冲击试验导则》; GB/T 10237 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》; GB/T 5273 《变压器、高压电器和套管的接线端子》; GB/T 13499 《电力变压器应用导则》; GB/T 15164 《油浸式电力变压器负载导则》; GB311.1-1997 《高压输变电设备的绝缘配合》 GB50150 《电气装置安装工程电气设备交接试验标准》 GB/T16927.l-1997 《高电压试验技术第一部分:一般试验要求》 GB/T16927.2-1997 《高电压试验技术第二部分:测量系统》 GB/T6451-2008 《三相油浸式电力变压器技术参数和要求》 JB/T 3837-1996 《变压器类产品型号编制方法》三.使用环境条件 1. 系统标称电压:10kV。 2. 电源系统接地形式:不接地。 3.安装场所:户外。 4. 海拔高度:w 1000m 5. 运行环境温度:户外—25°C?+ 45°C 6. 运行环境湿度:日平均相对湿度不大于95%,月平均相对湿度不大于90%。 7. 空气质量:周围空气可以受到尘埃、烟、腐蚀性气体、蒸汽或盐雾的污染。污秽等级不超过现行GB/T5582中的川级。 8. 地震烈度:不超过8 度。四.主要技术参数 1技术规格 1.1型式:户外油浸自冷式 1.2 额定电压:10± 5% /0.4 kV

换热器设计指南汇总

换热器设计指南

1 总则 1.1 目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1.2 范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。 GB150-1999 钢制压力容器 GB151-1999 管壳式换热器 HTRI设计手册 Shell & tube heat exchangers——JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers——TOTAL(2002) 管壳式换热器工程规定——SEI(2005) 2 设计基础 2.1 传热过程名词定义

2.1.1 无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3 冷凝过程 部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2 换热器的术语及分类 2.2.1 术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分; 管程数:介质沿换热管长度方向往、返的次数; 壳程数:介质在壳程内沿壳体轴向往、返的次数; 公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度; 计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

产品技术要求模板格式

医疗器械产品技术要求 编号: 医学影像处理软件 实施 1.3 版本命名规则 本公司软件产品命名规则为V X.Y.Z ?X:为发行版本,表示重大增强类软件更新,初始值为1,当软件进行了重大增强类软件更新,该号码加1,Y和Z归0。 ?Y:为子版本号,表示轻微增强类软件更新,初始值为0,当软件进行了轻微增强类软件更新,该号码加1,Z归0。 ?Z:为修正版本号,表示纠正类软件更新,初始值为0,当软件进行了纠正类软件更新,该号码加1。

1.4 产品适用范围 产品用于人体诊查图像、数据的管理、查看、传输和贮存,不包括自动诊断部分。 2 性能指标 2.1 通用要求 2.1.1 处理对象 50。

所需硬件环境最低配置如下: 2.1.5.2 放射影像模块 主要用于传送病人图像信息,主要组成:①普通设置,设置实体名称,设置端口号;②高级设置,需要用户密码登陆。

【上一个检查】 【下一个检查】 【窗口靠左半部显 【窗口靠右半部 【窗口靠上半部显示】 【窗口靠下半部显示】

1.1.2 使用限制 本产品为独立工作的通用型软件,使用者均需通过专业售前培训且能独立熟练操作软件,要求使用者拥有相关医学影像学教育背景。 1.1.3 用户访问控制 软件具有严格的权限管理机制,通过建立用户账号密码,对账号授不同的权限,不同科 1.1.7 可靠性 本产品产生的数据使用本地缓存、网关缓存和数据库存储三层保护,当软件出错时,可从本地硬盘或网关服务器或数据库中召回对应的数据,保障数据不丢失。 OR 1.1.8 维护性

由于本产品涉及DICOM影像传输技术和数据库技术,应通过产品手册或相关技术支持提供系统部署和维护方法。 Or 提供记录日志功能 本系统应该能够记录系统运行时所发生的所有错误,包括本机错误和网络错误。这些错误记录便于查找错误的原因。日志同时记录用户的关键性操作信息。 1.1.9 效率 1.1.10 运行环境 客户端——影像工作站和DICOM软件运行要求如下: ▲硬件环境要求:

