椭圆中的焦点三角形

椭圆中的焦点三角形
椭圆中的焦点三角形

椭圆中的焦点三角形

定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆焦点三角形。 其中,我们把椭圆的两个焦点和其短轴的一个端点构成的等腰三角形称为椭圆的一个特征焦点三角形

考点1 有关周长和距离问题:

例1.(08浙江)已知12F F ,为椭圆22

1

259x y +=的两个焦点,过1F 的直线交椭圆于,A B 两点,

若2212

F A F B +=,则

AB =

变式(06年四川)如图把椭圆22

2

21x y a b +=的长轴分成8等分,过每个点作x 轴的垂线交椭

圆的上半部分于127,,

,P P P 七个点。F 是椭圆的一个焦点,则127PF PF

PF ++

=

变式2 已知12F F ,是椭圆22

1

2516x y +=的左,右焦点,点P 在椭圆上运动,则12PF PF 的最大

值是

考点2 有关角的问题:

例2(2000全国)椭圆22

1

94x y +=的焦点为12F F ,,点P 为其上的动点,当

12F PF ∠为钝角时,点P 横坐标的取值范围是

变式:椭圆22

1

94x y +=的焦点为12F F ,,点P 为其上的动点,当

12F PF ∠为直角时,点P 横坐标的取值范围是

性质一:当点P 从右至左运动时,

12F PF ∠由锐角变成直角,又变成钝角,过了y 轴之后,

对称地由钝角变成直角再变成锐角,并且发现当点P 与短轴端点重合时,12F PF ∠达到最大

变式: (2004湖南卷)12F F ,是椭圆C :22

1

84x y +=的焦点,在C 上满足1

2PF PF ⊥的点P 的个数

考点3 有关离心率的问题:

例3已知椭圆22

221x y a b +=,(0)a b >>的两焦点分别为12F F ,,若椭圆上存在一点P ,使得

12F PF ∠0120=,求椭圆离心率e 的取值范围

性质二:已知椭圆方程为22

2

21x y a b +=,(0)a b >>的两焦点分别为12F F ,,设焦点三角形

12F PF 中,12F PF ∠θ=,则2cos 12e θ≥-(当且仅当动点为短轴端点时取等号)

变式(09江西)已知12F F ,是椭圆的两个焦点,满足12MF MF 0

=的点M 总在椭圆内部,

则椭圆离心率的取值范围

考点4 有关面积的问题:(

122tan

2F PF S b θ

?=)(θ为焦点三角形顶角)

例4P 是椭圆22

154x y +=上的点,12F F ,是椭圆的焦点,若

12F PF ∠6π=

,则12PF F 的面积等于

变式:P是椭圆

2

21

4

x

y

+=

上的点,12

F F,是椭圆的焦点,若12

F PF

∠3

π

=

,则12

PF F

面积等于

变式:(04湖北)已知椭圆

22

1

169

x y

+=

的左右焦点分别是12

F F,,点P在椭圆上,若12

,,

P F F

是一个直角三角形的三个顶点,则点P到x轴的距离为()

A 9

5B 3 C

9

4D

9

4或

97

7

性质4过椭圆焦点的所有弦中通径(垂直于焦矩的弦),最短,通径为2

2b a

(2007天津)设椭圆22

221(0)x y a b a b +=>>的左、右焦点分别为1

2F F A ,,是椭圆上的一点,212AF F F ⊥,原点

O 到直线1AF 的距离为11

3

OF . (Ⅰ)证明2a b =

(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.

本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.

(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c

-,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即

222

221a b y a b

-+=. 解得2

b y a =,从而得到2b A

c a ?? ???

,.

直线1AF 的方程为2

()2b y x c ac =+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF ,即242234c b c

b a c

=+,

将2

2

2

c a b =-代入上式并化简得2

2

2a b =,即2a b =

证法二:同证法一,得到点A 的坐标为2b c a ??

???

,.

过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故

21

1BO F A OF F A

=

由椭圆定义得122AF AF a +=,又

11

3

BO OF =, A

y

所以

2212132F A

F A F A a F A

==

-, 解得22a F A =,而22b F A a

=,得

22b a

a =,即2a

b =. (Ⅱ)解法一:设点D 的坐标为00()x y ,.

