80C51单片机存储器的扩展

80C51单片机存储器的扩展
80C51单片机存储器的扩展

程设计任务书

机械工程学院学院机制1211 班学生张会利-39号

课程设计题目:

单片ROM扩展

一、课程设计工作日自 2015 年 1 月 19 日至 2015 年 2 月 23 日

二、同组学生:张会利

三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资

料等):

1、目的及意义

(1)巩固和深化《单片机原理及应用》课程的理论知识,培养,分析、解决实际问题的能力。(2)掌握单片机基本运用技术及汇编语言的基本方法,能根据题目要求确定设计思路、绘制流程图、编制并调试汇编语言程序,得出结果。

2、主要内容

用一片Intel2732为80C51单片机扩展一个4KB的外部程序存储器,要求使用73LS138译码器,地址范围为A000H~AFFFH。请连线并写明扩展步骤。

3、基本要求

(1)分析题目,写出详细分析过程。

(2)绘制工作流程图。

(3)编制程序,画出硬件线路图。

(4)上机调试程序,运行结果。

(5)编写设计说明书,包括1—4个步骤的内容。

(6)答辩。

4、主要参考资料

单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年指导教师签字:教研室主任签字:

程序设计说明书

(一)芯片简介

1.2732简介:

2732是容量为4k×8位(4KB)。采用单一+5V供电,最大静态工作电流100mA, 电流35mA出时间最大为250ns. 2732的封装形式为DIP24,管脚如图所示。

●A0~A11 :12条地址线,表示有212个地址单元

●O0~O7 :8条数据线,表示地址单元字长8位

●CE :片选控制输入端,低电平有效

●OE/Vpp :双功能管脚,低电平时,允许2732输出数据

●Vcc :工作电平+5V

●GND :芯片接地端

2.74LS373简介:

74LS373是带三态缓冲输出的8D锁存器,由于单片机的三片总线结构中,数据线与地址线的低8位公用P0口,因此必须用地址所存器将地址信号和数据信号区分开。74L373的锁存控制端G直接与单片机的锁存控制信号和数据信号ALE相连,在AEL的下降沿锁存低8位地址。

3.74LS138简介:

74LS138有3个“选择输入端”C.B.A.它可以选择8个输出线Y0—Y7,当C.B.A 的信号组合选择到某个输出线时,这个输出线有效,即输出为低电平,74LS138还有3个“使能输入端”(又称为“允许端或控制端”)G1. G2A.G2B, 当其有效时,即G1。G2A=0. G2B=0时译码器才能工作。

(二)程序说明

1)芯片的选择及确定片数

根据题目容量要求扩展4KB的外部程序存储器。选择一片Intel2732芯片。74LS138译码器。

2)分配地址范围。

采用一片2732芯片扩展80C51的片外程序存储空间,分配的地址范围为A000H~AFFFH,如表1表示采用完全译码芯片选择。即所在地址线全部连接,所以每一个单元只占用唯一一个地址,不存在地址重复问题。

3)连线说明如下:

(1)地址线:单片机扩展片外存储器时,按照分配地址范围连线图所示:地址是由P0和P2口提供的,2732的12条地址线(A0—A11)中。低八位A0~A7通过所存器74LS373与P0口连接,高4位A8—A11直接与P2.0—P2.3连接,P2口本身有所存功能。注意,锁存器的所存使能端G必须和单片机的ALE管脚相连。

(2)数据线:2732的8位数据线直接与单片机的P0口相连,因此,P0口使一个分时复用的地址数据线。

(3)控制线:CPU执行2732中存放的程序指令时,取指令阶段就是对2732进行操作。注意,CPU对EPROM只能进行读操作,不能进行写操作。CPU对2732的读操作控制都是通过控制线实现的。

2732控制线的连接有以下几条:

CE:Intel2732的片选信号由3-8译码器产生,

OE:接80C51的读选通信号PSEN端,在访问片外程序存储器时,只要PSEN 端出现负脉冲,即可从2732中读出程序。

2732的片选信号由3—8译码器产生。80C51的P2口的高四位线与3-8译码器片选端连线如下:

P2.7:G1

P2.6:A P2.5:B P2.4:C

Y2:2732的CE

3/8译码器的功能真值表。G1=1 G2A=0 G2B=0,当选中,P2.4=0 P2.5=1 P2.6=0 P2.7=1时,符合所分配的地址范围。

注意,80C51中在扩展并使用外部程序存储器时,必须使EA接地。

(4)存储器扩展连接图如图所示:

两片2732的扩展连接图

一片2732扩展后地址范围

外部程序存储器扩展小结

通过一周的程序设计的练习,我们巩固和深化《单片机原理及应用》课程的理论知识,分析,解决实际问题的能力。初步掌握了外部程序扩展设计的思路和方法,了解了73LS138译码器和2732锁存器的使用,掌握了如何设计电路原理图,最重要是提高了我们的动手操作能力。

