光刻的基本原理

光刻技术

职大09微电子 光刻技术 摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。 关键词:光刻胶;曝光;烘焙;显影;前景 Abstract: photoetching lithography (is) through a series of steps will produce wafer surface film of certain parts of the process, remove after this, wafer surface will stay with the film structure. The part can be eliminated within the aperture shape is thin film or residual island. Keywords: the photoresist, Exposure; Bake; Enhancement; prospects

目录 第一章绪论 (2) 第二章光刻技术的原理 (3) 第三章光刻技术的工艺过程 (4) 1基本光刻工艺流程—从表面准备到曝光 (4) 1.1光刻十步法 (4) 1.2基本的光刻胶化学物理属性 (4) 1.2.1组成 (4) 1.2.2光刻胶的表现要素 (4) 1.2.3正胶和负胶的比较 (5) 1.2.4光刻胶的物理属性 (5) 1.3光刻工艺剖析 (5) 1.3.1表面准备 (5) 1.3.2涂光刻胶 (5) 1.3.3软烘焙 (6) 1.3.4对准和曝光(A&E) (6) 2基本光刻工艺流程—从曝光到最终检验 (6) 2.1显影 (6) 2.1.1负光刻胶显影 (6) 2.1.2正光刻胶显影 (7) 2.1.3湿法显影 (7) 2.1.4干法(或等离子)显影 (7) 2.2硬烘焙 (7) 2.3显影检验(develop inspect DI) (7) 2.3.1检验方法 (8) 2.3.2显影检验拒收的原因 (8) 2.4刻蚀 (8) 2.4.1湿法刻蚀 (8) 2.4.2干法刻蚀(dry etching) (9) 2.5光刻胶的去除 (10) 2.6最终目检 (10) 第四章光刻技术的发展与现状 (11) 1 .EUV 光刻技术 (11) 2 .PREVAIL 光刻技术 (12) 3.纳米压印光刻技术 (12) 4.展望 (14) 参考文献15

光刻技术及其应用的状况和未来发展

光刻技术及其应用的状况和未来发展 光刻技术及其应用的状况和未来发展1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的纷争及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 以Photons为光源的光刻技术 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等,如图2所示。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH 和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRATECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS/,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。 深紫外技术

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

激光光刻技术的研究与发展

第41卷第5期红外与激光工程2012年5月Vol.41No.5Infrared and Laser Engineering May.2012 激光光刻技术的研究与发展 邓常猛1,2,耿永友1,吴谊群1,3 (1.中国科学院上海光学精密机械研究所中国科学院强激光材料重点实验室,上海201800; 2.中国科学院研究生院,北京100049; 3.功能无机材料化学省部共建教育部重点实验室(黑龙江大学),黑龙江哈尔滨150080) 摘要:光刻技术作为制备半导体器件的关键技术之一将制约着半导体行业的发展和半导体器件的性能。随着半导体工业的发展,集成电路的特征尺寸越来越小,光刻技术将面临新的挑战。分析了激光光刻技术,包括投影式光刻和激光无掩膜光刻技术的研究现状,着重介绍了极紫外光刻(EUVL)作为下一代光刻技术的发展前景和技术难点、激光无掩膜光刻技术的发展,特别是激光近场扫描光刻、激光干涉光刻、激光非线性光刻等新技术的最新进展及其在高分辨率纳米加工领域的应用前景。 关键词:投影式光刻;无掩膜光刻;发展趋势 中图分类号:TN305.7文献标志码:A文章编号:1007-2276(2012)05-1223-09 Research development of laser lithography technology Deng Changmeng1,2,Geng Yongyou1,Wu Yiqun1,3 (1.Key Laboratory of Material Science and Technology for High Power Lasers,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai201800,China;2.Graduate University of the Chinese Academy of Sciences,Beijing100049,China;3.Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University), Ministry of Education,Harbin150080,China) Abstract:Lithography technology,as one of the key technologies in the manufacture of semiconductor devices,has played an important role in the development of semiconductor industry.As the critical dimension of integrated circuit is decreased to smaller and smaller,lithography technology will face new challenges.In this review,the progress and status on laser lithography were presented,including projection lithography and laser maskless lithography.The foreground and technology challenges of extreme ultraviolet lithography(EUVL),which was considered to be the next generation lithography,were analyzed.The progress and application prospect in high-resolution nano lithography patterning of laser maskless lithography,especially of near-field scanning optical microscopy,laser interference and nonlinearity lithography etc,were discussed. Key words:projection lithography;maskless lithography;development trend 收稿日期:2011-09-05;修订日期:2011-10-03 基金项目:国家自然科学基金(60977004,50872139) 作者简介:邓常猛(1985-),男,博士生,主要从事光刻技术和光刻材料方面的研究。Email:chmdeng@https://www.360docs.net/doc/287652057.html, 导师简介:吴谊群(1957-),女,研究员,博士生导师,主要从事高密度光存储和光电子学功能材料方面的研究。Email:yqwu@https://www.360docs.net/doc/287652057.html,

