3.3.3函数的最大(小)值与导数教学设计

§1.3.3 函数的最大(小)值与导数

宜宾市四中李斌

一、教学内容分析

1.在教材中的位置:

本节内容安排在《普通高中课程标准实验教科书数学选修1-1》人教A版,第三章、第三节“导数在研究函数中的应用”

2.学习的主要工具:

基本初等函数的识图能力与函数的极值与导数知识。

3.学习本节课的主要目的:

本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后“生活中的优化问题”打好基础。

4.本节课在教材中的地位:

函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。

二、学情分析

学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。

三、课堂设计思想

培养学生学会学习、学会探究、学会合作是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

第 1 页共5 页

相关文档