近世代数习题解答(张禾瑞)四章

近世代数习题解答(张禾瑞)四章
近世代数习题解答(张禾瑞)四章

近世代数习题解答

第四章 整环里的因子分解

1 素元、唯一分解

1. 证明:0不是任何元的真因子。

证 当0≠a 时

若b a 0=则0=a 故矛盾

当0=a 时,有00ε= (ε 是单位)

就是说0是它自己的相伴元

2. 我们看以下的整环I ,I 刚好包含所有可以写成

m m n

(2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元?

证 1)I 的单位

总可以把m 表为

p p m k (2=是0或奇数,k 非负整数)我们说

1±=p 时,即k m 2±=是单位,反之亦然

2)I 的素元

依然是k p p m k ,(2=的限制同上)

我们要求

ⅰ)0≠p

ⅱ)1±≠p

ⅲ)p k 2只有平凡因子

满足ⅰ)—— ⅲ)的p 是奇素数

故p m k 2=而p 是奇素数是

n

m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解?

证 (1)I 的元ε是单位,当而且只当12=ε

时, 事实上,若bi a +=ε是单位

则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε

反之,若1222=+=b a ε,则0,1=±=b a

或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12

2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α

又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β

ββ?=12是单位λαβλ?=?-12是α的相伴元

λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元

不管哪种情形,α只有平凡因子,因而α是素元。

(3)I 的元5不是素元。

若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位

此即λβ,中有一是5的相伴元 现在看52=β的情形

5,222=+=+=b a bi a ββ可能的情形是

???==21

b a ???-=1b a ???=1b a ???-=-=21b

a

???=1b a ???-==12b a ???=-=12b a ???-=1b a

显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积

(4)5的单一分解

)21)(21(5i i -+=)21)(1)(21)(1(i i --+-=

)21)()(21)(()21)()(21)((i i i i i i i i --+=-+-=

i ±±,1均为单位

2 唯一分解环

1.证明本节的推论

证 本节的推论是;

一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子

n a a a ,,21 的两个最大公因子只能查一个单位因子。

用数学归纳法证

当2=n 时,由本节定理3知结论正确。

假定对1-n 个元素来说结论正确。

看n 的情形

设 121,,-n a a a 有最大公因子为1-n d 。

1-n d ,n a 的最大公因子为d 即1-n d d 而a d n 1- i a d n i ?-=)1,,2,1( )1,,2,1(-=n i 又n a d

故d 是n n a a a a ,,1,2,1- 的公因子 假定i a d - n n i ,1,,2,1-=

1--?n d d 又n a d - d d -?

这就是说,d 是n n a a a a ,,1,2,1- 的最大公因子

若'

d 是n n a a a ,11- 的最大公因子 那么d d ' 且'd d 'ud d =? vd d =' u v d d =?

若 0=d 则o d ='

0≠d 则1=uv 即u 是单位ε

故d d ε=

2. 假定在一个唯一分解环里n n db a db a db a ===,,,2211

证明 当而且只当d 是n a a a ,,,21 的一个最大公因子的时候,n b b b ,,,21 互素

证 ""?假定d 是n a a ,,1 的一个最大公因子

若 n b b b ,,21不互素

则有 n n c d b c d b '1'1,,== 而'd 不是单位

那么),,1(,'

n i c dd a i i ==

这就是说'dd 是n a a ,1的公因子 所以d dd '即 '''d dd d = 故1'''=d d 'd 是单位 矛盾

''''?假定n b b ,,1 互素

令'd 是n a a ,1的最大公因子

则有'd d 即d d '

i i c d a '=i c dd 1= ),,2,1(n i =

i i c d b 1= 1d ?是n b b ,,1 的公因子

于是1d 是单位

d d ε='

那么d 是n a a ,,1 的最大公因子

3. 假定I 是一个整环,)(a 和)(b 是I 的两个主理想

证明 )()(b a =当而且只当b 是I 的相伴元的时候

证 ''''?假定)()(b a =

a c

b cb a ',== a c

c a '= 1'=cc

',c c 是单位

所以b 是a 的相伴元

''''?假定a b ε= (ε 单位)),(a b ∈ )()(a b ?

)()(,1a a b a ?=-ε

故 ()()b a =

3 主理想

1.假定I 是一个主理想环,并且d b a =),(

证明 d 是a 和b 的一个最大公因子,因此a 和b 的何最大公因子'd

都可写成以下形式:tb sa d +='

),(I t s ∈

证 由于)(),(d b a =

有d a a d a 1),(=∈ d b b d b 1),(=∈ d 是a b ,的公因子 仍由)(),(d b a =

知),(b a d ∈

故有 b t a s d '

'+=

设1d 是b a , 的 任一公因子

由)(A 知d d 1即d 是b a ,的最大公因子

又d d ε=' (ε单位 )

),(,)()()(''''I t s tb sa b t a s b t a s ∈+=+=+=εεε

2. 一个主理想环的每一个最大理想都是由一个元素所生成的。

证 设)(p 是主理想环I 的最大理想,

并设0)(≠p 若p 是单位,则1)(=p

若p 不是素元

则bc p =, c b ,是p 的真因子 )()(b p ?