光学光刻和EUV光刻中的掩膜与晶圆形貌效应

光学光刻和EUV光刻中的掩膜与晶圆形貌效应 半导体制造中微型化的进展使得光刻掩膜和晶圆上的几何图形不断增加。准确模拟这些图形产生的衍射要求运用精确的电磁场(EMF)模拟方法。这些方法是在给定的几何形状、材料参数和入射场(照明)条件下,用合适的数值方法解麦克斯韦方程组。 时域有限差分法(FDTD)将离散积分格式用于微分形式麦克斯韦方程。此方法非常灵活,易于适应各种不同的几何形状和入射场条件。这一方法的计算结果和精确度主要取决于依据每波长网格点数(GPW) 的空间离散化程度。计算时间和存储要求与模拟体中网格点总数是线性比例关系。很多情况下,为了得到某些现象的直观近场分布图和定性研究,15-25 GPW就足够了。光刻模拟的典型准确度要求多半需要100GPW以上。FDTD已被应用于解决先进光刻中的许多典型问题。 像波导法(WGM)和严格耦合波分析(RCWA)一样,模态法也是用切割模拟体、切片内电磁场和光学材料特性的Fourier展开式,以及它们之间Fourier系数的耦合解麦克斯韦方程。散射场是以产生的代数方程式的解获得的。WGM(及类似方法)的计算结果和准确度主要决定于Fourier展开式的阶数(WG阶)和切片数。计算时间和存储要求随WG阶的三次方增加。一般说来,对于求解具有矩形块结构几何形状(如垂直吸收侧壁)的2D问题(线条和隔离),这些模态法是非常准确而有效的。这些方法缩微化能力差使其难以应用到更大的3D问题(如接触孔的半密矩阵)。已开发了特殊的分解方法解决这一问题。有效执行WGM目前已用于光学和EUV掩膜及晶圆形貌效应的高效模拟。 其它EMF模拟方法基于麦克斯韦方程的积分表达式。最近的论文证明,对于模拟形状复杂的掩膜几何图形的光衍射,有限元方法(FEM)和有限积分技术(FIT)具有极高的准确度。这使得这些方法对于标定其它方法和一些特殊场合的模拟非常有用。详细了解和精确模拟从光刻掩膜和晶圆上的(亚)波长尺寸特征图形产生的光衍射,对于开发和优化先进光刻工艺是不可或缺的。 掩膜形貌的影响 掩膜模型

光刻工艺流程

光刻工艺流程 Lithography Process 摘要:光刻技术(lithography technology)是指集成电路制造中利用光学—化学反应原理和化学,物理刻蚀法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。光刻是集成电路工艺中的关键性技术,其构想源自于印刷技术中的照相制版技术。光刻技术的发展使得图形线宽不断缩小,集成度不断提高,从而使得器件不断缩小,性能也不断提利用高。还有大面积的均匀曝光,提高了产量,质量,降低了成本。我们所知的光刻工艺的流程为:涂胶→前烘→曝光→显影→坚膜→刻蚀→去胶。 Abstract:Lithography technology is the manufacture of integrated circuits using optical - chemical reaction principle and chemical, physical etching method, the circuit pattern is transferred to the single crystal surface or the dielectric layer to form an effective graphics window or function graphics technology.Lithography is the key technology in integrated circuit technology, the idea originated in printing technology in the photo lithographic process. Development of lithography technology makes graphics width shrinking, integration continues to improve, so that the devices continue to shrink, the performance is also rising.There are even a large area of exposure, improve the yield, quality and reduce costs. We know lithography process flow is: Photoresist Coating → Soft bake → exposure → development →hard bake → etching → Strip Photoresist. 关键词:光刻,涂胶,前烘,曝光,显影,坚膜,刻蚀,去胶。 Key Words:lithography,Photoresist Coating,Soft bake,exposure,development,hard bake ,etching, Strip Photoresist. 引言: 光刻有三要素:光刻机;光刻版(掩模版);光刻胶。光刻机是IC晶圆中最昂贵的设备,也决定了集成电路最小的特征尺寸。光刻机的种类有接触式光刻机、接近式光刻机、投影式光刻机和步进式光刻机。接触式光刻机设备简单,70年代中期前使用,分辨率只有微

