集列的上下极限定义的等价刻画及其应用

集列的上下极限定义的等价刻画及其应用
集列的上下极限定义的等价刻画及其应用

集列的上下极限定义的等价刻画及其应用

摘要:通过和数列极限的比较,给出集列极限定义的两个等价刻画,并列举出集列极限运算在几个重要定理及其证明中的应用

关键词:子集列;确界;集列上极限;集列下极限

一、.序列的上下极限

定义1:设{n x }为一数列,λ,μ∈R ,若 (i )对?

ε>0,n x 终<μ+ε,即就是对?ε>0,?N >0,当n >N 时,恒有n x <

μ+ε;

(ii )对?ε>0,n x 常 <μ-ε,即就是对?ε>0,?N >0,?n >N 时,使得n

x >μ-ε;

则称μ为序列{n x }的上极限,记作lim n →∞

n x 。

相应地,我们也可以定义下极限,若 (i )对?

ε>0,n x 终<λ-ε,即就是对?ε>0,?N >0,当n >N 时,恒有n x <

λ-ε;

(ii )对?ε>0,n x 常 <λ+ε,即就是对?ε>0,?N >0,?n >N 时,使得n

x >λ+ε;

则称μ为序列{n x }的下极限,记作lim n →∞

n x 。

注:当且仅当n x 上无界时,规定lim n →∞

n x =+∞;当且仅当lim n →∞

n x =+∞时,规定

lim n →∞

n x =lim n →∞

n x =+∞;当且仅当n x 下无界时,规定lim n →∞

n x =-∞;当且仅当

lim n →∞

n x =-∞时,规定lim n →∞

n x =lim n →∞

n x =-∞。

由定义1我们不难看出{n x }上极限μ的任意领域(,)με 中有{n x }的无穷多点,{n x }下极限λ的任意领域(,)λε 中有{n x }的无穷多个点。