当00y ≠时,由12OD QQ ⊥知,直线12Q Q 的斜率为0

x y -

,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,2

00

x m y y =+.

点111222()()Q x y Q x y ,,,的坐标满足方程组2

2

2

22y kx m x y b =+??+=?,

将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,

于是122412km x x k +=-+,2122

2212m b x x k -=+.

由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++

222222

2

22

2242121212m b km m b k k km m k k k

---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得

2222

2

322012m b b k k --=+, 22232(1)m b k =+.

将2

00000

x x k m y y y =-=+,代入上式,整理得22

20023x y b +=.

当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组

0222

22x x x y b =??+=?,

所以120x x x ==,22

1222

b x y -=±

,.

由12OQ OQ ⊥知12120x x y y +=,即22

20

202

b x x --

=, 解得2

2

023

x b =

. 这时,点D 的坐标仍满足2

2

2

0023x y b +=

. 综上,点D 的轨迹方程为 22

223

x y b +=.

解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD QQ ⊥,

垂足为D ,可知直线12Q Q 的方程为220000

x x y y x y +=+. 记22

00

m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组00222

22x x y y m x y b +=???+=??, ①

. ②

由①式得00y y m x x =-. ③

由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=, 于是222

1222

00

222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥

椭圆标准方程焦点三角形面积公式高三复习

椭圆标准方程焦点三角形面积公式高三复习 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

椭圆焦点三角形面积公式的应 用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任 意一点,θ=∠21PF F ,则2 tan 22 1 θ b S PF F =?. 证明:记2211||,||r PF r PF == .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:cos 2212221r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积.

例2 已知P 是椭圆19 252 2=+ y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若 2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D. 3 3 例3(04湖北)已知椭圆19 162 2=+ y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A. 59 B. 779 C. 4 9 D. 4 9 或 7 7 9 答案: 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF == 点P 在椭圆上, ∴由椭圆的第一定义得:.20221==+a r r

椭圆中焦点三角形的性质(含答案解析)

焦点三角形习题 性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a b 2 2 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==, 由椭圆的第一定义得.4)(,22 22121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 性质三:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ 性质三 证明:设,,2211r PF r PF ==则在21PF F ?中,由余弦定理得: 1222242)(2cos 2 12 221221221212 212221--=--+=-+=r r c a r r c r r r r r r F F r r θ

椭圆焦点三角形面积

椭圆焦点三角形面积公式的应用 多年来,椭圆、双曲线相关的焦点?21F PF ,(为曲线上的任意一点P 21F F 与为曲线的焦点)中的边角关系是学生必须掌握的重点知识,也是 高考的热点内容之一,尤其是近几年的出题频率呈上升趋势.现列举部分典型试题说明其应用类型. 定理 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点, θ=∠21PF F ,则2 tan 2 21θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典题妙解 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF ==

椭圆焦点三角形圆周角最大问题

椭圆焦点三角形圆周角最大的证明 已知椭圆()22 22:10x y E a b a b +=>>两焦点()()12,0,,0F c F c -,同时点 P 椭圆()22 22:10x y E a b a b +=>>上一动点。通常我们把以 12,,P F F 为顶点的三角形称为焦点三角形(如右图) 若我们记12F PF θ∠=,则θ何时最大呢? 法一:不妨设12 ,PF m PF n ==,于是2 2 2 2221212 12 4cos 22PF PF F F m n c PF PF mn θ+-+-==? 我们知道:当,0a b > )2a b a b +≤≤=当且仅当时取等号, 故而当,0a b >时,有()2 22 22a b a b ab a b ++??≤≤ = ??? 当且仅当时取等号 故()22 22222222 2 2424244222cos 122222m n m n m n c c c m n c mn mn mn m n θ++????+?-?-?- ? ?+-????==≥≥+?? ? ??? 我们我们注意到2m n a +=(为定值),所以 ()2 2 22222 24242cos 12222m n c a c c a a m n θ+???- ?-????≥==- ???+?? ? ??? 为定值 我们注意到()1式,有二次使用不等式,但这两次取等的条件都是m n =(即点P 在短轴的端点()12,B B 处取等),故()2 min cos 12c a θ?? =- ??? ,又 ()0,θπ∈,且函数cos y x =在()0,π上为减函数。故 cos θ最小时,θ恰有最大值。故点P 在短轴的端点() 12,B B 处,θ最大。