光刻技术及其应用的现状及展望

光刻技术及其应用的现状与展望

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。2005年ITRS对未来几种可能光刻技术方案进行预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的现状及其应用状况

众说周知,电子产业发展的主流和不可阻挡的趋势是“轻、薄、短、小”,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工

软光刻技术的研究现状

大连理工大学研究生试卷 系别:机械工程学院 课程名称:微制造与微机械电子系统 学号: 姓名: 考试时间:2015年1 月15日

PDMS软光刻技术的研究现状 摘要:软光刻技术作为一种新型的微图形复制技术,和传统的光刻技术相比,软光刻技术更加灵活,而且 有许多技术方面的优势。软光刻技术已经广泛应用于光学、生物技术、微电子、传感器以及微全分析系统 的加工诸领域,并且取得了一定的进展。本文,从软光刻技术的原理、分类、国内外以及我们实验室的应 用上来说明软光刻技术的研究现状,是一种很有发展的重要光刻技术。 关键词:软光刻技术研究现状应用 Research Status of PDMS Soft Lithography Abstract:Soft lithography technology as a new type of micro-replication technology graphics, and compared to conventional lithographic techniques, soft lithography technology is more flexible and has many technical advantages. Soft lithography technology has been widely used in optical processing areas such as biotechnology, microelectronics, sensors and micro total analysis system, and has made some progress. In this paper, the principle soft lithography techniques, classification, abroad and in our lab up on the status of the application of soft lithography, photolithography technique is a very important development. Keywords:Soft lithography technologyResearch StatusApplication 1. 软光刻技术概况 20世纪90年代末,一种新的微图形复制技术脱颖而出。该技术用弹性模(大多为PDMS 材料制作)替代传统光刻技术中使用的硬模来产生微结构或者微模具,被称作软光刻技术[1]。软光刻技术作为一种新型的微图形复制技术,和传统的光刻技术相比,软光刻技术更加灵活,而且有许多技术方面的优势,主要有:能制造复杂的多层结构或者三维结构,甚至能在不规则曲面上来制作模具,而且不受材料和化学表面的限制;能突破光刻技术100nm 的限制,实现更为精细的微加工等。此外,它所需设备比较简单,进而在制作成本上也比以前的光刻技术更经济使用。在普通的实验室环境下就能应用,因此软光刻是一种便宜、方便、适于实验室使用的技术。 目前,软光刻技术已经广泛应用于光学、生物技术、微电子、传感器以及微全分析系统的加工诸领域,并且取得了一定的进展。 1.1 软光刻技术的分类 软光刻的核心技术是制作弹性模印章(elastomeric stamp)。通过光刻蚀和模塑的方法,可以快速、高效的获得这种印章。PDMS,即聚二甲基硅氧烷,是软光刻中最常用的弹性模印章制作材料,在设计过程中应该注意防止在PDMS弹性模上产生缺陷,此外,由于PDMS 材料的弹性,过大的深宽比也会导致弹性模结构的倒塌。软光刻的关键技术包括:毛细管成模(micromolding in capillaries,MIMIC)、再铸模(replica molding,REM)、微接触印刷(microcontact printing,uCP)、溶剂辅助成模(solventassistedmicromolding,SAMIM)、

光刻技术及其应用的现状与展望

光刻技术及其应用的现状与展 望 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

光刻技术及其应用的现状与展望

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。2005年ITRS对未来几种可能光刻技术方案进行预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的现状及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是“轻、薄、短、小”,这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使