80C51单片机存储器的扩展

程设计任务书 机械工程学院学院机制1211 班学生张会利-39号 课程设计题目: 单片ROM扩展 一、课程设计工作日自 2015 年 1 月 19 日至 2015 年 2 月 23 日 二、同组学生:张会利 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资 料等): 1、目的及意义 (1)巩固和深化《单片机原理及应用》课程的理论知识,培养,分析、解决实际问题的能力。(2)掌握单片机基本运用技术及汇编语言的基本方法,能根据题目要求确定设计思路、绘制流程图、编制并调试汇编语言程序,得出结果。 2、主要内容 用一片Intel2732为80C51单片机扩展一个4KB的外部程序存储器,要求使用73LS138译码器,地址范围为A000H~AFFFH。请连线并写明扩展步骤。 3、基本要求 (1)分析题目,写出详细分析过程。 (2)绘制工作流程图。 (3)编制程序,画出硬件线路图。 (4)上机调试程序,运行结果。 (5)编写设计说明书,包括1—4个步骤的内容。 (6)答辩。 4、主要参考资料 单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年指导教师签字:教研室主任签字:

程序设计说明书 (一)芯片简介 1.2732简介: 2732是容量为4k×8位(4KB)。采用单一+5V供电,最大静态工作电流100mA, 电流35mA出时间最大为250ns. 2732的封装形式为DIP24,管脚如图所示。 ●A0~A11 :12条地址线,表示有212个地址单元 ●O0~O7 :8条数据线,表示地址单元字长8位 ●CE :片选控制输入端,低电平有效 ●OE/Vpp :双功能管脚,低电平时,允许2732输出数据 ●Vcc :工作电平+5V ●GND :芯片接地端 2.74LS373简介: 74LS373是带三态缓冲输出的8D锁存器,由于单片机的三片总线结构中,数据线与地址线的低8位公用P0口,因此必须用地址所存器将地址信号和数据信号区分开。74L373的锁存控制端G直接与单片机的锁存控制信号和数据信号ALE相连,在AEL的下降沿锁存低8位地址。

-单片机的并行扩展技术

第六章单片机的并行扩展技术 6·1 什么是并行外围扩展? 并行外围扩展有哪两种方式?这两种方式本质上的区别是什么? 答:(1)并行外围扩展 单片机的并行外围扩展是指单片机与外围扩展单元采用并行接口的连接方式,数据传输为并行传送方式。并行扩展体现在扩展接口数据传输的并行性。 (2)并行外围扩展的方式 并行外围扩展方式有两种I/O方式与总线方式。题图6-1是80C5l两种并行外围扩展接口示意图。图中的并行口数据宽度为8位。 ①并行I/O口方式: I/O口并行扩展由I/O口完成与外围功能单元的并行数据传送任务,单片机与外围功能单元数据传送过程中的握手交互也由I/O口来完成的。 ②并行总线方式:并行扩展采用三总线方式,即数据传送由数据总线DB完成;外围功能单元寻址由地址总线AB完成;控制总线CB则完成数据传输过程中的传输控制,如读、写操作等。 (3)两种方式本质上的区别 两种并行外围扩展方式本质上的区别列于题表6-1中。 6·2 单片抗应用系统中有哪几种键盘类型?为什么这些键盘都是通过I/O 口扩展? 答: (1)单片机应用系统中的键盘类型 与通用计算机键盘相比,单片机应用系统中的键盘种类很多,键盘中按键数量的设置依系统操作要求而定。一般说来,单片机应用系统中键盘有独立式和行列式两种,如题图6-2 所示。

题图6-2 ①独立式键盘: 独立式键盘中,每个按键占用一根I/O口线,每个按键电路相对独立如题图6-2(a)所示。I/O口通过按键与地相连。I/O口有上拉电阻,无键按下时,引脚端为高电平;有键按下时,引脚端电平被拉低。1/0端口有内部上拉电阻时,外部可不接上拉电阻。 ②行列式键盘: 行列式键盘采用行列电路结构。行列交点处通过按键相连,列线为输出口,行线为输人口,如题图6-2(b)所示。列线口输出全零电平时,若没有键按下则行线引脚上全部为高电平"1"状态;若有任何一个按键按下则行线引脚上为非全"1"状态;在有键按下后,通过列线逐个送"0",然后逐行检查哪根行线为"0"状态,即可查出是哪个键按下。 (2)键盘通过I/O口扩展 键盘所采用的I/O口并行扩展电路都是外设接口的典型电路。这类接口只有操作原理 时序,没有器件的时序协议,故而都适宜于通过I/O口扩展。 6·3 请叙述行列式键盘的工作原理。中断方式与查询方式的键盘其硬件和软件有何不同? 答: (1)行列式键盘的工作原理 行列式键盘采用行列电路结构。行列交点处通过按键相连,列线为输出口,行线为输入口,如题图6-2(b)申所示。 其工作原理是:列线口输出全零电平时,若没有键按下则行线引脚上全部为高电平"1"状态,若有任何一个按键按下则行线引脚上为非全"1"状态;在有键按下后,通过列线逐个送"0",然后逐行检查哪根行线为"0"状态,即可查出是哪个键按下。 (2)中断方式与查询方式的键盘的区别 单片机对键盘的操作方式可分为查询方式和中断方式。题图6 - 2中为查询方式键盘的接口电路; 题图6-3所示为中断方式键盘的接口电路。 在查询方式中,单片机要不断查询键盘中有无键按下。中断方式下单片机不必查询键盘情况,只需开放键盘中断请求。当有键按下时,会请求中断,在中断服务程序中再检查是哪个键按下。