定义2:任一有界数列,存在收敛子列,任何的序列都有广义的收敛子序列(广义收敛, 意指极限可以无穷大) 设μ=lim n n x →∞

,则μ满足

(i )存在子序列{k n x }使得lim k n k x →∞

(ii )对?{k n x }?{n x },若{k n x }收敛,则恒有lim k n k x →∞

≤μ

同样,设λ=lim n n x →∞

,则λ满足

(i )存在子序列{k n x }使得lim k n k x →∞

(ii )对?{k n x }?{n x },若{k n x }收敛,则恒有lim k n k x →∞

≥λ

定义3:lim n n x →∞

=limsup k n k n

x →∞≥=inf sup k n

k n

x ≥

lim n n x →∞

=lim inf k n k n

x →∞≥=supinf k k n

n

x ≥

二、对集列上下极限作相应的等价刻画

1.定义4:设{n A }是任一集列,其{n A }的上确界为lim n n A →∞

,下确界为lim n n A →∞

,则

lim n n A →∞

={x ︱存在无穷多个n A ,使得x ∈n A }

={x ︱对?N ,?n ,当n N >时,有x ∈n A }

lim n n A →∞

={x ︱当n 充分大以后就有x n A ∈}

= {x ︱?N ,当n N >时,有x ∈n A } ={x ︱只有有限个n 使得x ?n A } 2.通过上下确界来刻画 (1)lim n n A →∞

=limsup n

n A =

1k

n k n A

∞∞

==

(2)lim n n A →∞

=lim inf n

n A =

1k

n k n

A

==

证明:(1))?对?x ∈limsup n

n A ,存在无穷多个n ,?n x A ∈,因此对?m ,? 1i ≥

? m i x A +∈,因而x ∈

i

i m

A ∞

=

由m 的任意性有x ∈

1k

n k n

A

∞∞

==

)?对?x ∈1k n k n

A ∞

== ,则对?m ,有x ∈i i m

A ∞

= ,所以必存在i m ≥,?i x A ∈

这说明存在无穷多个n A ,使得n x A ∈

因而x ∈x ∈limsup n

n A

(2))?对?lim n n x A →∞

∈,只有有限个n ,?n x A ?,

所以存在m ,使得对?n m > 有x ∈

n A ,从而i i m x A ∞

=∈

于是1i

m i m x A ∞

==∈

)?对?1i m i m

x A ∞

==∈ ,?m ,?i i m

x A ∞

=∈ ,即对?n m ≥有n x A ∈,可见最

多有1m -个n 使得n x A ?因而x ∈lim inf n

n A

3.通过收敛子列刻画

(1)上极限:(i )?{k n A }?{n A },若{k n A }收敛,lim k n k A →∞

=lim n n A →∞

(ii )对??{k n A }?{n A },若{k n A }收敛,则恒有lim k n k A →∞

?lim n n A →∞

(2)下极限:(i )?{k n A }?{n A },若{k n A }收敛,lim k n k A →∞

=lim n n A →∞

(ii )对??{k n A }?{n A },若{k n A }收敛,则恒有lim k n k A →∞

? lim n n A →∞

证明:(1) (i )设 lim n n A →∞

=A ,则

对?x A ∈,对?N ,n N ?>,使得x A ∈ 任取1N ,11n N ?>,使得x A ∈ 任取21N n >,22n N ?>,使得x A ∈ 任取32N n >,33n N ?>,使得x A ∈ … …

任取1k k N n ->,k k n N ?>,使得x A ∈ … …

如此无穷次进行下去,可得到一集列{k n A } 下证 lim k n k A →∞

= A

首先,由{k n A } 的构造可知,A 是k n A 的上极限,即就是

lim k n k A →∞

=A

其次,对?K ,k K ?>,有x A ∈,从而A 是 {k n A }的下极限,就

是lim k n k A →∞

=A

由lim k n k A →∞

=lim k n k A →∞

=A 有{k n A }收敛,并且lim k n k A →∞

=A

(ii )设k n A → A 且{k n A }?{n A } {k n A }?{n A }

lim k n k A →∞

= lim k n k A →∞?lim n n A →∞

(2)设lim n n A →∞

=A

则对?x A ∈,N ?,对n N ?>,有x A ∈

取1N N >,对?1n N >,有x A ∈ 取21N N >,对2n N ?>,有x A ∈ 取32N N >,对3n N ?>,有x A ∈ … …

取1k k N N ->,对k n N ?>,有x A ∈ … …

这样无穷次进行下去,可得到一集列{k n A } 下证: lim k n k A →∞

=A

首先,由{k n A } 的构造可知,A 是k n A 的下极限,即就是

lim k n k A →∞

=A

其次,对?x A ∈,对?K ,有k K n n >,使得x A ∈,从而A 是 {k n A }的上极限,即就是lim k n k A →∞

=A

由lim k n k A →∞

=lim k n k A →∞

=A 有{k n A }收敛,并且lim k n k A →∞

=A

(ii )设k n A →A ,且{k n A }?{n A }

设lim n n A →∞

=B

则对?x B ∈,N ?,当n N >时有n x A ∈ K ?,当K N >时有k K n n N >> 有k n x A ∈,即lim k n k x A →∞

∈=A

∴l i m

n n A →∞

?l i m k n k A →∞

=A

三、单调集列的极限

(1)对?{n A },若n A 单调递增,即1A ?2A ? …?n A ?… 则lim n n A →∞

=

1

n

n A

=

(2)对?{n A },若n A 单调递减,即1A ?2A ?…?n A ?… 则lim n n A →∞

=

1

n

n A

=

证明:(1)对?1n ≥,

k k n

A ∞

= =1n

n A

= 。于是lim n n A →∞

=

1k

n k n

A ∞

== =1

n

n A

=

对上述n ,

k

k n A

= =n A ,故lim n n A →∞

=

1k

n k n A ∞

== =1

n

n A

=

从而,lim n n A →∞

=lim n n A →∞

=lim n n A →∞

=

1

n

n A

=

(2)对?1n ≥,

k

k n

A

= =n A ,于是lim n n A →∞

=

1k

n k n

A ∞

== =1

n

n A

=

对上述n ,

k

k n

A

= =

1

n

n A

= ,故lim n n A →∞

=

1k

n k n A

∞∞

== =

1

n

n A

=

从而,lim n n A →∞

=lim n n A →∞

=lim n n A →∞

=

1

n

n A

=

四.集列的极限运算在实变函数中的应用

例1:设{n E ︱n =1,2…}是一列可测集,而且有一个自然数0k ,使得

()n

n k m E ∞

=∑<+∞,

那么m (lim )n n E →∞

=0

证明:由于lim n n E →∞

=

1n

k n k

E

∞∞

== ,所以对?k N +

∈,有lim n n E →∞

?

