学而思高中数学7-恒成立与有解问题

学而思高中数学7-恒成立与有解问题
学而思高中数学7-恒成立与有解问题

典例分析

【例1】关于x的不等式|x 1 x 2 w a2 a 1的解集为空集,则实数a的取值范围是

1

【例2】若不等式x 1

> a 2 1对一切非零实数x均成立,则实数a的最大值是

x

2

【例3】设函数f(x) x2 1

,对任意

x

3,

成立,则实数m的取值范围是__________

—4m2 f (x) w f (x 1) 4 f (m)恒m

若不等式ax2 x 2 0的解集为R,则a的范围是(

1 1

A. a 0 B ? a C . a - D

8 8 【例4】

【例5】已知不等式——L

n 1 n 2 1 1

F og a a 1

2

-对于一切大于1的自然数n

3

都成立,试求实数a的取值范围

【例6】若不等式(a 2)x2 2(a 2)x 4 0对x R恒成立,则a的取值范围是

【例7】f(x) ax2 ax 1在R上恒满足f (x) 0,则a的取值范围是(

B. a 4

C. 4 a 0

D. 4 a < 0

【例8】若对于x R,不等式mx2 2mx 3 0恒成立,求实数m的取值范围.

【例9】不等式x ax

1

1 > 0 对一切x 0, 一

2

成立,则a的最小值为( )

A. 0 B 2 C.§ D .

2

3

【例10】不等

|x 3| |x 1|< a23a对任意实数x恒成立,则实数a的取值范围为( )

A.,1 U 4 ,

B.,2 U 5,

C. [1 , 2]

D.,1 U 2,

围为_______

【例11】对任意a [ 1 ,1],函数f(x) x2(a 4)x 4 2a的值恒大于零,则x的取值范

lg 2aX

1在x [1, 2]时恒成立,试求a的取值范围.

【例12】若不等式

lg(a X)

【例13】若x 1 , 1 3X a a2 9X 0恒成立,求实数a的取值范围

【例14】设f x x2 2ax 2,当x 时,都有f x > a恒成立,求a的取值范围.

【例15】设对所有实数x,不等式x2log2_—Zxlog?-2仝log2—二0恒成立,

a a 1 4a

求a的取值范围.

【例16】已知不等式ax2 4x 1 > 2x2 a对任意实数恒成立,求实数a的取值范围.

【例17】已知关于x的不等式x2 x t 0对x R恒成立,则t的取值范围是

【例18】如果| x 1| | x 9| a对任意实数x恒成立,则a的取值范围是()

A. {a|a 8} B . {a |a 8} C . {a|a > 8} D . {a|a < 8}

x y x(1 y).若不等式(x a) (x a) 1对任意

实数x 成立,则(

)

A.

1 a 1

B

. 0 a 2

c

1 3

3

1 C.

a —

D .

a -

2 2

2 2

【例19】在R 上定义运算

【例20】设不等式x 2 2ax a 2 < 0的解集为M ,如果M

[1,4],求实数a 的取值范围.

【例21】如果关于 x 的不等式

2

kx

0对一切实数x 都成立,则k 的取值范围

【例22】已知函数f(x) x IgC.x2—1 x),若不等式f(m 3x) f (3x 9x 2) 0对任意x R恒成立,求实数m的取值范围.

⑴设u xx2,求u的取值范围;

⑵求证:当k > 1时不等式1

x

1v k

X2 v

2

2

对任意x , X2 %冷2k

立;

1 1

⑶求使不等式一x一k 2 2

-对任意

人,X2 D恒成立的

x X22k

\ , x2 | N 0 , x20 ,石X2 k (其中k为正常数). 围.