51单片机大容量数据存储器的扩展

郑州航空工业管理学院 《单片机原理与应用》 课程设计说明书 10 级自动化专业 1006112 班级 题目51单片机大容量数据存储器的系统扩展姓名杨向龙学号100611234 指导教师王义琴职称讲师 二О一三年六月十日

目录 一、51单片机大容量数据存储器的系统扩展的基本原理 (4) 二、设计方案 (4) 三、硬件的设计 (5) 3.1 系统的硬件构成及功能 (5) 3.2硬件的系统组成 (5) 3.2.1、W241024A (5) 3.2.2、CPLD的功能实现 (5) 3.2.3、AT89C52简介 (6) 3.2.4、SRAM的功能及其实现 (9) 3.3、基本单片机系统大容量数据存储器系统扩展 (9) 五、结论 (13) 六、参考资料 (13)

51单片机大容量数据存储器的系统扩展 摘要:在单片机构成的实际测控系统中,仅靠单片机内部资源是不行的,单片 机的最小系统也常常不能满足要求,因此,在单片机应用系统硬件设计中首先要解决系统扩展问题。51单片机有很强的外部扩功能, 传统的用IO口线直接控制大容量数据存储器的片选信号的扩展系统存在运行C51编译的程序时容易死机的缺点。文中介绍了一种改进的基于CPLD的51系列单片机大容量数据存储器的扩展方法,包括硬件组成和软件处理方法。 关键字:W241024A、CPLD、AT89C52、SRAM 一、51单片机大容量数据存储器的系统扩展的基本原理 MCS-51 单片机系统扩展时,一般使用P0 口作为地址低8位(与数据口分时复用),而P2口作为地址高8位,它共有16根地址总线,最大寻址空间为64KB。但在实际应用中,有一些特殊场合,例如,基于单片机的图像采集传输系统,程控交换机话单的存储等,需要有大于64KB 的数据存储器。 二、设计方案 在以往的扩展大容量数据存储器的设计中,一般是用单片机的IO口直接控制大容量数据存储器的片选信号来实现,但是这种设计在运行以C51编写的程序(以LARGE 方式编译)时往往会出现系统程序跑飞的问题,尤其是在程序访问大容量数据存储器(如FLASH)的同时系统产生异常(如中断),由于此时由IO 口控制的片选使FLASH 被选中而SRAM 无法被选中,堆栈处理和函数参数的传递无法实现从而导致程序跑飞的现象。文章介绍一种基于CPLD 的大容量数据存储器的扩展系统,避免了上述问题的产生,提高了扩展大容量数据存储器系统的可靠性。该系统MCU 采用89C52,译码逻辑的实现使用了一片EPM7128 CPLD 芯片,系统扩展了一片128K 的SRAM,一片4M 字节的NOR FLASH,以上芯片均为5V 供电。

第3章 单片机并行存储器扩展练习题

第3章单片机并行存储器扩展 (一)填空题 1.使用8KB×8位的RAM芯片,用译码法扩展64KB×8位的外部数据存储器,需要(8) 片存储芯片,共需使用(16 )条地址线,其中(13 )条用于存储单元选择,(3)条用于芯片选择。 2.三态缓冲器的三态分别是(低电平)、(高电平)和(高阻抗)。 3.80C51单片机系统整个存储空间由4部分组成,分别为(256 )个地址单元的内部(数 据)存储器,(4kb )个地址单元的内部(程序)存储器,(64kb)个地址单元的外部(数据)存储器,(60kb )个地址单元的外部(程序)存储器。 4.在80C51单片机系统中,为外扩展存储器准备了(16)条地址线,其中低位地址线由 (p0口)提供,高位地址线由(P2口)提供。 5.在80C51单片机系统中,存储器并行外扩展涉及的控制信号有(ALE)、(WR)、 (RD)、(PSEN)和(CE),其中用于分离低8位地址和数据的控制信号是(ALE),它的频率是晶振频率的(6)分之一。 6.起止地址为0000H ~ 3FFFH的外扩展存储器芯片的容量是(16KB)。若外扩展存 储器芯片的容量为2KB,起始地址为3000H,则终止地址应为(37FFH)。 7.与微型机相比,单片机必须具有足够容量的程序存储器是因为它没有(外存)。 8.在存储器扩展中,无论是线选法还是译码法,最终都是为扩展芯片的(片选)引脚端 提供信号。 9.由一片80C51和一片2716组成的单片机最小系统。若2716片选信号CE接地,则该存 储芯片连接共需(11)条地址线。除数据线外,系统中连接的信号线只有(PSEN)和(ALE)。 (二)单项选择题 1. 下列有关单片机程序存储器的论述中,错误的是(D) (A)用户程序保存在程序存储器中 (B)断电后程序存储器仍能保存程序 (C)对于程序存储器只使用MOVC一种指令 (D)执行程序需要使用MOVC指令从程序存储器中逐条读出指令 2. 下列有关单片机数据存储器的论述中,错误的是(A)