n

n k

E

=

因此,由侧度的单调性和次可数可加性,得到

m (l i m

)n n E →∞

≤()n

n k

m E ∞= ≤()n

n k

m E ∞

=∑ (*)

又因为0

()n

n k m E ∞=∑<∞,在(*)中令k →∞,有()n

n k

m E ∞

=∑0→,利用测度的非负

性有

m (lim )n n E →∞

=0

例2:叶果洛夫定理的证明

叶果洛夫定理:设()m E <∞,{n f }是E 上的一列可测函数,f 是E 上几乎处处有限的函数,{n f }在E 上几乎处处收敛于f ,则对任何0δ>,存在可测集E E δ?,使得()n m E E δ/<,而且{n f }在E δ上一致收敛。 证明:我们分三步来证明该定理

第一,对任何自然数n 和k ,记

,n k E ={x ︱x E ∈,︱()m f x -()f x ︱≤

1

k

,m n ≥} 显然,有1,k E ?2,k E ?…?,n k E ?…。因此,,lim n k n E →∞

=

,1

n k

n E

= ,而且

,(lim )n k n m E →∞

=,lim ()n k n m E →∞

(1)

容易知道,如果x E ∈,且lim ()n n f x →∞

=()f x ,则对充分大的n ,必有,n k x E ∈,从而

,lim n k n x E →∞

∈。也就是说,使得{()n f x }收敛的x 全体组成的集是,lim n k n E →∞

的子集。由假

设,{n f }在E 上几乎处处收敛于f ,所以

,(lim )n k n m E E →∞

/=0 (2)

由(1),(2)即得

()m E =,lim ()n k n m E →∞

(3)

第二,任取一列自然数1n <2n <…

F =

,1

n k

k E

= (4)

{n f }在F 上必然一致收敛于f 。实际上,任给0ε>,取自然数K ,使得K 1

ε

>。于

是,当k n n >时,对,k n k x F E ∈?都有 ︱()()n f x f x -︱1

k

ε< 所以当给定了任意一个0δ>之后,如果能适当的选取{k n },使得(4)式的F 满足(m E \)F δ<,则取E F δ=即可

第三,因为()m E <∞,利用(3)式,对任何0δ>,可以取充分大的k n ,使得 ,()()2

k n k k

m E m E δ

-<

不妨设这列{k n }是递增的,以这列{k n }按照(4)作F ,便有 (m E \)F =1

(

(k m E ∞= \,)k n k E )≤1

(k m E ∞=∑\,k n k E )12

k

k δ

δ∞

=≤=∑

例3:黎斯(F. Riesz )定理的证明

黎斯(F. Riesz )定理:设可测函数列{n f }在E 上依测度收敛于f ,则存在子列{v n f }在E 上几乎处处收敛于f .

证明:因为n f f ?,取12v ε=

,12v

δ=,则必有自然数v n ,使得当v n n ≥时, ((m E ︱n f f -︱12v >))12v <.记v E =E (︱v n f f -︱1

2

v >),就有

1

()2

v v m E <, v =1,2,….

不防在逐个取v n 时把它取得充分大,使得1n <2n <…

记F =E \lim v v E →∞

.根据集合的运算和v E 的定义可得

F =E \lim v v E →∞

=lim(v E →∞

\v E )=lim (n E →∞

∣v n f f -∣12

v ≤

). 由下极限的定义,对任何x F ∈,存在0v ,当0v v ≥时,(x E ∈︱v n f f -︱1

2v

≤),即

︱()()v n f x f x -︱1

2

v ≤

,从而lim ()()v n v f x f x →∞=。这就是说,在集合F 上,{v n f }收

敛于f .

为了证明定理的结论,只要证明lim v v E →∞

是零集就可以了.由1lim v v

v k v k

E E

∞∞

→∞

===

有,对

k N +

?∈,lim v v E →∞

v v k

E ∞

=? .另一方面,由v E 得取法

1

(v m ∞

=∑v E )112

v

v ∞

=≤∑

=1 从而利用测度的单调性及次可加性得到 (lim )v v m E →∞

≤(

)v

v k

m E ∞= ≤()v

v k

m E ∞

=∑0→,

即有(\)m E F (lim )v v m E →∞

==0.因此,{ v n f }在E 上几乎处处收敛于f .