电力变压器技术规格书

一.概述 朔黄铁路线路全长约585.8km,西起神朔线神池南站,向东经过山西省、河北省终至黄骅港站。设计为国家I级干线、双线电气化铁路,重载路基,正线总长592公里,共计34个车站33个区间。其中,隧道总长约66.367公里,共77个隧道。 二.引用标准 GB 1094 《电力变压器》; GB/T 7328《变压器和电抗器的声级测定》; GB/T7449《电力变压器和电抗器的雷击冲击和操作冲击试验导则》; GB/T 10237 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》; GB/T 5273 《变压器、高压电器和套管的接线端子》; GB/T 13499 《电力变压器应用导则》; GB/T 15164 《油浸式电力变压器负载导则》; GB311.1-1997 《高压输变电设备的绝缘配合》 GB50150 《电气装置安装工程电气设备交接试验标准》 GB/T16927.l-1997 《高电压试验技术第一部分:一般试验要求》 GB/T16927.2-1997 《高电压试验技术第二部分:测量系统》 GB/T6451-2008 《三相油浸式电力变压器技术参数和要求》 JB/T 3837-1996 《变压器类产品型号编制方法》 三.使用环境条件 1. 系统标称电压:10kV。 2. 电源系统接地形式:不接地。 3.安装场所:户外。 4. 海拔高度:≤1000m。 5. 运行环境温度:户外-25℃~+45℃ 6. 运行环境湿度:日平均相对湿度不大于95%,月平均相对湿度不大于90%。 7. 空气质量:周围空气可以受到尘埃、烟、腐蚀性气体、蒸汽或盐雾的污染。污秽等级不超过现行GB/T5582中的Ⅲ级。 8. 地震烈度:不超过8度。 四.主要技术参数

技术数据表HT700

技术数据表Coloron Vers.1 2008-1-28 HT-700UV系列 UV干燥型移印油墨。单或双组份。光面,具有超强耐摩擦性(Abrasion Resistance),耐溶剂性,耐酒精性。 应用范围: 应用于要求高机械抗性及高耐溶剂性的领域。可直接印在UV面漆、部分金属、硬化(Hard Coated)镀层等较难附着材料上,具有卓越的耐摩擦性和附着力。 由于承印材料的适印性受各种因素的影响,批量生产前一定要小量测试。 混合比例: 在UV面漆、金属等材料上印刷时,建议添加硬化剂H7并充分搅拌,油墨和硬化剂的重量比例如下: 10份油墨:1份硬化剂H7 混合后油墨的常温(25℃)使用寿命(Pot life)为6~8小时,温度越高使用寿命越短。超过了这个时间即使表面没有变化也会造成附着力及其他性能的下降。 稀释剂: 印刷前需要添加溶剂调整粘度。 标准溶剂为HT-T1,慢干溶剂为HT-T2。加入重量比为5%~10%。 干燥条件: 通常情况下,UV固化前需要热风干燥以便除掉油墨中的溶剂同时可以提高油墨的性能。建议60~80℃烘烤30~60分钟。 油墨必须经UV光照才能完全固化。要求使用中压水银灯管,光照强度不低于80W/cm。固化能量应在1000~2000mj/cm2 承印物的不同,油墨膜厚等都会影响干燥时间。 UV干燥后24小时才能达到最佳性能,如添加了硬化剂完全干燥需要更长时间。。 注意事项: *油墨的操作和干燥的整个过程不要在温度低于15℃时进行。否则会对油墨造成不可恢复的损伤,影响附着力和耐摩擦性。建议操作温度为15℃~35℃;

技术数据表Coloron Vers.1 2008-1-28 湿度为40~80%RH。 *做双组份使用时,油墨印好后不要在湿汽重的环境下放置过久,因为硬化剂会吸收空气中的水份影响油墨性能。混合后的油墨使用时间最好不要超过8 小时。 *除高遮盖力的黑白色外,其他颜色(包括普通黑白色)可以连续印刷两遍,但UV干燥时间需要适当延长。 说明: 以上信息和数据是基于我们的实验条件和经验,并不构成我们对该产品及其使用的承诺和保证。我们保留不经通知对该说明中的文字及数据作出改动的权利。 在批量使用前,请充分进行测试以确保该产品符合您的要求。 我们只保证提供合乎要求的产品,对于由于疏忽大意或任何恶意使用造成的损失或人员、设备的损伤,我们概不负责。

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

申请制造许可产品技术数据表压力容器用

申请制造许可产品技术 数据表压力容器用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

申请制造许可产品技术数据表(压力容器用) 注:1.具有A1级或A2级或C级压力容器制造许可证的企业即具备D级压力容器制造许可资格;

注:2.压力容器一、二、三类及介质毒性和易燃介质的划分按照《压力容器安全技术监察规程》确定,其简要内容可参见附件; 注:3.为了正确划分制造级别,请如实填写可以反应工厂最大制造能力的产品数据(每个级别限填写一种产品)。 填表人:(打印) 签名:日期:年月日附件: 压力容器一、二、三类及介质毒性和易燃介质的划分 1. 压力容器的分类 下列情况之一的,为第三类压力容器 1.1.1 高压容器; 1.1.2 中压容器(仅限毒性程度为极度和高度危害介质); 1.1.3 中压储存容器(仅限易燃或毒性程度为中度危害介质,且压力和容积的乘积大于等于10 MPa·m3); 1.1.4 中压反应容器(仅限易燃或毒性程度为中度危害介质,且压力和容积的乘积大于等于 MPa·m3); 1.1.5 低压容器(仅限毒性程度为极度和高度危害介质,且压力和容积的乘积大于等于 MPa·m3); 1.1.6 高压、中压管壳式余热锅炉; 1.1.7 中压搪玻璃压力容器; 1.1.8 使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540 MPa)的材料制造的压力容器; 1.1.9 移动式压力容器,包括铁路罐车(介质为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、永久气体运输 (半挂)车]和罐式集装箱(介质为液化气体、低温液体)等; 1.1.10 球形储罐(容积大于等于50 m3); 1.1.11 低温液体储存容器(容积大于5 m3)。 下列情况之一的,为第二类压力容器(第款规定的除外); 1.2.1 中压容器 1.2.2 低压容器(仅限毒性程度为极度和高度危害介质); 1.2.3 低压反应容器和低压储存容器(仅限易燃介质或毒性程度为中度危害介质); 1.2.4 低压管壳式余热锅炉; 1.2.5 低压搪玻璃压力容器。 低压容器为第一类压力容器(第和款规定的除外)。 2. 介质毒性程度的分级和和易燃介质的划分: 压力容器中化学介质毒性程度和易燃介质的划分参照HG 20660《压力容器中化学介质毒性危害和爆炸危险程度分类》的规定。无规定时,按下述原则确定毒