51单片机基础知识及期末复习

51单片机简答题部分(经典) 1、什么叫堆栈? 答:堆栈是在片内RAM中专门开辟出来的一个区域,数据的存取是以"后进先出"的结构方式处理的。实质上,堆栈就是一个按照"后进先出"原则组织的一段内存区域。 2、进位和溢出? 答:两数运算的结果若没有超出字长的表示范围,则由此产生的进位是自然进位;若两数的运算结果超出了字长的表示范围(即结果不合理),则称为溢出。 3、在单片机中,片内ROM的配置有几种形式?各有什么特点? 答:单片机片内程序存储器的配置形式主要有以下几种形式:(1)掩膜(Msak)ROM型单片机:内部具有工厂掩膜编程的ROM,ROM中的程序只能由单片机制造厂家用掩膜工艺固 化,用户不能修改ROM中的程序。掩膜ROM单片机适合于 大批量生产的产品。用户可委托芯片生产厂家采用掩膜方法 将程序制作在芯片的ROM。 (2)EPROM型单片机:内部具有紫外线可擦除电可编程的只读存储器,用户可以自行将程序写入到芯片内部的EPROM 中,也可以将EPROM中的信息全部擦除。擦去信息的芯片 还可以再次写入新的程序,允许反复改写。 (3)无ROM型单片机:内部没有程序存储器,它必须连接程序存储器才能组成完整的应用系统。 无ROM型单片机价格低廉,用户可根据程序的大小来选择外接 程序存储器的容量。这种单片机扩展灵活,但系统结构较复 杂。 (4)E2ROM型单片机:内部具有电可擦除叫可编程的程序存储器,使用更为方便。该类型目前比较常用 (5)OTP(One Time Programmable)ROM单片机:内部具有一次可编程的程序存储器,用户可以在编程器上将程序写入片内程 序存储器中,程序写入后不能再改写。这种芯片的价格也较 低。 4、什么是单片机的机器周期、状态周期、振荡周期和指令周期?它们之间是什么关系? 答:某条指令的执行周期由若干个机器周期(简称M周期)构成,一个机器周期包含6个状态周期(又称时钟周期,简称S周期),而一个状态周期又包含两个振荡周期(P1和P2,简称P周期)。也就是说,指令执行周期有长有短,但一个机器周期恒等于6个状态周期或12个振荡周

MCS-51单片机存储器结构

MCS-51单片机在物理结构上有四个存储空间: 1、片内程序存储器 2、片外程序存储器 3、片内数据存储器 4、片外数据存储器 但在逻辑上,即从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令(具体我们在后面的指令系统学习时将会讲解),以产生不同的存储器空间的选通信号。 程序内存ROM 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM;EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口

0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 内部数据存储器RAM 物理上分为两大区:00H ~ 7FH即128B内RAM 和SFR区。 作用:作数据缓冲器用。 下图是8051单片机存储器的空间结构图 程序存储器 一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设

计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的端必须接地。强制CPU从外部程序存储器读取程序。对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。

51单片机外部存储器的使用

纠结了这么久,现在总算有点儿头绪了,先把它整理到这里先,有几点还是j经常被弄糊涂:地址和数据,地址/数据复用,地址的计算,总线的概念,执行指令跟脉冲的关系,哎呀呀,看来计算机组成和原理不看不行啊,得找个时间瞧瞧,过把瘾了解了解。。。 使用ALE信号作为低8位地址的锁存控制信号。以PSEN信号作为扩展程序存储器的读选通信号,在读外部ROM是PSEN是低电平有效,以实现对ROM 的读操作。 由RD和WR信号作为扩展数据存储器和I/O口的读选通、写选通信号。 ALE/PROG: 当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。 在FLASH编程期间,此引脚用于输入编程脉冲。 在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 当访问外部存储器时,ALE作为锁存扩展地址的低8位字节的控制信号。 当访问外部数据存储器时,ALE以十二分之一振荡频率输出正脉冲,同时这个引脚也是EPROM编程时的编程脉冲输入端。] 当非访问外部数据存储器时,ALE以六分之一振荡频率固定输出正脉冲,8051一个机器周期=6个状态周期=12个振荡周期,若采用6MHz的晶体振荡器,则ALE会发出1MHz的固定的正脉冲。因此它可以用来做外部时钟或定时。如果我们把这个功能应用与实际,可能给我们的设计带来简化,降低生产成本。 ALE脚是在使用MOVX、MOVC指令时才会变成有效(这些指令都使用到外部RAM或ROM 的地址。这些指令都有一个特点:地址和数据分时出现在P0口)。使用C写程序时,要使用它有效,可用访问内部RAM地址的方法。如:uVariable=*((char *)0x12C),把0x12C地址的内容给uVariable变量。这个过程有效的脚为ALE、RD。 这个信号线的信号生成是MCU硬件电路实现的,不可以人工控制。 在某些内置TOM的MCU里,可以关闭ALE信号输出,以降低EMI。