(完整版)圆锥曲线焦点三角形推导

椭圆焦点三角形 1.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12 PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得 2 2 2 1212 12 cos 2PF PF F F PF PF α+-= ?222 1212 (2)2r r c r r +-= ? 22121212()242r r r r c r r +--=22 1212(2)242a r r c r r --= 2212124()22a c r r r r --=212 122b rr r r -= ∴21212cos 2r r b r r α=- 即2 1221cos b r r α =+, ∴12 212112sin sin 221cos PF F b S r r ααα?==??+2sin 1cos b αα=+=2tan 2 b α. 例1.焦点为12,F F 的椭圆22 14924x y +=上有一点M ,若120MF MF ?=u u u u r u u u u r ,求12 MF F ?的面积. 解:∵120MF MF ?=u u u u r u u u u r , ∴12MF MF ⊥, ∴ 12MF F S ?=290tan 24tan 242 2 b α ? ==. 例2.在椭圆的22 221(0)x y a b a b +=>>中,12,F F 是它的两个焦点,B 是短轴的 一个端点,M 是椭圆上异于顶点的点,求证:1212F BF F MF ∠>∠. 证明:如图2,设M 的纵坐标为0y , 图1 F 1 x y O P F 2

焦点三角形的性质

椭圆中焦点三角形的性质及应用 定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等. 一.焦点三角形的形状判定及周长、面积计算 例1 椭圆上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ?的形状. 解:由 112 162 2=+y x 椭圆定义: 3||,5||.2||||,8|||212121==∴=-=+PF PF PF PF PF PF . 又4||21=F F Θ,故满足:,||||||2 12 212 2PF F F PF =+故21F PF ?为直角三角形. 说明:考查定义、利用已知、发挥联想,从而解题成功. 性质一:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?。 θ cos 2)2(212 2212 2 12PF PF PF PF F F c -+==Θ)cos 1(2)(21221θ+-+=PF PF PF PF θ θθcos 12)cos 1(244) cos 1(24)(2 222 22121+= +-=+-+= ∴b c a c PF PF PF PF 2 tan cos 1sin 2122212 1θθθb b PF PF S PF F =+==∴? 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 左右两焦点分别为,,21F F 设焦点三角 形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。 证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ?中,2 12 2 121212cos PF PF F F PF PF -+= θ2 12 21221242)(PF PF c PF PF PF PF --+=

椭圆中的焦点三角形及求离心率问题(含答案)

椭圆中的焦点三角形及求离心率问题 1、若椭圆方程为x 24+y 23=1,∠PF 1F 2=90°,试求△PF 1F 2的面积. 【解】 椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在 △PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32, 因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32. 2、设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( B ) A .5 B .4 C .3 D .1 【解】 由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1,∴|PF 1| =4,|PF 2|=2,由22+42=(25)2可知,△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12 ×4×2=4,故选B. 3、过椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________. 【解】由题意,△PF 1F 2为直角三角形,且∠F 1PF 2=60°,所以|PF 2|=2|PF 1|.设|PF 1|=x ,则|PF 2|=2x , |F 1F 2|=3x ,又|F 1F 2|=2c ,所以x =2c 3.即|PF 1|=2c 3,|PF 2|=4c 3 .由椭圆的定义知,|PF 1|+|PF 2|=2a ,所以2c 3+4c 3 =2a ,即e =c a =33. 4、已知椭圆的两焦点为F 1、F 2,A 为椭圆上一点,且AF 1→·AF 2→ =0,∠AF 2F 1=60°,则该椭圆的离心率为________. 【解】 ∵AF 1→·AF 2→ =0,∴AF 1⊥AF 2,且∠AF 2F 1=60°.设|F 1F 2|=2c ,∴|AF 1|=3c ,|AF 2|=c .由椭圆 3c +c =2a 即(3+1)c =2a .∴e =c a =23+1 =3-1. 5、椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为(A ) A.12 B.13 C.14 D.22 6、设椭圆x 2a 2+y 2 b 2=1(a >b >0)与x 轴交于点A ,以OA 为边作等腰三角形OAP ,其顶点P 在椭圆上,且∠OP A =120°,求椭圆的离心率.