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

技术数据表

技术数据表 WEVO-灌封树脂PU 390 Two-component encapsulating system based on polyurethane. The resin component is formulated with a mineral filler which provides self-extinguishing properties. The material achieves UL 94 V-2 properties at a thickness of 1,5 mm and is approved and listed under the File No. E108835 in colours black, grey and brown. The resin contains no halogenated flame-retardants, no heavy metals or chlorofluorocarbons. 温度使用范围: -40°C 到+130°C . 此灌封树脂与WEVO-固化剂300 M 配合使用. 应用产品: Encapsulation of electrical components for low and medium voltage applications. 产品特性: 混合比: 重量: Gew. Tle.100 份灌封树脂PU 390 by weight: 100 partsVergussmasse PUPU390 100 Casting Resin 390 30 Gew. 30 partsHrter 300300300 M Tle. 30 份固化剂M M Hardener 粘度(22°C): 灌封树脂PU390: Vergussmasse PU390: 1.600 - -2.200 mPas 1.600 2.200 mPas Hrter 300 M: 固化剂300 M: 100100 - 170 mPas - 170 mPas Harz-/Hrtergemisch: 混合后: 900 - -1.200 mPas 900 1.200 mPas 密度(22°C); 灌封树脂PU390: Vergussmasse PU390: 1,28 - 1,31 g/cm 1,28 - 1,31 g/cm 固化剂300 M: Hrter 300 M: 1,20 - - 1,24 g/cm 1,20 1,24 g/cm 颜色: 灌封树脂PU390:

TEMA管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则 ——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》 设计中的一般考虑 流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。管程的流体的腐蚀性较强,或是较脏、压力较高。壳程则会是高粘度流体或某种气体。当管/壳程流体中的

某一种要用到合金结构时,“碳钢壳体+合金管侧部件”比之“接触壳程流体部件全用合金+碳钢管箱”的方案要较为节省费用。 清洗管子的内部较之清洗其外部要更为容易。 假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。 对于给定的压降,壳侧的传热系数较管侧的要高。 换热器的停运最通常的原因是结垢、腐蚀和磨蚀。 建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。一般此标准的最新版每3年出版发行一次。期间的修改以附录形式每半年出一次。在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。最初这一系列规范并不是准备用于换热器制造的。但现在已包含了固定管板式换热器中管板与壳体间焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。目前ASME 正在开发用于换热器的其他规则。 列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用在除套管式换热器而外的所有管壳式换热器的应用中,对ASME规则的补充和说明。TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。按本标准制造的设备,设计目的在于在此类应用时严苛的保养和维修条件下的安全性、持久性。”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。”而TEMA“B级”是“用于化学加工用途” *译者注:这已经不是最新版的,现在已经出到1999年第8版 3种建造标准的机械设计要求都是一样的。各TEMA级别之间的差异很小,并已由Rubin 在Hydrocarbon Process., 59, 92 (June 1980) 上做了归列。 TEMA标准所讨论的主题是:命名原则、制造公差、检验、保证、管子、壳体、折流板和支撑板,浮头、垫片、管板、管箱、管嘴、法兰连接端及紧固件、材料规范以及抗结垢问题。 API Standard 660, 4th ed., 1982*,一般炼油用途的管壳式换热器是由美国炼油协会出版的,以补充TEMA标准和ASME规范。很多从事化学和石油加工的公司都有其自己的标准以对以上各种要求作出补充。关于规范、标准和个客户的规定之间的关系已由F. L. Rubin编辑结集,由ASME 在1979年出版了(参见佩里化学工程师手册第6章关于压力容器规则的讨论)。 *译者注:这已经不是最新版的,现在已经出到2001年第6版 换热器的设计压力和设计温度通常在确定时都在预计的工作条件上又给了一个安全裕量。一般设计压力比操作中的预计最高压力或关泵时的最高压力要高大约172KPa(25 Psi);而设计温度则通常较最高工作温度高14°C (25°F)。 管束振动随着折流板换热器被设计用于流量和压降越来越高的场合,由管子振动带来的损 标准分享网 https://www.360docs.net/doc/213578260.html, 免费下载

相关文档
最新文档