例4:截面定理的证明

截面定理:设p q

E R

+?是可测集,则

(i )对p

R 中几乎所有的x ,x E 是q

R 中的可测集;

(ii )()x m E 作为x 的函数,它在p

R 上几乎处处有定义,且是可测函数; (iii )()m E =

()p

x R m E dx ?

.

证明:因为无界可测集总可以表示为可列个互不相交的有界可测集的并,所以我们只要对有界可测集的情况加以证明。

以下设E 为有界可测集,证明分成六步. (a )E 为区间的情况.

设p q E =???,其中p ?,q ?分别是p

R 及q

R 中的区间.则

q ? , p x ∈?

?,

p x ??

所以x E 是q

R 中的可测集.又

()q m ?,

p x ∈?

0 ,

p x ??

所以()x m E 是p

R 上的简单函数,从而可测.最后,由区间测度的定义,和(1)式得

()m E =()p q m ??? ()()p q m m =??=()p

x R m E dx ?

(b) E 为有限区间的并的情况. 设1

n

i

i E I ==

,其中i

I 为一组区间.容易知道,此时E 总可以表示为有限个互不相交的

区间的并.设

11

n m

i

j

i j I I =='= ,其中j

I '为p q

R

+中一组互不相交的区间.有(a)可知x E 可测,且

m (

1m j

j I =' )=1()m j

j m I ='∑=1

()p

m

j x R j m I dx ='∑?

=

1

()p

m

j x

R j m I dx ='∑?=1

()p

m

j x R j m I dx ='?

(2)

注意到1

(

)m

j j E I ='= 时, 1

()m

x

j x j E

I ='= ,(2)即就是

()m E =

()p

x R m E dx ?

.

(c) E 为开集的情况. 设E 为p q

R

+中的开集,则E 必可表示为可列个开区间的并.设1

i

i E I ∞

==

,其中i

I 为p q

R

+中的开区间.于是, 1(

)

x i x

i E I ∞

== .由(a)可知, ()i x I 均可测.故而x E 是可测集.

又由1

()lim (

)

n

x i x

n i m E m I →∞

== ,

由(b), 1

(

)n

i

i m I = 可测,所以()x

m E 是可测函数.而且

1

1

()(

)lim ()n

i i n i i m E m I m I ∞→∞

====

=1

lim

()p

i x R

n i m I dx ∞→∞=?

=1

lim ()p i x R n i m I dx ∞

→∞

=?

=

1

()p

i x R i m I dx ∞

=?

=()p x R

m E dx ?

(d) E 为G δ型集的情况. 设E =

1

i

i G ∞

= ,其中i

G 是p q

R

+中的开集.不妨设有1G ?2G ?…,否则,用{

1

i

j

j G

= }

代替{i G }讨论即可. 因为x E =

1

()

i

x i G ∞

= ,由(c)可知各个()i x G 可测,所以x E 是q

R 中的可测集.

又因为E 为有界集,故可设1()x m G <∞.而1()x G ?2()x G ?…,所以 ()x m E =lim ()n x n m G →∞

.

由(c)可知, ()n x m G 在p

R 中可测,所以()x m E 可测. 最后,利用(c)可得

()lim ()lim

()p

n n x R

n n m E m G m G dx →∞

→∞==?

=

lim ()p n x R n m G dx →∞

=

?

()p

x R m E dx ?

(e) E 是零集的情况.

设E 是p q R +中测度为零的集合,则总存在p q

R +中的G δ型集G E ?,使得

()()0m G m E ==.又由(d), ()m G ()p x R

m G dx =?,所以

()x m G =0.a e 成立于p

R 又由x x E G ?,所以

()0x m E =.a e 成立于p

R 并且, ()()p

x R m E m E dx =

?

(f) E 是一般的有界可测集.

由\E G N =,其中G 和N 分别是p q

R +中的G δ型集和零集.由于\x x x E G N =,

由(d), x G 是q R 中的可测集,又由(e),对几乎所有的x ,x N 是q

R 中的可测集.因此,对几乎所有的x ∈p

R ,x E 是q

R 中的可测集.由于在p

R 中几乎处处成立着 ()()()p

x R m E m G m G dx ==?

=

()p

x R m E dx ?

.