椭圆标准方程+焦点三角形面积公式(高三复习)

椭圆标准方程+焦点三角形面积公式(高三复 习) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆焦点三角形面积公式的应用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一 点,θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:2(cos 2212 22 1r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 例2 已知P 是椭圆 19252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( )

椭圆标准方程+焦点三角形面积公式(高三复习)

椭圆焦点三角形面积公式的应用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点, θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 21212 21c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 10022=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 例 2 已知P 是椭圆 19252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( )

A. 33 B. 32 C. 3 D. 3 3 例3(04湖北)已知椭圆 19 162 2=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A. 59 B. 779 C. 49 D. 49或7 79 答案: 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 1641002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF == 点P 在椭圆上, ∴由椭圆的第一定义得:.20221==+a r r 在△21PF F 中,由余弦定理得:.)2(cos 22212 22 1c r r r r =-+θ 配方,得:.1443)(212 21=-+r r r r .144340021=-∴r r 从而.3 256 21= r r .3 36423325621sin 212121=??== ?θr r S PF F 解法二:在椭圆 1641002 2=+y x 中,642=b ,而.60?=θ .3 3 6430tan 642 tan 221= ?==∴?θ b S PF F 解法一复杂繁冗,运算量大,解法二简捷明了,两个解法的优劣立现!

椭圆中的焦点三角形(总结非常好)

学习任务单 椭圆焦点三角形的性质 班级_______________学号_______________姓名_______________ 任务一课前小测,知识回顾 1.△ABC 的内角,,A B C 的对边分别为,,a b c ,已知3 A π=,2a =,求,b c .2.△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2a =,4b c +=. (1)若23B π=,求c ;(2)设B θ=,试用θ表示c . 3.(教材习题)如果椭圆22 110036 x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是________. 4.(教材习题)已知经过椭圆22 12516 x y +=的右焦点2F 作直线AB ,交椭圆于A ,B 两点,1F 是椭圆的左焦点,则△1AF B 的周长为________.思考与总结: ①你能说出椭圆焦点三角形,焦点弦的定义吗? ②通过题3、题4的解答,你能说说“椭圆焦点三角形的元素”与“椭圆的几何性质”间的一些关系吗? 任务二抽丝剥茧,试题分析

学而不思则罔,思而不学则殆 5.(2020顺德二模第19题)已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,122F F =, 设点P 为椭圆C 上一点,123 F PF π∠= ,且△12F PF (1)求椭圆C 的标准方程;(2)设椭圆C 的左右顶点为1A ,2A ,称以12A A 为直径的圆为椭圆C 的“伴随圆”.设直线1l ,2l 为过点1F 的两条互相垂直的直线,设1l 交椭圆于Q ,T 两点,2l 交椭圆C 的“伴随圆”于M ,N 两点,当QT 取到最小值时,求四边形QMTN 的面积.思考与总结: ①题5条件中有很多△12F PF 的信息,由这些出发,你能得到什么?这些对第(1)问求椭圆C 的标准方程有帮助吗? ②第(2)问表面上“高深莫测”,请耐心一点,逐句分析,你能得到哪些基本信息?请一一写出来! ③你能想到什么方法求QT 的最小值? 任务三方法感悟,素养提升