MCS-51单片机存储器的扩展

第八章MCS-51单片机存储器的扩展 第一节MCS-51单片机存储器的概述 (一)学习要求 1、熟悉MCS-51 单片机的系统总线及系统总线扩展结构 2、掌握常用的片选方法:线选法和全地址译码法。 (二)内容提要 1、三总线的扩展方法 单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。为此,应扩展其功能。 MCS-51单片机的扩展性能较强,根据需要,可扩展。三总线是指地址总线、数据总线、控制总线。 1)地址总线 MCS-51 单片机地址总线宽度为16 位,寻址范围为64K。 地址信号:P0 作为地址线低8 位,P2 口作为地址线高8 位。 2)数据总线 MCS-51 单片机的数据总线宽度为8 位。 数据信号:P0 口作为8 位数据口,P0 口在系统进行外部扩展时与低8 位地址总线分时复用。 3)控制总线 主要的控制信号有/WR 、/RD 、ALE 、/PSEN 、/EA 等。 2、系统的扩展能力 MCS-51 单片机地址总线宽度为16 位,因此它可扩展的程序存储器和数据存储器的最大容量是64K(216)。 1)线选法 线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。缺点是外扩器件的数量有限,而且地址空间是不连续的。 2)全地址译码法 由于线选法中一根高位地址线只能选通一个部件,每个部件占用了很多重复的地址空间,从而限制了外部扩展部件的数量。采用译码法的目的是减少各部件所占用的地址空间,以增加扩展部件的数量。 3)译码器级连 当组成存储器的芯片较多,不能用线选法片选,又没有大位数译码器时,可采用多个小位数译码器级连的方式进行译码片选. 4)译码法与线选法的混合使用 译码法与线选法的混合使用时,凡用于译码的地址线就不应再用于线选,反之,已用于线选的地址线就不应再用于译码器的译码输入信号. (三)习题与思考题 1. 简要说明MCS-51 单片机的扩展原理。

6264与51单片机扩展

Intel6264芯片 单片机内存扩展6264芯片 2012-5-2 1.Intel6264芯片 Intel 6264的特性及引脚信号Intel 6264的容量为8KB,是28引脚双列直插式芯片,采用CMOS工艺制造 A12~A0(address inputs):地址线,可寻址8KB的存储空间。 D7~D0(data bus):数据线,双向,三态。 OE(output enable):读出允许信号,输入,低电平有效。 WE(write enable):写允许信号,输入,低电平有效。 CE1(chip enable):片选信号1,输入,在读/写方式时为低电平。 CE2(chip enable):片选信号2,输入,在读/写方式时为高电平。 VCC:+5V工作电压。 GND:信号地。 Intel 6264的操作方式Intel 6264的操作方式由, CE1 , CE2的共同作用决定 ②读出:当和CE1为低电平,且和CE2为高电平时,数据输出缓冲器选通,被选中单元的数据送到数据线D7~D0上。 2. 74LS373 有54S373 和74LS373 两种线路结构型式,其主要电器特性的典型值如下(不同厂家具体值有差别):型号TPD PD 54S373/74S373 7ns 525mW 54LS373/74LS373 17ns 120mW 373 的输出端O0~O7 可直接与总线相连。当三态允许控制端OE 为低电平时,Q0~Q7为正常逻辑状态,可用来驱动负载或总线。当OE 为高电平时,Q0~Q7 呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。当锁存允许端LE 为高电平时,Q 随数据D 而变。当LE 为低电平时,D 被锁存在已建立

第11章 MCS-51单片机系统扩展-第1部分 - 1

第十一章 MCS-51单片机系统扩展 11.1 8051/8751的最小系统 80C51片内有4KB的程序存储器,因此,只需要外接晶体振荡器和复位电路就可构成最小系统。 图11-1 最小单片机系统 最小系统的特点如下: (1)由于片外没有扩展存储器和外设,P0、P1、P2、P3都可以作为用户I/O口使用。但P0口作为用户I/O口使用时,需要加上拉电阻。 (2)片内数据存储器有128字节,地址空间00H~7FH,没有片外数据存储器。 (3)内部有4KB程序存储器,地址空间0000H~0FFFH,没有片外程序存储器,EA应接高电平。 (4)可以使用两个定时/计数器T0和T1,一个全双工的串行通信接口,5个中断源。 80C51虽有4个I/O口P0~P3,但在大多数应用系统中,真正用作I/O 口线的只有P1口的8位位线和P3口的某些位线。因此,在I/O接口引脚不够,或在片内的存储器资源还不能满足要求时,需要进行如下的扩展: (1) 外部I/O接口的扩展;【例如74LS164、74LS165等】 (2) 外部程序存储器的扩展; (3) 外部数据存储器的扩展。