D恒成k2的范

【例23】已知集合D

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

(完整word版)高一数学中的恒成立问题

高一数学中的恒成立问题 班级 姓名 学号 1.任意x R ∈,不等式()()222240a x a x ----<恒成立,则a 的范围是____(]2,2-___. 2.若不等式x +2xy ≤a (x +y )对一切正数x ,y 恒成立,则正数a 的最小值为 ( B ) A.1 B.2 C.2 1 2+ D.22+1 . B 由条件:2xy ≤(a -1)x +ay 恒成立,而(a -1)x +ay ≥2xy a a )1(-, 令2xy =2xy a a )1(- ,a (a -1)=2, ∴a =2. 3.不等式() ()2212130m x m x ---+>对一切实数x 恒成立,则实数m 的范围为______. 【解】当2 10m -≠时不等式恒成立的充要条件是2 10m ->且()()22411210m m ---<, 即m>1或m<-2;当m-1=0时不等式化为3>0,恒成立.综上m 范围是[)21-∞+∞U (,),+. 4、已知两个正变量y x ,满足4=+y x ,则使不等式 m y x ≥+4 1恒成立的实数m 的取值 范围是 ]4 9,(-∞ 5.已知不等式(x+y)(1x + a y )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8 6、若对于一切正实数x 不等式x x 2 24+>a 恒成立,则实数a 的取值范围是 a<24 7.若不等式.2 log 0m x x -<在(0, 1 2 )的范围内恒成立,则实数m 的取值范围是____. 【解】 1 116 m ≤< 提示:利用数形结合讨论01两种情况 8.设y=x 2+ax+b ,当x=2时y=2,且对任意实数x 都有y≥x 恒成立,实数a 、b 的值为( B ). A.a=-3 b=-4 B.a=-3 b=4 C a=3 b=4 D a=3 b=-4 9、当x>1时,不等式x+ 1 1 -x ≥a 恒成立,则实数a 的取值范围是( D ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 10.若不等式n )1(2a )1(1 n n +-+<-对任意正整数n 恒成立。则实数a 的取值范围是( A )

高中数学 椭圆 板块一 椭圆的方程完整讲义(学生版)

学而思高中完整讲义:椭圆.板块一.椭圆的方程.学生版 【例1】 已知椭圆的焦点在x 轴上,焦距为8,焦点到相应的长轴顶点的距离为1,则椭圆 的标准方程为( ) A .221259x y += B .221259y x += C .22179y x += D .22 179 x y += 【例2】 已知椭圆22 15x y m +=的离心率10e 5= ,则m 的值为( ) A .3 B .5153或15 C .5 D .25 3 或3 【例3】 设定点12(03)(03)F F -,,,,动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的 轨迹是( ) A .椭圆 B .线段 C .不存在 D .椭圆或线段 【例4】 已知椭圆的中心在原点,离心率1 2 e = ,且它的一个焦点与抛物线24y x =-的焦点重合, 则此椭圆方程为( ) A .22143x y += B .22186x y += C .2 212 x y += D .2 214 x y += 【例5】 设椭圆22221(0)x y a b a b +=>>的离心率为1 e 2 =,右焦点为(0)F c ,,方程 20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x , ( ) A .必在圆222x y +=内 B .必在圆222x y +=上 C .必在圆222x y +=外 D .以上三种情形都有可能 【例6】 已知22 212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是( ) A .2m >或1m <- B .2m >- C .12m -<< D .2m >或21m -<<- 【例7】 经过点(30)P -,,(02)Q -,的椭圆的标准方程是 ; 典例分析

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?() f x 的 下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界 小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例恒成立,试求实数a 的取值范围; 例数,且当 ? ?? ? ?∈2,0πθ时,有 f .

例4、已知函数 )0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2例 例恒成立,求实数x 的取值范围 例若不等式2 ()1 f x x x a '--+>对任意(0)a ∈+∞, 都成立,求实数x 的取值范围.