参考文献:

[1]严绍宗,竟裕孙编.实变函数论与泛函分析[M].北京:经济科学出版社,1992

[2]裴礼文编.数学分析中的典型例题与方法[M]. 北京:高等教育出版社,2006

[3]程其襄,张奠宙,魏国强,胡善文,王漱石编. 北京:实变函数与泛函分析[M].高等

教育出版社,2009

[4]周民强编,实变函数[M],北京:北京大学出版社,1985

定义证明二重极限_1

定义证明二重极限 定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0户几卜8的一切点P,有不等式V(P)一周。成立,则称A为函数人P)当P~P。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P 入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

【精品】高等数学习题详解第2章 极限与连续

习题2-1 1.观察下列数列的变化趋势,写出其极限: (1)1n n x n =+; (2)2(1)n n x =--; (3)13(1)n n x n =+-; (4)2 11n x n =-。 解:(1)此数列为12341234,,,,,,23451n n x x x x x n =====+所以lim 1n n x →∞ =。 (2)12343,1,3,1,,2(1),n n x x x x x =====--所以原数列极限不存在。 (3)1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+- 所以lim 3n n x →∞ =。 (4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=-所以lim 1n n x →∞ =- 2.下列说法是否正确: (1)收敛数列一定有界; (2)有界数列一定收敛; (3)无界数列一定发散;

(4)极限大于0的数列的通项也一定大于0. 解:(1)正确. (2)错误例如数列{}(-1)n 有界,但它不收敛。 (3)正确。 (4)错误例如数列21(1)n n x n ??=+-???? 极限为1,极限大于零,但是11x =-小于零。 *3。用数列极限的精确定义证明下列极限: (1)1 (1)lim 1n n n n -→∞+-=; (2)222lim 11 n n n n →∞-=++; (3)3 23125lim -=-+∞→n n n 证:(1)对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε >即可,所以可取正整数1 N ε≥. 因此,0ε?>,1N ε???=???? ,当n N >时,总有1(1)1n n n ε-+--<,所以

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用 定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君 摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。 关键词:函数极限;重要极限;四则运算;迫敛法。 引 言: 函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。 1 . 函数的极限和极限存在的条件 1.1 函数的极限 1.1.1 x 趋于∞+时函数的极限 设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数 x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2 π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

重要极限的证明_1

重要极限的证明 重要极限的证明极限是ea0在n比较大时,(1 (1-a)/n)^n=原式=(1 1/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a)由a的任意性,得极限为e利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

函数极限的综合分析与理解

函数极限的综合分析与理解 PB 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,()B x f n →'(0',x x x n n n →∞→和), 则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若 m n >,则()∞→x f 。 000()()(()0)()P x f x Q x Q x →→≠0当x x 时,。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数()x g 与()x h ,并且要满足()()()x h x f x g ≤≤,从而证明或求得函数()x f 的极限值。

极限证明(精选多篇)

极限证明(精选多篇) 第一篇:极限证明 极限证明 1.设f(x)在(??,??)上无穷次可微,且f(x)??(xn)(n???),求证当k?n?1时,?x,limf(k)(x)?0.x??? 2.设f(x)??0sinntdt,求证:当n为奇数时,f(x)是以2?为周期的周期函数;当n为 偶数时f(x)是一线性函数与一以2?为周期的周期函数之和.x f(n)(x)?0.?{xn}?3.设f(x)在(??,??)上无穷次可微;f(0)f?(0)?0xlim求证:n?1,??? ?n,0?xn?xn?1,使f(n)(xn)?0. sin(f(x))?1.求证limf(x)存在.4.设f(x)在(a,??)上连续,且xlim???x??? 5.设a?0,x1?2?a,xn?1?2?xn,n?1,2?,证明权限limn??xn存在并求极限值。 6.设xn?0,n?1,2,?.证明:若limxn?1?x,则limxn?x.n??xn??n 7.用肯定语气叙述:limx???f?x????. 8.a1?1,an?1?1,求证:ai有极限存在。an?1 t?x9.设函数f定义在?a,b?上,如果对每点x??a,b?,极限limf?t?存在且有限(当x?a或b时,

为单侧极限)。证明:函数f在?a,b?上有界。 10.设limn??an?a,证明:lima1?2a2???nana?.n??2n2 11.叙述数列?an?发散的定义,并证明数列?cosn?发散。 12.证明:若??? af?x?dx收敛且limx???f?x???,则??0. 11?an?收敛。?,n?1,2,?.求证:22an?1an13.a?0,b?0.a1?a,a2?b,an?2?2? n 14.证明公式?k?11k?2n?c??n,其中c是与n无关的常数,limn???n?0. 15.设f?x?在[a,??)上可微且有界。证明存在一个数列?xn??[a,?),使得limn??xn???且limn??f'?xn??0. 16.设f?u?具有连续的导函数,且limu???f'?u??a?0,d??x,y?|x2?y2?r2,x,y?0 ?? ?r?0?. i ?1?证明:limu??f?u????;?2?求ir???f'?x2?y2?dxdy;?3?求limr2 r??