11.2 系统扩展结构 单片机采用总线结构,使扩展易于实现,单片机系统扩展结构如图11-2所示。 图11-2 80C51单片机的系统扩展结构 从图11-2可以看出,系统扩展主要包括存储器扩展和I/O接口部件扩展。存储器扩展包括程序存储器扩展和数据存储器扩展。 系统扩展是以单片机为核心,通过总线把单片机与各扩展部件连接起来。因此,首先要利用单片机的I/O口构造系统总线。系统总线按功能通常分为3组,如图11-2所示。 (1)地址总线AB(Address Bus):用于发送CPU发出的地址信号,以便进行存储单元和I/O接口芯片中的寄存器的选择。 地址总线宽度为16位,由P0口经地址锁存器(通常用74LS373)提供地址低8位,P2口直接提供地址高8位,地址信号是由CPU发出的单方向信号。 存储器芯片的地址线的数目由芯片的容量决定。容量(Q)与地址线数目(N)满足关系式:2N Q 。存储器芯片的地址线与单片机的地址总线(A0~A15,P0口为低8位(需用74LS373锁存),P2口为高8位)按由低位到高位的顺序顺次相接。 一般来说,存储器芯片的地址线数目少于单片机地址总线的数目,因此连接后,单片机的高位地址线(P2口)应该有剩余。剩余的地址线一般作为译码线,译码器的输出与存储器芯片的片选信号线(CS或CE)相接。片选

MCS-51单片机存储器的扩展_百度文库.

第八章 MCS-51单片机存储器的扩展 第一节 MCS-51单片机存储器的概述 (一学习要求 1、熟悉 MCS-51 单片机的系统总线及系统总线扩展结构 2、掌握常用的片选方法:线选法和全地址译码法。(二)内容提要 1、三总线的扩展方法 单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。为此,应扩展其功能。 MCS-51单片机的扩展性能较强,根据需要,可扩展。三总线是指地 址总线、数据总线、控制总线。 1)地址总线 MCS-51 单片机地址总线宽度为 16 位,寻址范围为 64K。 地址信号: P0 作为地址线低 8 位, P2 口作为地址线高 8 位。 2)数据总线 MCS-51 单片机的数据总线宽度为 8 位。 数据信号: P0 口作为 8 位数据口, P0 口在系统进行外部扩展时与低 8 位地址总线分时复用。 3)控制总线 主要的控制信号有 /WR 、 /RD 、 ALE 、 /PSEN 、 /EA 等。

2、系统的扩展能力 MCS-51 单片机地址总线宽度为 16 位,因此它可扩展的程序存储器和数据存储器的最大容量是64K(216)。 1)线选法 线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。缺点是外扩器件的数量有限,而且地址空间是不连续的。 2)全地址译码法 由于线选法中一根高位地址线只能选通一个部件,每个部件占用了很多重复的地址空间,从而限制了外部扩展部件的数量。采用译码法的目的是减少各部件所占用的 地址空间,以增加扩展部件的数量。 3)译码器级连 当组成存储器的芯片较多,不能用线选法片选,又没有大位数译码器时,可采用多个小位数译码器级连的方式进行译码片选. 4)译码法与线选法的混合使用 译码法与线选法的混合使用时,凡用于译码的地址线就不应再用于线选,反之,已用于线选的地址线就不应再用于译码器的译码输入信号. (三)习题与思考题 1. 简要说明MCS-51 单片机的扩展原理。

51单片机存储器结构介绍

MCS-51单片机存储器结构 从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令,以产生不同的存储器空间的选通信号。 【程序内存ROM】 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM; EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口 0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 【内部数据存储器RAM】 物理上分为两大区:00H ~ 7FH(低128单元用户RAM 和高128单元SFR区) 作用:作数据缓冲器用。

一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。(对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的EA端必须接地。强制CPU从外部程序存储器读取程序。)对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC 值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。 0013H—001AH 外部中断1中断地址区。 001BH—0022H 定时/计数器1中断地址区。 0023H—002AH 串行中断地址区。 可见以上的40个单元是专门用于存放中断处理程序 的地址单元,中断响应后,按中断的类型,自动转到各 自的中断区去执行程序。从上面可以看出,每个中断服 务程序只有8个字节单元,用8个字节来存放一个中断 服务程序显然是不可能的。因此以上地址单元不能用于 存放程序的其他内容,只能存放中断服务程序。但是通 常情况下,我们是在中断响应的地址区安放一条无条件 转移指令,指向程序存储器的其它真正存放中断服务程 序的空间去执行,这样中断响应后,CPU读到这条转移指 令,便转向其他地方去继续执行中断服务程序。 右图是ROM的地址分配图: 从图中大家可以看到,0000H-0002H,只有三个存储单 元,3个存储单元在我们的程序存放时是存放不了实际意义的程序的,通常我们在实际编写程序时是在这里安排一条ORG指令,通过ORG指令跳转到从0033H开始的用户ROM区域,再来安排我们的程序语言。从0033开始的用户ROM区域用户可以通过ORG指令任意安排,但在应用中应注意,不要超过了实际的存储空间,不然程序就会找不到。