椭圆中与焦点三角形有关的问题

椭圆中与焦点三角形有关的问题 例1:椭圆14 92 2=+y x 的焦点为F l 、F 2,点P 为其上动点,当 21PF F ∠为钝角时,点P 横坐标的取值范围是_______。 (二)问题的分析 问题1. 椭圆14 92 2=+y x 的焦点为F l 、F 2,点P 为其上一点,当21PF F ∠为直角时,点P 的横坐标是_______。 问题2. 而此题为钝角,究竟钝角和直角有何联系? 解题的关键在于点动,发现21PF F ∠的大小与点P 的位置有关,究竟有何联系。 性质一:当点P 从右至左运动时,21PF F ∠由锐角变成直角,又变成钝角,过了Y 轴之后,对称地由钝角变成直角再变成锐角,并且发现当点P 与短轴端点重合时,21PF F ∠达到最大。 3.“性质一”是为什么呢?你能证明吗? 问题3:解三角形中我们常用的理论依据是什么? 问题4:究竟转化为求哪种三角函数的最值,经演算、试验,悟出“欲求21PF F ∠的最大值,只需求cos 21PF F ∠的最小值”

问题5:由上面的分析,你能得出cos 21PF F ∠与离心率e 的关系吗? 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ(当且仅当动点为短轴端点时取等号) 题2:已知1F 、2F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,椭圆上一点P 使?=∠9021PF F ,求椭圆离心率e 的取值范围。 变式1:已知椭圆)0(122 22>>=+b a b y a x 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,1200 21=∠PF F 求椭圆的离心率e 的取值范围。 变式2:若椭圆13 42 2=+y x 的两个焦点1F 、2F ,试问:椭圆上是否存在点P ,使?=∠9021PF F ?存在,求出点P 的纵坐标;否则说明理由。

椭圆、双曲线中与焦点三角形有关的问题.

椭圆、双曲线中与焦点三角形有关的问题(一) 学习目标:1探究焦点三角形的有用结论,能理解、会应用,体会到一些有用的结论将会 为解析几何的解题带来帮助。 2在探究中体会数形结合思想,化归思想在数学中的应用。 复习旧知:1三角形面积公式;2三角形中的勾股定理、余弦定理;3椭圆、双曲线的定义 典例探究: 探究1 计算焦点三角形的周长 例1椭圆112 162 2=+y x 的焦点为1F 、2F ,点P 在椭圆上。求12F PF D 的周长。 探究2 判定焦点三角形的形状 例2椭圆112 162 2=+y x 上一点P 到焦点1F 、2F 的距离之差为2,试判断12F PF D 的形状。 探究3 与焦点三角形有关的椭圆离心率问题 例3设椭圆的左右焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF D 为等腰直角三角形,求椭圆的离心率。 探究4 与焦点三角形有关的椭圆方程问题 例4若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到 探究5 计算焦点三角形的面积 例5椭圆124 492 2=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,求12F PF D 的面积。 例6设1F 、2F 为2 214x y -=的两个焦点,点P 在曲线上,若1290F PF ? ,求12F PF D 的面积。

例7椭圆14 22 =+y x 的左右焦点分别为1F 、2F ,P 是椭圆上一点,当12F PF D 的面积最大时,求21PF ?的值。 例8 若P 是椭圆164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求12F PF D 的面积。 例9若1F 、2F 是双曲线22 1916 x y -=的两个焦点,点P 在双曲线上,且?=∠6021PF F ,求12F PF D 的面积。 练习巩固: 1.已知1F 、2F P 为椭圆C 上的一点,且。若12PF F ?的面积为9,则b = 。 2.已知椭圆2 221(1)x y a a +=>的两个焦点分别为1F ,2F ,P 为椭圆上一点,且1260F PF ∠= ,则12||||PF PF ?的值等于 。 3已知椭圆的方程为22 1,97 x y +=1F 、2F 是椭圆的两个焦点,若点P 是椭圆上的一点,且12 45PF F ? ,求12PF F ?的面积。 4点P 为椭圆22 154 x y +=上的一点,以点P 以及焦点1F 、2F 为顶点的三角形的面积为1,