3、分离参数法 (1)将参数与变量分离,即化为 ()() g f x λ≥ (或 ()() g f x λ≤ )恒成立的形式; (2)求 () f x 在x D ∈上的最大(或最小)值; (3)解不等式 () max () g f x λ≥ (或 ()() min g f x λ≤ ) ,得λ的取值范围。 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8、当 (1,2) x∈时,不等式240 x mx ++<恒成立,则m的取值范围是 . 例 b a,满足什么条件时,) (x f取a表示出b的取值范围. 4 例________ 例11、当x(1,2)时,不等式

(完整word)高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。 一、构造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例1 已知不等式对任意的都成立,求的取值范围. 解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 例 3 已知函数若不等式恒成立,则实数的取值范围是 .

学而思高中数学恒成立与有解问题

【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _ . 【例2】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例3】 设函数2()1f x x =-,对任意23x ??∈+∞????,,24()(1)4()x f m f x f x f m m ?? --+ ??? ≤恒 成立,则实数m 的取值范围是 . 典例分析 恒成立与有解问题

【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B .1 8 a >- C .18a > D .0a < 【例5】 已知不等式 ()11112 log 112 2123 a a n n n +++ >-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围. 【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤

【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 【例9】 不等式210x ax ++≥对一切102x ?? ∈ ??? ,成立,则a 的最小值为( ) A .0 B .2- C .5 2 - D .3- 【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .(] [)14-∞-+∞,, B .(] [)25-∞-+∞,, C .[12], D .(][)12-∞∞, , 【例11】 对任意[11]a ∈-,, 函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .

2020学而思教材讲义高一数学寒假(目标班、尖子班) 高一寒假 第3讲 数列的小伙伴们 教师版 目标班

第3讲数列的小伙伴们 满分晋级 数列3级 等差数列深入 数列2级 数列的小伙伴们 数列1级 与数列的第一次 亲密接触 知识切片 <教师备案>本讲内容分成两部分:3.1等比数列的基本量;3.2等比数列的性质初步.本讲内容较少,可以与上一讲进行一个时间上的均衡.本讲思路是:先从直观上认识等比数列,通过一些 具体的数列感受等比数列并学习等比中项,之后再学习等比数列的通项公式,熟悉通项公 式以及正确计算等比数列的项数.再学习等比数列的求和公式,以及一些简单的性质.希 望把概念分开讲解,分别配例题.国际象棋的故事在暑期指数函数已经讲过了,此处就尽 量不用了,由汉诺塔引入.

等比数列引入 汉诺塔 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,印度教的主神 大梵天在创造世界的时候做了三根金刚石柱子,在其中一根柱子上从下到上地放着由大到小的64片黄金圆盘,这就是所谓的汉诺塔(如下图).不论白天黑夜,总有一个僧侣在按照下面的法则移动这些圆盘:一次只移动一片 ....... ,不管在哪根柱子上,小.圆盘 .. 必在大 ... 圆盘 .. 上面 .. .当所有的金盘都从梵天放好的那根柱子上移到另外一根上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽.故汉诺塔问题又被称为“世界末日问题.” 汉诺塔初始模型 64 63 62 2 1 C B A ??? ??? 要把圆盘移动到另外一根柱子上,至少需要移动多少次呢?设有n个圆盘,要从A移动到C,至少需要移动的次数为 n a.易知12 n=,时, 12 13 a a == ,,3 n=的时候,可以考虑先将上面两个小的移到B上,要 2 3 a=次,再将最大的那个移到C上,要1次,最后将B上的两个移到C上,要 2 3 a=次,总共要 2 217 a+=次. 对于一般的n,我们可以类似考虑(如下图):先将上面1 n-个圆盘移到B上,要 1 n a - 次;然后将最大的那个盘子移到C上,要1次移动;最后再将B上的那1 n-个圆盘移到C上,要 1 n a - 次.这种方法 需要的次数为 111 121 n n n a a a --- ++=+. n-1 1 n ??? ??? A B C 22 C B A ??? ??? n 1 n-1 ①② 3.1等比数列基本量计算