80C51单片机存储器的扩展

接口技术 课程设计说明书 设计题目80C51单片机存储器的扩展 指导教师: 设计者: 系别: 班级: 学号: 机械工程学院班学生课程设计题目: 80C51单片机存储器的扩展

一、课程设计工作日自年月日至年月日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主 要参考资料等) 1、目的及意义 (1)巩固及深化《单片机原理及应用》课程的理论知识,培养,分析,解决实际问题的能力。 (2)掌握80C51系统的总线构成,能根据题目要求确定设计思路、绘制所需的硬件电路图。 2、主要内容 用两片Intel2732为80C51单片机扩展一个8KB的外部程序存储器,要求使用73LS138译码器,地址范围为B000H~CFFFH,请连线并写明扩展步骤。 3、基本要求 (1)熟悉各芯片的使用方法和注意事项。 (2)绘制电路原理图 (3)答辩 4、主要参考资料 单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年 指导教师签字:教研室主任签字: 分析题目: 根据题意知用2片Intel2732给80C51单片机扩展8KB的外程序存储器,分配的地址范

围为B000H~CFFFH,分别采用线选法和译码法。 2732以HMOS-E(高速NMOS硅栅)工艺制成,24脚双列直插式,为4KB容量,地址线12条A0~A11;,数据线8条D0~D7,远为片选端,低电平有效,OE/VPP是输出允许信号,低电平有效,该引脚在编程时也作为编程电压VPP的输入端。VCC为十5V电源,GND 为地。(参考《微型计算机原理及应用》) 由于80C51单片机对外没有专用的地址总线(AB),数据总线(DB)和控制总线(CB),那么在进行系统扩展时,首先需要扩展系统的三总线。 1地址总线:(address bus AB)(《参考单片机基础及应用》P81) 1)AB的特点 地址总线用来传递地址信号,用于外扩展储存单元和I/O端口地址。 地址总线总是单向的,因为地址信号只能从单片机向外传送。 一条地址线提供一位地址,所以地址线的数目决定可寻址储存单元的数目。 2)80C51单片机的地址总线的构成 80C51单片机的地址总线宽度为16位,故可寻址范围为256=64KB. 其中低八位A0~A7由P0口提供,高8位A8~A15由P2口提供。 通过80C51的引脚ALE可实现对外地址总线的扩展。 2数据总线(adta bus,DB)(《参考单片机基础及应用》P82) 1)DB的特点 数据总线用于传送数据,状态,指令和命令。 数据总线的位数应与单片机字长一致。 数据总线是双向的,即可以进行两个方向(读、写)的数据传送。 2)80C51单片机的数据总线的构成 80C51单片机的数据总线由P0口提供,起宽度为8位,该口为三态双向口,是应用系统中使用最为频繁的通道, 数据总线要连到多个连接的外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。 3控制总线(control bus,CB)(《参考单片机基础及应用》P82) 1)CB的特点 控制总线包括片外系统扩展用控制线和片外信号对单片机的控制线。 2)80C51单片机的控制总线的构成 系统扩展用控制线有WR,RD,PSEN,ALE和EA。 WR,RD:用于片外数据存储器(RAM)的读,写控制。当执行片外数据存储器操作指MOVX 时,这两个控制信号自动生成。 用于片外程序存储器(EPROM)的“读”数控制。 ALE:用于锁存P0口输出的低8位地址数据的控制线。 EA:用于选择片内或片外程序存储器。当EA=0时,只访问外部程序存储器,不论片内有无程序存储器。当EA=1时,先访问片内程序存储器,当片内ROM访问完毕,自动转到片外ROM 继续执行程序。 常用的译码芯片有:74LS193和74LS138等,它们的CMOS型芯片分别是74HC139和74HC138。这里用到的是74LS138芯片,它有3个“选择输入端”C,B.A,它可以选择8个输出线Y0~Y7。当C,B,A的信号组合选择到某个输出线为低电平。74LS138还有3个“使能输入端”G1,当其有效时,即时译码器才能正常工作。

51单片机程序(存储器)