光刻技术的发展概要

摘要: 光刻在半导体集成电路制造工艺中,无论是从占用的资金、技术还是人员来看,都有举足轻重的地位。光刻工艺的发展历史就是集成电路的发展历史,光刻技术的发展现状就是集成电路的发展现状,不论是最低端的,还是今天最为先进的集成电路制造,光刻技术水平始终决定着集成电路的生产水平。 关键词:光刻曝光分辨率 引言: 30多年以来,集成电路技术的发展始终是随着光学光刻技术的不断创新所推进的。在摩尔定律的驱动下,光学光刻技术经历了接触/接近(Aligner)、等倍投影、缩小步进投影(Stepper)、步进扫描投影(Scanner)曝光方式的变革(见图l所示),曝光波长由436nm的h线向365nm的i线、继而到248nm的KrF0.5 m、0.35 m、0.1 m、90 nnl、65 nm、45 nnl等节点。光刻技术始终为摩尔定律的不断向前推进而孜孜不懈地努力着,目前已迈向了32 nn]节点的开发阶段。 一.推动光刻技术和设备发展的动力 经济利益是si片直径由200ram向300mm转移的主要因素。Canon于1995年着手300ram曝光机,推出了EX3L和[5L步进机,于1997~1998年提供日本半导体超前边缘技术(SELETE)集团使用,ASML公司的300ram步进扫描曝光机使用193nm波长,型号为FPA2500,也于1999年提供给SELETE集团使用。曝光是芯片制造中最关键的制造工艺,由于光学曝光技术的不断创新,一再突破人们预期的极限,使之成为当前曝光的主流技术。1997年美国GCA公司推出了第一台分布重复投影曝光机,被视为曝光技术的一大里程碑,1991年美国SVC公司推出了步进扫描曝光机,它集分布投影曝光机的高分辨率和扫描投影机的大视场、高效率于一身,更适合 (<0125 m)线条的大规模生产曝光。后来Nikon公司又推出了NSR2S204B,用KrF,使用变形照明(MBI)可做到0115 111的曝光。ASML公司也推出PAS15500/750E,使用该公司的AERILAIJII 照明,可解决0113 in曝光。但1999ITRS建议。01l3 111曝光方案是用193nm或248nm加分辨率提高技术 (RET);0110 nl曝光方案是用157、193nm加RET、接近式x光曝光(PxL)或离子束投影曝光(IPL)。目前,Ic加工中线宽在0.25 m 以上的大生产光刻设备,基本都采用i谱线光源,当线宽在0.25g.m--~0.18 m 时,将采用248nm DUV(远紫外)投影光刻技术,若将DUV 辅以提高光刻分辨率的诸多措施,将可用于0.15 m IC器件的研制,这种光源多采用KrF准分子激光器。但到了0.18 m 以下时,人们还是认为光学光刻将会发展193nm 和157nmVUV(真空紫外/深紫外)准分子激光光刻技术。193nm技术已比较成熟[4],商品化在即,只是还有些问题正在解决,比如抗蚀剂等问题。157nm 的F。准分子激光光刻技术,被认为是193nm 的后续技术,可用于0.10 m尺寸IC器件的加工,现已有工业级的F2激光器,由Lambda Physik 公司研制[5]。不过,该技术要达到实用化,估计要到2010年左右。 用于0.10 m 以下尺寸器件~JnY_的光刻技术即EUV[极紫外(辅射)],或许会采用126nm 的Ar。准分子激光氩灯源,但在目前看来,不能不说还处于想象阶段,除光源本身外,各种配套技术、原材料、全反射光学系统等等价格昂贵得将会难以承受。也许,到了这个时候,非光学光刻技术才会真正成为这个技术领域的超微细加工技术的主流,比如采用X-ray曝光技术、电子束(EB—stepper)曝光技术、离子束曝光技术,尽管这种设备的价格也相当昂贵。据了解,日本东京精密有限公司(ACCRETECH),正在联合日本十几家大公司,共同研制用于0.10 m 及以下尺寸器件加工的大型系统设备EB—stepper,有望于5年内问世,NIKON 公司也在开展相关研究,整个行业正拭目以待。最后,以NIKON 公司光刻系统设备及技术为例。。9O年代以来,为适应IC集成度逐步提高的要求,微细加工的技术也迅速提高,相继出现了g谱线,h谱线、i谱线光源及KrF、ArF、F:、Ar:等准分子激光光源,x 射线、电子束、离子束等非光学曝光技术也得到了发展。8O年代,普遍认为光学分辨率的极限只能达到0.5 m 左右,而现在的大多数业内人士则认为可以达到0.1 m 甚至以下[3]。表1给出了不同光源波长的分辨率 二.光刻技术的发展前景