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

学而思高中数学1-不等式比较大小

【例1】 若0a b <<,1a b +=,则在下列四个选项中,较大的是( ) A .1 2 B .22a b + C .2ab D .b 【例2】 将23 2,12 23?? ??? ,1 22按从大到小的顺序排列应该是 . 【例3】 若52x =-,23x =-,则,x y 满足( ) A .x y > B .x y ≥ C .x y < D .x y = 【例4】 若 11 0a b <<,则下列不等式中, ①a b ab +< ②||||a b > ③a b < ④ 2b a a b +> 正确的不等式有____ .(写出所有正确不等式的序号) 典例分析 比较大小

【例5】已知,a b∈R,那么“|| a b >”是“22 a b >”的() A.充分非必要条件B.必要非充分条件 C.充分必要条件D.既非充分又非必要条件【例6】若0 b a <<,则下列不等式中正确的是() A.11 a b >B.a b >C.2 b a a b +>D.a b ab +> 【例7】比较下列代数式的大小: ⑴23 x x +与2 x-; ⑵61 x+与42 x x +; 【例8】比较下列代数式的大小: ⑴43 x x y -与34 xy y -; ⑵(其中0 xy>,且x y >) ⑶x y x y与y x x y(其中0,0, x y x y >>≠).

【例9】 a 、b 、c 、d 均为正实数,且a b >,将 b a 、a b 、b c a c ++与a d b d ++按从小到大的顺序进行排列. 【例10】 比较大小:log a a b 、log a b 与log b a (其中21a b a >>>) 【例11】 已知a 、b 、c 、d 均为实数,且0ab >,c d a b - <-, 则下列各式恒成立的是( ) A .bc ad < B .bc ad > C .a b c d > D .a b c d < 【例12】 当a b c >>时,下列不等式恒成立的是( ) A .ab ac > B .a c b c > C .ab bc > D .()0a b c b --> 【例13】 已知三个不等式:0ab >,0bc ad ->, 0c d a b ->(其中a 、b 、c 、d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( ) A .0 B .1 C .2 D .3

恒成立问题 专题

恒成立问题 1.参变分离法 例1:已知函数()ln a f x x x =-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是 _________. 【答案】1a ≥- 【解析】233ln ln ln a x x x x a x a x x x x - -,其中()1,x ∈+∞, ∴只需要() 3max ln a x x x >-. 令()3 ln g x x x x =-,()' 2 1ln 3g x x x =+-,()' 12g =-,()2 '' 11660x g x x x x -=-=<, ()'g x ∴在()1,+∞单调递减,()()()''10g x g g x ∴<>≠对于任意的π0,4x ?? ∈ ???都成立,则实数a 的取值范围 是___________. 【答案】π,14a ?? ∈ ??? 【解析】本题选择数形结合,可先作出sin 2y x =在π0,4x ?? ∈ ??? 的图像,

a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图像进一 步可得只需 π 4 x = 时,log sin 2a x x >, 即πππlog sin 21444a a >?=?>,所以π,14a ??∈ ??? . 3.最值分析法 例3:已知函数()()ln 10f x a x a =+>,在区间()1,e 上,()f x x >恒成立,求a 的取值范围___________. 【答案】e 1a ≥- 【解析】()f x x >恒成立即不等式ln 10a x x -+>恒成立,令()ln 1g x a x x =-+, ∴只需()min 0g x >即可,()10g =, ()'1a a x g x x x -= -=,令()'00a x g x x a x ->?>?<(分析()g x 的单调性) 当1a ≤时 ()g x 在()1,e 单调递减,则()()010g x g <= (思考:为什么以1a =作为分界点讨论?因为找到()10g =,若要不等式成立,那么一定从1x =处起()g x 要增(不一定在()1,e 上恒增,但起码存在一小处区间是增的) ,所以1a ≤时导致()g x 在1x =处开始单减,那么一定不符合条件.由此请体会零点对参数范围所起的作

