液晶电光效应实验数据

液晶电光效应实验数据
液晶电光效应实验数据

液晶电光效应实验数据表1 水平方向液晶电光效应

图1 水平方向液晶电光效应曲线

表2 垂直方向液晶电光效应

图2 垂直方向液晶电光效应曲线

图3 水平和垂直方向液晶电光效应曲线

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

液晶电光效应实验报告

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理,这样,液晶分子在透明电极表面就会

躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度定变化。 2.液晶光开关的电光特性 对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。 3.液晶光开关的时间响应特性 加上驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果

光电效应实验报告

用光电效应测普朗克常数 【实验简介】 光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 普朗克常数记为h,是一个物理常数,用以描述量子大小,约为62619 .6。在量子力学中占有重要的角色,马克斯?普朗克在1900年研10 ?-34 s J? 究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于,为辐射电磁波的频率。普朗克常数是自然科学中一个很重要的常量,它可以用光电效应简单而又准确地测量。 【实验目的】 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 【实验仪器】 GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。实验主机为:GD-4型光电效应(普朗克常数)实验仪,该仪器包含有微电流放大器和扫描电压源发生器两部分组成的整体仪器。

【实验原理】 1、普朗克常数的测定 根据爱因斯坦的光电效应方程: P s E hv W =- (1) (其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。)s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =)。实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即: s P eU E = (2) 这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式,得: 0s h U v v e =-() (3) (其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。若电子电荷e 已知,由斜率h k e = 可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求出截止频率0v 。如图(2)所示。 2、测量光电管的伏安特性曲线 在照射光的强度一定的情况下,光电管中的电流I 与光电管两端的电压AK U 之间存在着一定的关系。 理想曲线与实验曲线有所不同,原因有: ①光电管的阴极采用逸出电势低的材料制 成,这种材料即使在高真空中也有易氧化的趋向,使阴极表面各处的逸出电势不尽相等,同时,逸出具有最大动能的光电子数目大为减少。随着反向电压的增高, 光电流不是陡然截止,而是较快降低后平缓的趋近零点。

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

液晶电光效应实验(中国石油大学实验数据)

【数据处理】 表1 水平方向电压-透射率数据表 由上表数据画出液晶开关的电光特征曲线如下图:

由上图截取90%和10%分别得到可知液晶的阈值电压为1.00V,关断电压为1.51V 由上表数据画出液晶开关的电光特征曲线如下图:

由上图可知截取90%和10%分别得到阈值电压为0.94V,关断电压为1.44V。 图像分析: 水平方向和垂直方向图像基本走向是相同的,在0.00v~0.90v之间基本保持不变,在0.90v~1.8v之间变化很快,最后达到2.0v后基本不变达到饱和状态,透射率变为0。 但是我们可以从图像中看出,两种方法放置时他们的阀值电压和关断电压都略有区别,我们可以看出水平放置时阀值电压和关断电压都大于垂直放置的,饱和电压也有一定的区别。 2.根据光开关电光响应曲线得出液晶上升时间Δt1和下降时间Δt2。 由数字示波器得出上升时间和下降时间分别为50.0ms和

31ms。 【思考与讨论】 1.试说明液晶光开关的工作原理。 答:如图所示,在未施加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时期偏振面旋转了90度。这时光偏振面与P2的透光轴平行,因而有光通过。 再施加足够的电压情况下(一般1~2V),在静电场的吸引下除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列,于是,原来的扭曲结构被破坏,成了均匀结构,如图右图所示。从P1透射出来的偏振光的偏振方向在液晶传播时不再旋转,保持原来的偏振方向传播下去,到达下一个电极,这时光的偏振方向与P2正交,因而光被关断。 2.如何调节激光接收装置,使得准直激光垂直入射到液晶屏上?答:检查在静态0v供电电压条件下,透过率显示是否为100%。和未放屏幕时

光电效应教案

第二节光的粒子性 一、教学目标 1.应该掌握的知识方面. (1)光电效应现象具有哪些规律. (2)人们研究光电效应现象的目的性. (3)爱因斯坦的光子说对光电效应现象的解释. 2.培养学生分析实验现象,推理和判断的能力方面. (1)观察用紫外线灯照射锌板的实验,分析现象产生的原因. (2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论. 3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育. 二、重点、难点分析 1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点. 2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比. 三、教具 锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪. 四、主要教学过程 (一)新课的引入 光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象. (二)教学过程的设计 1.演示实验. 将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板. 边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子. 说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开. 2.进一步研究光电效应. 以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究. 向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C 是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.