IIC存储器读写 1、LCD.c #include #include unsigned char code number_X[]= { //宽x高=8x16,纵向字节倒序 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, //0 0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00, 0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00, //1 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, 0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00, //2 0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00, 0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00, //3 0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00, 0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00, //4 0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00, 0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00, //5 0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00, 0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00, //6 0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00, 0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00, //7 0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00, 0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00, //8 0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00, 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, //9 0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // . 0x00,0x00,0x00,0x00,0x00,0x60,0x60,0x00, 0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00, //- 0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, //nop 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00, //: 0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00 }; void LCD_WriteCommandE1(unsigned char com) { while(CRADD1 & 0x80); CWADD1 = com; } void LCD_WriteDataE1(unsigned char dat)

一文详解51单片机的存储器组织结构

一文详解51单片机的存储器组织结构 程序存储器: ①用于存放程序(可执行的二进制代码映像文件,包括程序中的数据信息),还包括初始化代码等固件。 ②为只读存储器。注意,这里的“只读”,是指单片机(CPU)在正常工作时对其的访问方式是只读的;而现在大多数单片机的程序存储器(不管是内部还是外部)都采用了FLASH ROM,来取代以前所用的ROM、E2PROM等,可方便地进行在线编程(ISP)。 ③标准8051的内部程序存储器大小为4KB(0x0000 ~ 0x0FFF);而具体的51核的兼容单片机的内部ROM大小需要参考其Datasheet,例如P89C51RA2xx的内部程序存储器是8K 的Flash。 ④内部、外部存储器统一编址,在软件设计上(指令系统中)没有差别;是否使用外部程序存储器是通过引脚EA在硬件电路上控制的:不使用外部程序存储器时,EA=0(接地);如果扩展了外部程序存储器,则使EA=1,当寻址到内部存储空间以外时,会自动转向外部程序存储器空间(与扩展外部程序存储器有关的还有PSEN和ALE的时序配合,以及P0和P2口用于地址线)。 [注] 一般直接选用内部程序存储器满足代码大小要求的单片机型号,避免扩展外部存储器,造成系统软硬件设计上的复杂和额外开销。 数据存储器: 为RAM。首先必须要强调的是,不管是物理上还是逻辑上,51单片机的内部、外部数据存储器都在不同的地址空间。两者不是一回事,用途也不一样,访问的指令也不同(内部RAM为MOV指令,外部为MOVX)。 1、内部数据存储器(内部RAM) 相当于内存,为程序(进程)中的变量和常量分配存储空间,掉电后内容消失。 标准8051的内部RAM为256B(0x00 ~ 0xFF):其中可供用户自由使用的是低128B(0x00 ~ 0x7F)区域,高128B中定义了26B的特殊功能寄存器(SFR),其余没有定义,因而没有意

51单片机中常见的四大存储器概念

51单片机中常见的四大存储器概念 PROM,称之为可编程存储器。这就象我们的练习本,买来的时候是空白的,能写东西上去,可一旦写上去,就擦不掉了,所以它只能用写一次,要是写错了,就报销了。EPROM,称之为紫外线擦除的可编程只读存储器。它里 面的内容写上去之后,如果觉得不满意,能用一种特殊的办法去掉后重写,这就是用紫外线照射,紫外线就象消字灵,能把字去掉,然后再重写。当然消的次数多了,也就不灵光了,所以这种芯片能擦除的次数也是有限的几百次吧。EEPROM,也叫E2PROM 称之为电可擦可编程只读存储器,它和EEPROM 类似,写上去的东西也能擦掉重写,但它要方便一些,不需要光照了,只要用电就能擦除或者重新改写数据,所以就方便许多,而且寿命也很长(几万到几十万次不等)。 FLASH,称之为闪速存储器,属于EEPROM 的改进产品,它的最大特点是必须按块(Block)擦除(每个区块的大小不定,不同厂家的产品有不同的规格), 而EEPROM 则可以一次只擦除一个字节(Byte)。FLASH 现在常用于大容量存储,比如u 盘 再次强调,这里的所有的写都不是指在正常工作条件下。不管是PROM 还是EPROM,它们的写都要有特殊的条件,一般我们用一种称之为编程器的设备 来做这项工作,一旦把它装到它的工作位置,就不能随便改写了。 半导体存储器的分类 按功能能分为只读和随机存取存储器两大类。所谓只读,从字面上理解就是只能从里面读,不能写进去,它类似于我们的书本,发到我们手回之后,我们只能读里面的内容,不能随意更改书本上的内容。只读存储器的英文缩写为ROM(READ ONLY MEMORY)

九:8051单片机的存储器结构

第九课:8051单片机的存储器结构 MCS-51单片机在物理结构上有四个存储空间: 1、片内程序存储器 2、片外程序存储器 3、片内数据存储器 4、片外数据存储器 但在逻辑上,即从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令(具体我们在后面的指令系统学习时将会讲解),以产生不同的存储器空间的选通信号。 程序内存ROM 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM;EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口 0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 内部数据存储器RAM 物理上分为两大区:00H ~ 7FH即128B内RAM 和SFR区。

作用:作数据缓冲器用。 下图是8051单片机存储器的空间结构图 程序存储器 一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的端必须接地。强制CPU从外部程序存储器读取程序。对于内部有ROM 的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。

相关文档
最新文档