高中数学中的存在性问题与恒成立问题例题

第 1 页 共 3 页 高中数学存在性问题与恒成立问题 例1、若不等式 121x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 例2、设函数2()1f x x =-,对任意23x ??∈+∞????,,24()(1)4()x f m f x f x f m m ??--+ ???≤恒成立,则 实数m 的取值范围是 . 例3、若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B . 18a >- C .18a > D .0a < 例4、已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立, 试求实数a 的取值范围. 例5、若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 例6、2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤ 例7、若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 例8、不等式210x ax ++≥对一切102x ??∈ ???,成立,则a 的最小值为( ) A .0 B .2- C .52- D .3- 例9、不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( ) A .(][)14-∞-+∞,, B .(][)25-∞-+∞,, C .[12], D .(][)12-∞∞,,

学而思初中数学课程规划

学而思初中数学课程规划 来源:本站原创文章作者:中考网小编2011-05-01 15:40:58 [标签:2011初一暑假班数学] [当前8392家长在线讨论] 初中数学的学习不同于小学: 小学是课内知识过于简单,课外的奥数较难,而且整个社会没有统一的教材,基本上都是各自研发,比如学而思的十二级体系。而初中最终目标是中考,有明确的方向性,同时有统一规划的课本,知识体系非常完整。因此整个初中的学习更适合在一个合理而科学的体系下学习,唯一不同就在于不同的孩子可以选择不同的进度和难度。 初中班型设置介绍 : 初一年级: 基础班,提高班,尖子班,竞赛班,联赛班 初二年级: 基础班,提高班,尖子班,竞赛班,联赛班 初三年级:基础班,提高班,尖子班,目标班 联赛班走联赛体系,一年半学完初中数学知识; 竞赛班走竞赛体系,两年学完初中数学知识; 基础班,提高班,尖子班走领先中考培优体系,两年半学完初中数学知识。 到初三不再设竞赛班和联赛班,统一回归到目标班,冲击中考。 下面就各个班型的定位和适合什么样的学生做一个对比说明: 2011年学而思初中教学体系 体 系 联赛体系竞赛体系领先中考培优体系班 型 定 位 数学超常发展,冲击竞赛一等奖中考满分,兼顾竞赛同步提高,冲击中考满分 学 制 设 计 一年半学完初中内容两年学完初中内容两年半学完初中内容 课 程容量每节课的课程容量与难度比竞赛班 大1.2-1.5倍 每节课的容量与难度比尖子班大 1.5-1.8倍 每节课的容量是校内课程的3-5 倍,难度比校内课程高1.5-2倍 适合学生课内知识掌握非常扎实,发展方向为 冲击初中数学联赛,希望在数学方面 有独特发展,例如未来参加IMO或 CMO比赛,高中数学联赛冲击一等 奖。 课内知识学习轻松,在保证中考路径 的同时兼顾拔高与竞赛。未来目标为 冲击中考满分,同时参加一些数学竞 赛,激发兴趣,锻炼思维。 从课内知识上夯实基础、同步提 高,同时拓宽视野,系统化学习, 目标冲击中考满分

高中数学恒成立问题典型例题

恒成立问题是数学中的常见问题,在培养同学们思维的灵活性、创造性等方面起到了积极的作用,也是历年高考的一个热点。大多是在不等式中,以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。 下面结合实例,介绍这类问题的几种求解策略。 一、参变分离法 在给出的不等式中,如果能通过恒等变形将参数与变量分离出来,即:若a≥f(x)恒成立,只需求出f(x)max,则a≥f(x)max;若a≤f(x)恒成立,只需求出f(x)min,则a≤f(x)min,转化为函数求最值。 二、主元变换法 在给出的含有两个变量的不等式中,学生习惯把变量x看成是主元(未知数),而把另一个变量a看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。

三、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 四、数形结合 数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图像,然后通过观察两图像(特别是交点)的位置关系,列出关于参数的不等式。 五、判别式法 对可化为关于x的一元二次不等式对x∈R(或去掉有限个点)恒成立,常用判别式法,先将其化为关于x的一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解。要注意二次是否可为0。