(整理)光电效应实验86125

第1章仪器介绍 LB-PH3A光电效应(普朗克常数)实验仪由汞灯及电源、光阑与滤色片、光电管、测试仪(含光电管电源和微电流放大器)构成,实验仪结构如图1所示,测试仪的调节面板如图2所示。 汞灯刻度尺光阑与滤色片光电管 图1 实验仪结构图 图2 测试仪前面板图 LB-PH3A光电效应(普朗克常数)实验仪有以下特点: 1.在微电流测量中采用高精度集成电路构成电流放大器。对测量回路而言,放大器近似于理想电流表,对测量回路无影响。精心设计、精心选择元器件、精心制作,使电流放大器达到高灵敏度、高稳定性,使测量准确度大大提高。 2.采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流水平也很低。 3.设计制作了一组高性能的滤色片。保证了在测量一组谱线时无其余谱线的干扰,避免了谱线相互干扰带来的测量误差。 4.由于仪器的稳定性好且无谱线间的相互干扰,测出的I - U特性曲线平滑、重复性好。

5.通过改变实验仪的电压档位的方式,利用光电效应测量普朗克常数、光电管伏—安特性以及验证饱和光电流与入射光强成正比等实验。 6.本仪器可用三种不同方法测量普朗克常数(拐点法、零电流法、补偿法),因此有较好的可比性。 7.采用上述测量方法,不但使得U0测量快速、重复性好,而且据此计算出的h误差不大于3 %。 其技术参数如下: 1.微电流放大器: 电流测量范围:10-7 ~ 10-13 A,分6档,三位半数字显示 零漂:开机20分钟后,30分钟内不大于满读数的± 0. 2 %(10-13 A档) 2.光电管工作电源: 电压调节范围:-2 ~ +2 V,-2 ~ +20 V,分两档,三位半数字显示 不稳定度≤0. 1 % 3.光电管: 光谱响应范围:340 ~ 700 nm 最小阴极灵敏度≥1 μA(-2 V≤U AK≤0 V) 阳极:镍圈 暗电流I ≤5 × 10-12 A(-2 V≤U AK≤0 V) 4.滤光片组: 5组,中心波长为:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 5.汞灯: 可用谱线:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 6.测量误差≤3 % 第2章实验目的与原理 光电效应是,一定频率的光照射在金属表面时,会有电子从金属表面逸出的现象。在光电效应中,光显示出它的粒子性,这种现象对于认识光的本质,具有极其重要的意义。 1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。由于这些规律用经典的电磁理论无法圆满地进行解释,爱因斯坦于1905年应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部规律。十年后,密立根用实验证实了爱因斯坦的光量子理论,精确地测定了普朗克常数。两位物理大师因在光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。利用光电效应制成了许多光电器件,在科学和技术上得到了极其广泛的应用。

光电效应实验报告

1,实验目的: 1.了解光电效应的基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 2.通过对五种不同频率的反向截止电压的测定,由 直线图形,求出“红限”频率。

实验原理图1 光电管的起始I—V特性2

2,实验要求: 1.学习测定普朗克常量的一种实验方法; 2.学习用滤色片获得单色光的方法; 3.学习用实验研究验证理论的方法,加深光电效应对光量子理论的理解 3,实验原理 1.光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸

出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中, 为普朗克常数,它的公认值是 =6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中, 为入射光的频率, 为电子的质量, 为光电子逸出金属表面的初速度, 为被光线照射的金属材料的逸出功, 为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 被称为光电效应的截止电压。 显然,有 (2)

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

液晶电光效应实验

液晶电光效应实验 一、实验目的 1、了解液晶的特性和基本工作原理; 2、掌握一些特性的常用测试方法; 3、了解液晶的应用和局限。 二、实验原理: 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。 由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。根据液晶分子的结构特点。我们假定液晶分子没有固定的电极。但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。 这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90o,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图5;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。 以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。而对于这两个状态之间的中间状态。我们还没有一个清晰的认识,其实在这个中间状态,有着极其丰富多彩的光学现象。在实验中我们将会一一观察和分析。

实验08X射线光电子能谱演示实验报告(供参考)-

实验08X射线光电子能谱演示实验报告(供参考)- 实验9 X射线光电子能谱演示实验报告 班 0911101学生编号1120112254姓名王佳妮分数 1实验目的 通过X射线光电子能谱学(XPS,X射线光电子能谱学)理论、仪器工作原理、测试方法和简单图谱分析学习方法 2,实验内容 1。了解XPS设备的基本组成,XPS样品的制备;2.了解测试参数的设置和样品测试过程; 3。学习图谱分析方法:元素化学状态分析和元素定量分析 3,实验原理 已知光源MgK?激发光能EK=1253.6eV,光电子动能EK可以用XPS仪器测量,仪器的功函数?是一个常数,它是由XPS基本方程EK = h决定的。- EB?可以计算固体中电子的结合能EB元素的化学状态可以由它的结合能决定。 元素A的相对原子浓度CA(%)可由元素灵敏度因子法、元素光谱峰的强度I和相对灵敏度因子S按下式确定

4、实验步骤 请在演示实验中注意观察、归纳和总结 5。实验结果和讨论 请按要求处理测试数据,并以表格形式列出。请参考下表 1 表1 ****样品表面元素XPS测试数据 元素C1s 峰结合能/eV 285.4 光谱峰强度/CPS 6890 原子百分比浓度/% 为什么XPS表面分析需要超高真空?如果 的真空度不高,发射的电子会与空气分子碰撞,电子的能量会减少,作用在待分析样品表面的能量也会减少,从而影响实验结果。2.哪些表面性质可以2。表面分析应用于? 表面元素的组成、元素的价态及其在表层的分布 3。请理解XPS仪器两个重要性能指标的灵敏度、分辨率和相关性