椭圆双曲线焦点三角形问题

椭圆、双曲线的焦点三角形问题 一、有关面积的问题,方法:面积公式、余弦定理 例1. 如图,F 1、F 2分别是椭圆C :x 2a 2+y 2 b 2=1(a>b>0)的左、右焦点,A 是椭圆C 的顶点,B 是 直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率; (2)已知△AF 1B 的面积为403,求a ,b 的值. 解 (1)由题意可知,△AF 1F 2为等边三角形,a =2c , 所以e =12. y =-3(x -c), 将其代入椭圆方程3x 2+4y 2=12c 2,得B ???? 85 c ,-335c , 所以|AB|=1+3·????85c -0=165 c. 由S △AF 1B =12|AF 1|·|AB|·sin ∠F 1AB =12a·165c·32=235a 2 =403,解得a =10,b =5 3. 方法二 设|AB|=t.因为|AF 2|=a ,所以|BF 2|=t -a. 由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t)2=a 2+t 2-2atcos 60°可得,t =8 5a. 由S △AF 1B =12a·85a·32=235a 2 =40 3知, a =10, b =5 3. 例2如图2,已知双曲线的中心在坐标原点,焦点在x 轴上,F F 12、分别为左、右焦点,双 曲线的右支上有一点P ,∠F PF 123 = π ,且△PF F 12的面积为2 3,双曲线的离心率 为2,求该双曲线的方程. 解析:设双曲线的方程为x a y b a b 222 2100-=>>(),,F c F c 1200()()-,,,, P x y ()00,.在△PF 1F 2中,由余弦定理,得 ||||||||||cos F F PF PF PF PF 12212221223 =+-··π=-+(||||)||||PF PF PF PF 122 12·,

高中数学椭圆焦点三角形面积公式

求解 运用公式 设P为椭圆上的任意一点, 角F1F2P=α ,F2F1P=β,F1PF2=θ, 则有离心率e=sin(α+β) / (sinα+sinβ), 焦点三角形面积S=b^2*tan(θ/2)。 证明方法一 设F1P=m ,F2P=n ,2a=m+n, 由射影定理得2c=mcosβ+ncosα, e=c/a=2c/2a=mcosβ+ncosα / (m+n), 由正弦定理e=sinαcosβ+sinβcosα/ (sinβ+sinα)=sin(α+β)/ (sinα + sinβ)。 证明方法二 对于焦点△F1PF2,设PF1=m,PF2=n 则m+n=2a 在△F1PF2中,由余弦定理: (F1F2)^2=m^2+n^2-2mncosθ 即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ) 所以mn(1+cosθ)=2a^2-2c^2=2b^2 所以mn=2b^2/(1+cosθ) 例题 F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,PQ是过F1的一条弦,求三角形PQF2面积的最大值 【解】S△PQF2=S△QF1F2+S△QF1F2=1/2 * |y2-y1| * 2c=c*|y2-y1| △QF1F2与△QF1F2底边均为F1F2=2c,之后是联立直线方程与椭圆方程,利用韦达定理表示出|y2-y1|进行分析即可【|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2] 】请你看下面的一个具体例题,会对你有所启发的。

设点F1是x^2/3+y^2/2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB的面积的最大值。 【解】a^2=3,b^2=2,c^2=3-2=1→→c=1 ∴F1F2=2c=2 假设A在x上方,B在下方直线过(1,0) 设直线是x-1=m(y-0)x=my+1 代入 2x^2+3y^2=6(2m^2+3)y^2+4my-4=0→→y1+y2=-4m/(2m^2+3),y1y2=-4/(2m^2+3) △F1AB=△F1F2A+△F1F2B 他们底边都是F1F2=2 则面积和最小就是高的和最小(即|y1|+|y2|最小[1]) ∵AB在x轴两侧,∴一正一负→→|y1|+|y2|=|y1-y2| (y1-y2)^2=(y1+y2)^2-4y1y2=16m^2/(2m^2+3)2+16/(2m^2+3) →→|y1-y2|=4√[m2+(2m2+3)]/(2m2+3)=4√3*√(m2+1)]/(2m2+3) 令√(m^2+1)=p^2m^2+3=2p^2+1且p>=1则p/(2p^2+1)=1/(2p+1/p) (分母是对勾函数) ∴p=√(1/2)=√2/2时最小这里p>=1→→p=1,2p+1/p最小=3 此时p/(2p2+1)最大=1/3→→|y1-y2|最大=4√3*1/3∴最大值=2*4√3/3÷2=4√3/3 在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫做焦点三角形,类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形.在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特征,蕴涵着椭圆很多几何性质,在全国各地的高考模拟试卷及高考试题中,都曾出现过以“顶焦点三角形”为载体的问题.本文对椭圆的顶焦点三角形的性质加以归纳与剖析.