六、最值法对含参数的不等式恒成立问题,可将其化为f(x)>0或f(x)<0在某个范围上恒成立的问题,则0<[f(x)]min或0>[f(x)] max,先求出f(x)的最值,将其转化为关于m的不等式问题,通过解不等式求出参数m的取值范围。 上面介绍了含参不等式中恒成立问题的几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。

学而思高中完整讲义集合.板块三.集合的运算.学生版

题型一 集合的基本运算 【例1】若{}|1,I x x x =-∈Z ≥,则I N e= . 【例2】已知全集{(,)|R ,R}I x y x y =∈∈,{(1,1)}P =,表示I P e. 【例3】若集合{1,1}A =-,{|1}B x mx ==,且A B A =,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或0 【例4】若{}{}{},,|,A a b B x x A M A ==?=,求B M e. 【例5】已知2 {|43,} A y y x x x ==-+∈R ,2{|22,} B y y x x x ==--+∈R ,则A B 等于 ( ) A .? B .{1,3}- C .R D .[1,3]- 【例6】若{}{}21,4,,1,A x B x ==且A B B =,则x = . 典例分析 板块三.集合的运算

【例7】若集合{}{} 22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有( ) A .M N M = B .M N N = C .M N M = D .M N =? 【例8】已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,求实数a 的值. 【例9】设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B . 【例10】设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =( ) A .0 B .{}0 C .? D .{}1,0,1- 【例11】已知全集是R ,{|37},{|210}A x x B x x =<=<<≤,求R ()A B e,R ()A B e 【例12】设全集U R =,{}2|10M m mx x =--=方程有实数根, {}2|0N n x x n =-+=方程有实数根,求() U M N e.

学而思初中数学课程规划汇编

学而思初中数学课程规划 初中数学的学习不同于小学 小学是课内知识过于简单,课外的奥数较难,而且整个社会没有统一的教材,基本上都是各自研发,比如学而思的十二级体系。而初中最终目标是中考,有明确的方向性,同时有统一规划的课本,知识体系非常完整。因此整个初中的学习更适合在一个合理而科学的体系下学习,唯一不同就在于不同的孩子可以选择不同的进度和难度。 初中班型设置介绍 初一年级:基础班,提高班,尖子班,竞赛班,联赛班 初二年级:基础班,提高班,尖子班,竞赛班,联赛班 初三年级:基础班,提高班,尖子班,目标班 联赛班走联赛体系,一年半学完初中数学知识; 竞赛班走竞赛体系,两年学完初中数学知识; 基础班,提高班,尖子班走领先中考培优体系,两年半学完初中数学知识。 到初三不再设竞赛班和联赛班,统一回归到目标班,冲击中考。 下面就各个班型的定位和适合什么样的学生做一个对比说明: 2015年学而思初中教学体系 体系联赛体系竞赛体系领先中考培优体系 班型定位 数学超常发展 冲击竞赛一等奖 中考满分 兼顾竞赛 同步提高 冲击中考满分 学制设计一年半学完初中内容两年学完初中内容两年半学完初中内容 课程容量每节课的课程容量与难度 比竞赛班大1.2-1.5倍 每节课的容量与难度 比尖子班大1.5-1.8倍 每节课的容量是校内课程的3-5倍 难度比校内课程高1.5-2倍 适合学生课内知识掌握非常扎实,发展方向为冲 击初中数学联赛,希望在数学方面有独 特发展,例如未来参加IMO或CMO比 赛,高中数学联赛冲击一等奖。 课内知识学习轻松,在保证中考路径 的同时兼顾拔高与竞赛。未来目标为 冲击中考满分,同时参加一些数学竞 赛,激发兴趣,锻炼思维。 从课内知识上夯实基础、同步提高, 同时拓宽视野,系统化学习,目标冲 击中考满分 入学体系10次课学完初一----预备班选拔考试---- 联赛竞赛预备班----参加入学选拔考试 ----通过后选择联赛体系---开始学习 10次课学完初一----预备班选拔考试 ----联赛竞赛预备班----参加入学选拔 考试----通过后选择竞赛体系---开始 学习 10次课学完初一----入学测试题----领 先中考培优体系---开始学习 班次安排 联赛1班、联赛2班竞赛班基础班、提高班、尖子班,初三加开目标班 学而思的初中数学有一套非常成熟的教学体系,既能满足我们的终极目标——中考,同时还能兼顾一些希望走竞赛路线的孩子。现在应该考虑的问题是我们适合走哪条路线? 【选择联赛】 更多精品文档