灵敏度高,但分辨率低,扫描电压较高。相反,扫描电压低,灵敏度低,但分辨率高。 2 表1 3

3晶体的电光效应与电光调制_实验报告

晶体的电光效应与光电调制 实验目的: 1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。 实验仪器: 1) 晶体电光调制电源 2) 调制器 3) 接收放大器 实验原理简述: 某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制 如图 入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为 wt A e x cos 0'=wt A e y cos 0'= 用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0('A E y =)0(' 所以入射光的强度为22 '2 '2)0()0(A E E E E I y x i =+=?∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差A l E x =)('δi y Ae l E -=)(' 通过检偏器出射的光,是这两个分量在y 轴上的投影之和

() 12 45cos )()('0-= ?=-δ δi i y y e A e l E E 其对应的输出光强I t 可写为()()[] 2 sin 2*2200δ A E E I y y t =?∝ 由以上可知光强透过率为2 sin 2δ==i t I I T 相位差的表达式()d l V r n l n n y x 223 0'' 22λ π λ π δ= -= 当相位差为π时?? ? ??= l d r n V n 223 02λ 由以上各式可将透过率改写为()wt V V V V V T m sin 2sin 2sin 02 2 +==π π π π可以看出改变V0或 Vm ,输出特性将相应变化。 1) 改变直流电压对输出特性的影响 把V0=Vπ/2带入上式可得 ()?? ???? ???? ??+=+==wt V V wt V V V V V T m m sin sin 121sin 2sin 2sin 02 2 πππππ π 做近似计算得?? ???????? ??+≈ wt V V T m sin 121ππ 即T ∝Vmsinwt 时,调制器的输出波形和调制信号的波形频率相同,即线性调制 如果Vm >Vπ,不满足小信号调制的要求,所以不能近似计算,此时展开为贝塞尔函数,即输出的光束中除了包含交流信号的基波外,还有含有奇次谐波。由于调制信号幅度比较大,奇次波不能忽略,这时,虽然工作点在线性区域,但输出波形依然会失真。

液晶电光效应实验实验报告

液晶电光效应实验实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1 透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。 2.液晶光开关的电光特性

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

光电效应综合演示仪

光电效应综合演示仪 常州市第一中学卜方沈丽华 一、“光电效应”简介: 光电效应是指照射到金属表面的光,能使金属中的电子从表面逸出的现象。这种现象是1887年赫兹研究电磁波时发现的,1905年爱因斯坦提出“光子说”,并用光电效应方程成功解释了这一实验现象。而后,美国物理学家密立根用实验证实了爱因斯坦的光电子理论,并测定了普朗克常量。爱因斯坦与密立根都因光电效应方面的杰出贡献分别获得1921年和1923年的诺贝尔物理学奖。 光子像其他粒子一样,也具有能量。光电效应显示了光的粒子性,这对光的本性来说意义重大。 如今光电效应已经广泛地应用于各个科技领域。如利用光电效应制成的光电管、光电池、光电倍增管等光电转换器件,把光学量转换成电学量来测量,已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 二、自制“光电效应综合演示仪”介绍:

1、利用该仪器演示光电效应的产生: 这是一个光电管,阴极K和阳极A是密封在真空玻璃管中的两个电极。把阴极K和阳极A分别与微安表的正负接线柱相连,构成如图1所示的回路。用一束白光照射阴极K,发现微安表的指针发生偏转,这说明K在受到光照时能够发射光电子,这个现象称为光电效应,回路中的电流称为光电流。 原理图 实物图 图1

2、利用分压电路进一步研究光电效应实验规律: 2 图 如图2所示是分压式电路,K与A之间电压的大小可以调整,电源的正负极也可以对调。 (1)当电源按图示极性连接时,阳极A吸收阴极K发出的光电子,在电路中形成光电流。在光照条件不变的情况下,随着所加电压的增大,光电流趋于一个饱和值。这说明,在一定的光照条件下,单位时间内阴极K发射的光电子的数目是一定的,电压增加到一定值时,所有光电子都被阳极A吸收,这时即使再增 大电压,电流也不会增大。即存在着饱和电流。

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

液晶电光效应实验

液晶电光效应综合实验 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转、双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。 1888年,奥地利科学家赖因策(F.Reinitzer)在布拉格植物生理研究所做实验时,发现他加热的化合物熔化后先变成了白浊液体,并且闪现某些颜色,继续加热后变成透明液体。于是他又对化合物进行降温后,重复实验,依然看到上述现象。赖因策没有像其他人那样将这种特有的现象简单看作是材料不纯造成的,而是更精心地制备材料,对颜色的起因进行探究。1888年3月14日,赖因策将样品寄给德国的年轻结晶学家雷曼(O.Lehmann),并附上一封长信。雷曼经过系统研究,发现有许多有机化合物都具有同样的性质,这些化合物在混浊状态,其力学性质与液体相似,具有流动性,而其光学性质与晶体相似,具有各向异性,故取名为液晶(liquid crystal) 1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.根据液晶的电光效应特性,可制成光开关器件。在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过

相关文档
最新文档