专题:椭圆的焦点三角形

椭圆的焦点三角形 一 知识梳理 定义:椭圆(双曲线)上一点和两焦点组成的三角形叫焦点三角形;有一个角为直角的焦点 三角形叫焦点直角三角形。 性质一:该三角形一边长为焦距,另两边的和为定值。所以周长为定值2a+2c 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan 221θb S PF F =?. 证明:记2211||,||r PF r PF ==, 由椭圆的第一定义得.4)(,22 22121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得: 2(cos 2212221c r r r r =-+θ配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2cos 22cos 2sin 2cos 1sin sin 2122 222121θθθ θθθθ?=?=+?==?b b b r r S PF F . .2tan 221θ b S PF F =∴? 性质三:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.2112cos 222 e a b -=-≥θ并且点P 在y 轴上是张角最大。 证明:设,,2211r PF r PF ==则在21PF F ?中,由余弦定理得: 1244242)(2cos 212 221221221212 212221--=--+=-+=r r c a r r c r r r r r r F F r r θ

椭圆中焦点三角形的性质(含答案)

专题1:椭圆中焦点三角形的性质及应用 性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a b 2 2 证明: 性质二:已知椭圆方程为 ),0(122 22 >>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?. 证明: 性质三:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ 例1. 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F , 求△21PF F 的面积. 例2.已知P 是椭圆 19 252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点, 2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D. 3 3 例3.已知椭圆 19 162 2=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A. 59 B. 779 C. 49 D. 49或7 79 例 4. 已知1F 、2F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,椭圆上一点P 使 ?=∠9021PF F ,求椭圆离心率e 的取值范围。

练习题: 1. 椭圆124 492 2=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( ) A. 20 B. 22 C. 28 D. 24 2. 椭圆14 22 =+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ?的值为( ) A. 0 B. 1 C. 3 D. 6 3. 椭圆14 22 =+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积 最大时,21PF PF ?的值为( ) A. 0 B. 2 C. 4 D. 2- 4.已知椭圆1222 =+y a x (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点, 且?=∠6021PF F ,则||||21PF PF ?的值为( ) A .1 B .3 1 C . 3 4 D . 3 2 5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上, 直线1PF 与2PF 倾斜角的差为?90,△21PF F 的面积是20,离心率为3 5, 求椭圆的标准方程. 专题2:离心率求法: 1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( ) A.22 B.32 C.53 D.63 2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15 3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________. 4.已知A 为椭圆x 2a 2+y 2 b 2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1, 求该椭圆的离心率. 5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点 的横坐标,其纵坐标等于短半轴长的2 3,求椭圆的离心率.

椭圆双曲线焦点三角形问题

椭圆、双曲线的焦点三角形问题 一、有关面积的问题,方法:面积公式、余弦定理 2 2 例1.如图,F2分别是椭圆C: a + 1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,/ F!AF2 = 60°. (1)求椭圆C的离心率;A ⑵已知△ AF1B的面积为40W,求a, b的值. 解(1)由题意可知,△ AF1F2为等边三角形,a= 2c, 1 所以e= * y=- 3(x —c). 将其代入椭圆方程3x2+ 4y2= 12c2,得B g,—j 所以|AB| = yj1 + 3 ? 5c —0 =喘. 由S△ AF I B = ^AF i llA BI sin/ F1AB =寺寮宁=^^孑二40.3,解得a= 10,b= 5 , 3. 方法二设|AB| = t.因为|AF2|= a,所以|BF2|= t— a. 由椭圆定义|BF11+ |BF2|= 2a 可知,|BF1|= 3a—t, 8 再由余弦定理(3a —t)2= a2+ t2—2atcos 60 可得,t = 8a 5 由S △ AF1B = 1a fa 于=253a2= 40 .3知, a= 10,b = 5"』3. 例2如图2,已知双曲线的中心在坐标原点,焦点在x轴上,F2分别为左、右焦点,双 曲线的右支上有一点P,/ F j PF2,且△ PF| F2的面积为2 3,双曲线的离心率 3 为2,求该双曲线的方程. 2 2 解析:设双曲线的方程为令- 1(a 0, b 0) , F1( -c, 0), F2 (c, 0), a b P(x0, y0).在^ PF1F2中,由余弦定理,得 2 2 \ 2 乂 2 - IF1F2I2=|PF『-1PF212-2| PF11 ?|PF2| ? cos (IPF1L IPF2I) |PF1| TPF2I, 3