(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档

恒成立问题中含参范围的求解策略 数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。 一、分离参数——最值化 1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 , 则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值. 例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+?2>1在x ∈[2 ,+∞)上恒成立,即a>?+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=?+ ,当x=2时, =2 ,所以a>2 2在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取 值范围.问题还是转化为函数求最值. 例2 已知x ∈(?∞ ,1]时,不等式1++(a ?) >0恒成立,求a 的取值范围. 解 令 =t ,∵x ∈(?∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为 < ,要使上式在t ∈(0 ,2] 上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)== += ? 又t ∈(0 ,2] ∴∈[ ) ∴ =f(2)= ∴< , ∴?>且 c a m c b 1b a 1-≥ -+-恒成立,求实数m 的取值范围。 解析:由于c a >,所以0c a >-,于是?? ? ??-+--≤c b 1b a 1)c a (m 恒成立,因+≥??? ??--+--++=??? ??-+--+-=??? ??-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a ( .4c b b a b a c b 2=--?-- (当且仅当b a c b -=-时取等号),故4m ≤。 二、数形结合——直观化 对于某些不容易分离出参数的恒成立问题,可利用函数的图像或相应图形,采用数形结合的思想,直观地反应出参数的变化范围。 例4 设])1k 2,1k 2(I ,I x ()k 2x ()x (f k k 2+-∈-=表示区间,对于任意正整数k ,直线ax y =与)x (f 恒有两个不同的交点,求实数a 的取值范围。 解析:作出2)k 2x ()x (f -=在区间]1k 2,1k 2(+-上的图像,由图像知,直线ax y =只能绕原点O 从x 正半轴旋转到过点)1,1k 2(A +的范围,直线AO 的斜率为,1 k 21 01k 201+=-+-于是实数a 的取值范围 是.1 k 21 a 0+≤ <

学而思高中数学13-集合的概念与表示复习课程

题型一 集合的性质 【例1】以下元素的全体不能够构成集合的是( ). A. 中国古代四大发明 B. 地球上的小河流 C. 方程210x -=的实数解 D. 周长为10cm 的三角形 【例2】在“①难解的题目;②方程x2+1=0在实数集内的的解;③直角坐标平面上第四 象限内的所有点;④很多多项式”中,能组成集合的是() A ②③ B ①③ C ②④ D ①②④ 【例3】分析下列各组对象能否构成集合: (1)比2008大的数; (2)一次函数(0)y kx b k =+≠的图象上的若干个点; (3)正比例函数y x =与反比例函数1y x =- 的图象的交点; (4)面积比较小的三角形. 【例4】下面四个命题正确的是( ) A .10以内的质数集合是{0,3,5,7} B .“个子较高的人”不能构成集合 C .方程0122=+-x x 的解集是{1,1} D .偶数集为{}N x k x x ∈=,2| 典例分析 板块一.集合的概念与表示