关于函数极限如何证明

关于函数极限如何证明 函数极限的性质是怎么一回事呢?这类的性质该怎么证明呢?下面就是学习啦给大家的函数极限的性质证明内容,希望大家喜欢。 X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A| 以此类推,改变数列下标可得|Xn-A| |Xn-1-A| …… |X2-A| 向上迭代,可以得到|Xn+1-A| 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。 n/(n^2+1)=0

对函数极限概念的理解

对函数极限概念的理解 函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点: (一)将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达 考察数集X={x},若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。 为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0?δ,x0+δ)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,δ=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;……,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。 对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。 (二)注意函数f(x)在x接近于x0时的性态。 设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域δ,把ε看作A的邻域, 而把这种性态更准确地表达为:Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)。这个表达就具备了可 进行量化比较性。 (三)δ与ε的关系 从x与f(x)的关系看,前者为因,后者为果。但是从x0的邻域δ与A的邻域ε的关系看,则是前者依赖后者,总是要先给定任一ε>0,而后求那个能保证ε成立的δ。即δ的几何空 间受ε的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:Ⅰf(x)- A Ⅰ<ε(ε是任一大于零的数),那么,使Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)成立的δ应是什么样呢?也就是如何依赖Ⅰf(x)- AⅠ<ε求δ呢?具体过程如下: 将Ⅰf(x)- AⅠ变形:Ⅰf(x)- AⅠ=MⅠx-x0Ⅰ,其中M是一个与x无关的常量。 再取δ=ε M ,则当0<Ⅰx-x0Ⅰ<δ时,有0<Ⅰx-x0Ⅰ<ε M ,整理为00能求出δ>0,只须Ⅰx-x 0Ⅰ<δ能使Ⅰf(x)- AⅠ<ε(式中的x取自X 内且异于x0)成立,则称当x趋向于x0时(或在x0)函数f(x)以数A为极限。 记成:lim x→ x0 f x=A

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

用极限定义证明极限

例1、用数列极限定义证明:22lim 07 n n n →∞+=- (1)(2)(3)(4)222222222224|0|77712 n n n n n n n n n n n n n n ε>++-=<<=<=<------时 上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是22;不等号(4)成立的条件是4[]n ε >,故取N=max{7, 4[]ε}。这样当n>N 时,有n>7,4[]n ε >。 因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为4 []n ε >,所以不等式(4)能成立,因此当n>N 时,上述系列不等式均成立,亦即当n>N 时,22| 0|7n n ε+-<-。 在这个例题中,大量使用了把一个数字放大为n 或2 n 的方法,因此,对于具体的数,.......可.把它放大为.....kn ..(.k .为大于零的常数)的形式........... 例2、用数列极限定义证明:24lim 01 n n n n →∞+=++ (1)422224422|0|111n n n n n n n n n n n n n n ε>+++-=<<=<++++++时 不等号(1)成立的条件是2[]n ε>,故取N=max{4, 2[]ε },则当n>N 时,上面的不等式都成立。 注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分...............................。. 如: 22 222211(1)1 n n n n n n n n n n n n ++>++>-<+>+ 例3、已知2(1)(1) n n a n -=+,证明数列a n 的极限是零。 证明:0(01)εε?><<设,欲使(1)(2)22(1)11|0|||(1)(1)1 n n a n n n ε--==<<+++成立 由不等式11n ε<+解得:11n ε >-,由于上述式子中的等式和不等号(1)对于任意的正整数n 都是成立的,因此取1[1]N ε =-,则当n>N 时,不等号(2)成立,进而上述系列等式和不等式均成立,所以当n>N 时,|0|n a ε-<。