掩模和光刻

掩模和光刻 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning ) 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染; b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%); b、动态(Dynamic)。低速旋转(500rpm_rotation per minute)、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。 决定光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄; 影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时间点有关。 一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不同的光刻胶种类和分辨率): I-line最厚,约0.7~3μm;KrF的厚度约0.4~0.9μm;ArF的厚度约0.2~0.5μm。 4、软烘(Soft Baking) 方法:真空热板,85~120℃,30~60秒; 目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶玷污设备; 边缘光刻胶的去除(EBR,Edge Bead Removal)。光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离(Peeling)而影响其它部分的图形。所以需要去除。 方法:a、化学的方法(Chemical EBR)。软烘后,用PGMEA或EGMEA去边溶剂,喷出少量在正反面边缘出,并小心控制不要到达光刻胶有效区域;b、光学方法(Optical EBR)。即硅片边缘曝光(WEE,Wafer Edge Exposure)。在完成图形的曝光后,用激光曝光硅片边缘,然后在显影或特殊溶剂中溶解5、对准并曝光(Alignment and Exposure)

光刻工艺流程及未来发展方向

集成电路制造工艺 光刻工艺流程 作者:张少军 陕西国防工业职业技术学院电子信息学院电子****班 24 号 710300 摘要:摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去 的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。 关键词:光刻胶;曝光;烘焙;显影;前景 Abstract: photoetching lithography (is) through a series of steps will produce wafer surface film of certain parts of the process, remove after this, wafer surface will stay with the film structure. The part can be eliminated within the aperture shape is thin film or residual island. Keywords: the photoresist, Exposure; Bake; Enhancement; prospects 基本光刻工艺流程— 1 基本光刻工艺流程—从表面准备到曝光 1.1 光刻十步法 表面准备—涂光刻胶—软烘焙—对准和曝光—显影—硬烘焙—显影目测—刻蚀—光刻胶去除—最终目检。 1.2 基本的光刻胶化学物理属性 1.2.1 组成聚合物+溶剂+感光剂+添加剂,普通应用的光刻胶被设计成与紫外线和激光反应,它们称为光学光刻胶(optical resist),还

光刻技术及其应用的状况和未来发展

1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的纷争及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 2.1 以Photons为光源的光刻技术

在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等,如图2所示。主要供应商是众所周知的ASML、NI KON、CANON、ULTRATECH和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD 的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4 步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRAT ECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS/,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。 深紫外技术是以KrF气体在高压受激而产生的等离子体发出的深紫外波长(248 nm和193 nm)的激光作为光源,配合使用i线系统使用的一些成熟技术和分辨率增强技术(RET)、高折射率图形传递介质(如浸没式光刻使用折射率常数大于1的液体)等,可完全满足O.25~0.18μm和0.18μm~90 nm的生产线

光刻掩模板

竭诚为您提供优质文档/双击可除 光刻掩模板 篇一:蚀刻制作掩模板蒸镀罩的工艺 昂立信生产的掩膜板,蒸镀罩以不锈钢材质为主,厚度从0.03mm到1.0mm。是目前高端腐蚀加工的产品之一。是目前物理试验以及玻璃触摸屏真空镀的主要部件。也也于蒸镀产品之用。 平整均匀无毛剌,平面度保持在0.02以下是掩膜板的特点之一。针对掩膜板产品,卓力达配备样品制作小组,在2-3个工作日内完,我司以强大的技术力量(高级研发工程师8人,工程师16人,技术员20人)和先进的生产设备(进口蚀刻机)来保证准时的交货期限。 安全,美观,环保的捆包方式,24小时不间断发货,如需快递可在48小时内到达,于我司合作的快递公司为国内知名品牌顺丰快递。 客户对我司腐蚀产品提出质量异议,公司会在接到客户提出异议后12小时内作出处理意见,若需现场解决,将会派出专业技术人员及品质人员,并做到质量问题不解决服务人员不撤离,对每次客户反馈的掩膜板质量问题及处理结果

我司将予以存档。所有的产品在出货前均会经过生产巡检、品质检测、发货抽检相关人员的三次质检,确保发货到您手里的产品是合格产品 掩膜版用来干什么的? Reticle也称为mask,翻译做光掩模板或者光罩,曝光过程中的原始图形的载体,通过曝光过程,这些图形的信息将被传递到芯片上。制造芯片时用 掩膜板属于光刻技术的范畴吗,掩膜版(光刻版)应用的是光刻技术。 篇二:光刻实验报告 光刻实验 一.实验目的 了解光刻在样品制备工艺中的作用,熟悉光刻工艺的步骤和操作。 二.实验原理 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的sio2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂(如显影液)溶解。然后利用光致抗蚀剂的保护作用,对sio2层或金属蒸发层进行选择

相关文档
最新文档