【例5】下面的结论正确的是( ) A .Q ax ∈,则N a ∈ B .N a ∈,则∈a {自然数} C .012 =-x 的解集是{-1,1} D .正偶数集是有限集 【例6】已知集合S ={c b a ,,}中的三个元素可构成?ABC 的三条边长,那么?ABC 一定 不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 【例7】已知集合()(){} 210M x x a x ax a =--+-=各元素之和等于3,则实数a 的值为 【例8】求集合2{,2,}x x x -中的元素x 的取值范围. 【例9】下面有四个命题: ⑴集合N 中最小的数是1; ⑵若a -不属于N ,则a 属于N ; ⑶若,a b ∈∈N N ,则a b +的最小值为2; ⑷212x x +=的解可表示为{}1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 【例10】下列命题正确的有( ) ⑴很小的实数可以构成集合; ⑵集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合; ⑶3611,,,,0.5242-这些数组成的集合有5个元素; ⑷集合(){},|0,,x y xy x y ∈R ≤是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个

恒成立问题 专题

恒成立问题 1.参变分离法 例1:已知函数()ln a f x x x =-,若()2f x x <在()1,+∞上恒成立,则a 的取值 范围是_________. 【答案】1a ≥- 【解析】233ln ln ln a x x x x a x a x x x x --,其中()1,x ∈+∞, ∴只需要() 3max ln a x x x >-. 令()3 ln g x x x x =-,()' 2 1ln 3g x x x =+-,()' 12g =-,()2 '' 11660x g x x x x -=-=<, ()'g x ∴在()1,+∞单调递减,()()()''10g x g g x ∴<>≠对于任意的π0,4x ?? ∈ ??? 都成立,则实 数a 的取值范围是___________. 【答案】π,14a ??∈ ??? 【解析】本题选择数形结合,可先作出sin 2y x =在π0,4x ?? ∈ ??? 的图像,

a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得 01a <<,观察图像进一步可得只需 π 4 x = 时,log sin 2a x x >, 即πππlog sin 214 4 4 a a >?=?>,所以π,14a ?? ∈ ??? . 3.最值分析法 例3:已知函数()()ln 10f x a x a =+>,在区间()1,e 上,()f x x >恒成立,求 a 的取值范围___________. 【答案】e 1a ≥- 【解析】()f x x >恒成立即不等式ln 10a x x -+>恒成立,令 ()ln 1g x a x x =-+, ∴只需()min 0g x >即可,()10g =, ()'1a a x g x x x -= -= ,令()'00a x g x x a x ->?>?<(分析()g x 的单调性) 当1a ≤时 ()g x 在()1,e 单调递减,则()()010g x g <= (思考:为什么以1a =作为分界点讨论?因为找到()10g =,若要不等式

学而思高中数学4-最值问题之代数式的最值

【例1】 若0x >,则4 23x x ++的最小值是_________. 【例2】 设a 、b ∈R ,则3a b +=,则22a b +的最小值是_________. 【例3】 若a 、b +∈R ,且1a b +=,则ab 的最大值是 . 典例分析 代数式的最值

【例4】 已知不等式()19a x y x y ?? ++ ??? ≥对任意正实数x y ,恒成立,则正实数a 的最小值 为( ) A .8 B .6 C .4 D .2 【例5】 当___x =时,函数22(2)y x x =-有最 值,其值是 . 【例6】 正数a 、b 满足9a b =,则1 a b +的最小值是 . 【例7】 若x 、*y ∈R 且41x y +=,则x y ?的最大值是_____________.

【例8】 设0,0x y ≥≥,2 2 12 y x +=,则的最大值为 . 【例9】 已知0x >,0y >,1x y +=,则1111x y ?? ??++ ? ?? ???的最小值为 【例10】 设0a b >>,那么21 () a b a b + -的最小值为( ) A .2 B .3 C .4 D .5

【例11】 设221x y +=,则()()11xy xy -+的最大值是 最小值 是 . 【例12】 已知 ()23 200x y x y +=>>,,则xy 的最小值是 . 【例13】 已知2222,,x y a m n b +=+=其中,,,0x y m n >,且a b ≠,求mx ny +的最大值. 【例14】 0,0,4,a b a b >>+=求2 2 11a b a b ? ???+++ ? ?? ???的最小值.

相关文档
最新文档