椭圆中焦点三角形的拓展结论

专题:椭圆中焦点三角形的性质及应用 前言:焦点三角形,又称“魅力三角形”,其定义为:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。与焦点三角形的有关问题主要是:考查椭圆定义、三角形中的正(余)弦定理、内角和定理、面积公式等知识点. 性质一:(面积公式)已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设 焦点三角形21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?.(由《名师》P35品味12引出) 专题训练: 1. 已知(3,4)P 为椭圆)0(122 22>>=+b a b y a x 上的一点, 12,F F 为焦点,若12F P PF ⊥,求 12F PF ?的面积 .(20) 2. 若P 为椭圆22143x y +=上的一点,12,F F 为左右焦点,若123 F PF π ∠=,求点P 到x 轴 的距离性质二:(顶角最大)已知椭圆方程为),0(122 22>>=+b a b y a x 左右两焦点分别为 ,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点. 1. 点P 在椭圆14 22 =+y x 上, 12,F F 为焦点,则12F PF ∠的取值范围 .( 20,3π?? ???? ) 2. 若P 在椭圆 22 21(50)25x y b b +=>>上的一点,12,F F 为左右焦点,若12F PF ∠的最大值为2 π ,则椭圆的方程为 . ( 22212525x y +=) 拓展结论:已知P 是椭圆22 221(0)x y a b a b +=>>上的一点, 12,F F 为椭圆的两焦点. (1) 当c b >时,椭圆上存在4个点,使得1290F PF ? ∠=1e <<; (2) 当c b =时,椭圆上存在2个点,使得1290F PF ? ∠=,且2 e = ;

椭圆的焦点三角形及其最值问题

新青蓝教师授课表 学生姓名 学校年级 高二 辅导科目 数学 辅导老师 蒋老师 上课日期 2012.10.21 上次课作业完成情况: 教学目标: 1.熟练掌握椭圆的离心率; 2.椭圆的焦点三角形; 3.椭圆的最大角问题; 4.椭圆中的最值问题。 教学重难点: 椭圆的焦点三角形; 最值问题以及离心率的应用。 教学流程:(教案要书写规范,一课一备,300字左右;必须做到:有针对性、完整和详细。) 一、 课后作业讲评。 二、 椭圆的离心率 例1 (1)若焦点在x 轴的椭圆2212x y m +=的离心率为12 ,则m 的值为_________. (2)已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB 的距离等于7 b ,则椭圆的离心率为 ( ) A. 777- B. 777 + C. 12 D. 45 三、焦点三角形 例2(1)过116 252 2=+y x 的右焦点2F 的直线交椭圆于A 、B 两点,1F 为左焦点,则B AF 1?的周长为 。 (2)设点P 是椭圆22 12516 x y +=上的一点,12,F F 是焦点,且1290F PF ∠= ,则12F PF ?的面积为______ (3)设点P 是椭圆22 12516 x y +=上的一点,12,F F 是焦点,且1230F PF ∠= ,则12F PF ?的面积为______ 四、椭圆中的最值问题 例3(1)在椭圆14 y 82 2=+x 上求一点P ,使它到定点()0,1Q 的距离最大 (2)已知点(),P x y 在椭圆2221x y +=上,则22x y +的最小值是___________ (3)若点O 和点F 分别为椭圆22 y 143 x +=的中心和左焦点,点P 为椭圆上任一点,求OP FP 的最大值。 五、最大角问题(两个最大角) ()()1212max max ;F PF F BF APA ABA ''∠=∠∠=∠ 其中P 为椭圆上任意一点

相关文档
最新文档