极限概念

基本概述编辑 极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。 所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。 极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。 2产生发展编辑 由来 与一切科学的思想方法一样,极限思想也是社会实践的产物。极限的思想可以追溯到古代,刘徽的割圆术就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。 发展 极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景。 起初牛顿和莱布尼茨以无穷小概念为基础建立微积分,后来因遇到了逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。牛顿用路程的改变量ΔS与时间的改变量Δt之比ΔS/Δt表示运动物体的平均速度,让Δt无限趋近于零,得到物体的瞬时速度,并由此引出导数概念和微分学理论。他意识到极限概念的重要性,试图以极限概念作为微积分的基础,他说:“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止前互相靠近,使得其差小于任意给定的差,则最终就成为相等”。但牛顿的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。牛顿所运用的极限概念,只是接近于下列直观性

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

定义证明二重极限

定义证明二重极限 定义证明二重极限 就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与a的差的绝对值会灰常灰常的接近。那么就说f(x,y)在 (x0,y0)点的极限为a 关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p(x,y)所对应的函数值都满足不等式那末,常数a就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于d的点,若对于任意给定的正数。,总存在正数a,使得对d内适合不等式0<户几卜8的一切点p,有不等式v(p)一周<。成立,则称a为函数人p)当p~p。时的极限.定义3设函数x一人工,”的定义域为d,点产人工。,人)是d的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点p(x,…ed,都有成立,则称a为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人x,…在点p入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点p。(x。,入)的任一去心邻域内都有使人x,y)无定义的点,相应地,定义i要求见的去心邻域内的点p都适合/(p)一a 卜 利用极限存在准则证明: (1)当x趋近于正无穷时,(inx/x^2)的极限为0;

(2)证明数列{xn},其中a>0,xo>0,xn=/2,n=1,2,…收敛,并求其极限。 1)用夹逼准则: x大于1时,lnx>0,x^2>0,故lnx/x^2>0 且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0 故(inx/x^2)的极限为0 2)用单调有界数列收敛: 分三种情况,x0=√a时,显然极限为√a x0>√a时,xn-x(n-1)=/2<0,单调递减 且xn=/2>√a,√a为数列下界,则极限存在. 设数列极限为a,xn和x(n-1)极限都为a. 对原始两边求极限得a=/2.解得a=√a 同理可求x0<√a时,极限亦为√a 综上,数列极限存在,且为√ (一)时函数的极限: 以时和为例引入. 介绍符号:的意义,的直观意义. 定义(和.) 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… (二)时函数的极限: 由考虑时的极限引入. 定义函数极限的“”定义.

极限 定义证明

极限定义证明 极限定义证明趋近于正无穷,根号x分之sinx等于0 x趋近于负1/2,2x加1分之1减4x的平方等于2 这两个用函数极限定义怎么证明? x趋近于正无穷,根号x分之sinx等于0 证明:对于任意给定的ξ>0,要使不等式 |sinx/√x-0|=|sinx/√x||sinx/√x|^2sinx^2/ξ^2, ∵|sinx| ≤1∴只需不等式x>1/ξ^2成立, 所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|同函数极限的定义可得x→+∞时,sinx/√x极限为0. x趋近于负1/2,2x加1分之1减4x的平方等于2 证明:对于任意给定的ξ>0,要使不等式 |1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|需要0|1-4x^2/2x+1-2|=|2x+1|由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2. 注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0. 记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷; 下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。 不妨设f1(x)趋于a;作b>a>=0,M>1; 那么存在N1,当x>N1,有a/M注意到f2的极限小于等于a,那么存在N2,当x>N2时,0同理,存在Ni,当x>Ni时,0取N=max{N1,N2...Nm}; 那么当x>N,有 (a/M)^n所以a/M对n取极限,所以a/M令x趋于正无穷, a/M注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。 令M趋于正无穷,b趋于a; 有a这表明limg(x)=a; 证毕; 证明有点古怪是为了把a=0的情况也包含进去。 还有个看起来简单些的方法 记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷; g(x)=max{f1(x),....fm(x)}; 然后求极限就能得到limg(x)=max{a1,...am}。 其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。 有种简单点的方法,就是 max{a,b}=|a+b|/2+|a-b|/2 从而为简单代数式。 多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式, 故极限可以放进去。 2 一)时函数的极限: 以时和为例引入. 介绍符号: 的意义, 的直观意义. 定义( 和. )

相关文档
最新文档