)(p 最大理想 I b =∴)(

b b ?∈)(1是单位,矛盾。

3.我们看两个主理想环I 和0I 是I 的子环,假定a 和b 是0I 的两个元,

d 是这两个元在I 里的一个最大公因子。

证明:d 也是这两个元在I 里的一个最大公因子。

证 0I 是主理想环的子环,所以在0I 里)(),('d b a =

由本节习题1知

d 是b a ,的最大公因子,而且最大公因子d 有以下形式:

),(0I t s tb sa d ∈+=

d I I ,0?也是b a ,在I 里的公因子。

设 1d 是b a ,在I 里任意公因子

则1111,d b b d a a ==

那么)(11111tb sa d tb sa d +=+=

d d 1

故d 是b a ,在I 里的最大公因子。

4 欧氏环

1. 证明:一个域一定是一个欧氏环.

证 设F 是域,则F 一定是整环 0,≠∈x F x

n n x ,:→φ是某一个固定0≥的整数,这符合条件(ⅰ)

ⅱ)0,≠∈a F a 对F 的任何元b 都有0)(1+=-b a a b

这里0=r

2. 我们看有理数域F 上的一元多项式环][x F 理想等于怎样的一个主理想?

证 我们说][)1,1(352x F x x x =+++

1,1352+++x x x 互素

1)1(1)1(3523=++++-∴x x x x

即)1,1(1352+++∈x x x

因而)()1()1,1(352x F x x x ==+++

3. 证明由所有复数b a bi a ,(+是整数) 所作成的环是一个欧氏环

取(a a =)(φ)

证 bi a +=α b a , 整数

令222)(b a +==ααφ

设0≠α 则0222≠+=b a α

任取 di c +=β d c , 整数

其中22'22'

,b a bc ad b b a bd ac a +-=++= 故 '',b a 是有理数 取,yi x +=λ y x , 是有理数,且满足条件

21,21''

≤-≤-y b x a 令 λα

βλλη-=-=' 则ηαλαβ+= 因为,,,αλβ的实部与虚部系数均为整数,所以ηα的实部与

虚部系数亦均为整数

1)21()21()()(222'2'2'2?+≤-+-=-=y b x a λ

λη 2222ααη

ηα?= 设r =ηα r +=λαβ 22α?r

即)()(αφφ?r 注意:取 yi x +=λ 使2

1'≤

-x a 21'≤

-y b 的整数 y x ,是可以做到的 例如x b a bd ac x a -++=-22' 只要取 ??????++=22b a bd ac x 或122+??????++b a bd ac 即可使21'≤-x a 5 多项式环的因子分解

1. 假定!是一个唯一分解环,Q 是I 的商域,证明,

][x l 的一个多项式若是在][x Q 里可约,它在][x l 里已经可约.

证 若)(x f 在][x l 里不可约,令)()(0x df x f =

)(0x f 是本原多项式

显然, )(0x f 在][x l 里也不可约,由引理3)(0x f 在][x Q 里不可约,

这与)(x f 在][x Q 里可约的假设矛盾.

2. 假定][x l 是整环I 上的一元多项式环.!属于)(x f 但不属于I ,并且)(x f 的最高系 数是I 的一个单位,证明)(x f 在][x I 里有分解.

证 )(x f 的最高系数是I 的单位,所以)(x f 的系数的最大公因子是单位,也就是说

)(x f 是本原多项式.

)()(x I x f ∈ 而)(x f I ∈

即)(x f 次数0?

根据本节引理4证明的前一部分)(x f 在)(x I 里有分解。

6 因子分解与多项式的根

1. 假定R 是模16的剩余类环,][x R 的多项式2x 在R 里有多少个根?

证 2x 在R 里的所有根是

]12[],8[],4[],0[

这里因为][m 是2x 的根,则需m 4

2. 假定F 是模3的剩余类环,我们看][x F 的多项式x x x f -=3)(证明,0)(=a f 不管a 是F 的哪一个元.

证 )2)(1()1)(1()(3++=-+=-=x x x x x x x x x f

不管a 是F 的,1,0 或!2均使0)(=a f

3. 证明本节的导数计算规则

证 0111)(a x a x a x a x a x f m m n n n n +++++=--

01)(b x b x b x g m m +++=

ⅰ)')]()([x g x f +

'001111)]()()([b a x b a x b a x a x a m m m m m n n +++++++++=++ ++++=+-m m n n x a m x na 11)1(

)()(111b a x b a m m m m ++++-

111)1(-+-++++=m m m m n n x ma x a m x na

)()(''111x g x f b x

mb a m m +=+++++- 111')([)]()([-+--+++=m n m n m n m n m n x b a b a x b a x g x f

'000110])(b a x b a b a ++++

=11)(1()(--+-+++m n m n m n b a m n x b a m n

+)()011021b a b a x b a m n m n +++-+-

))1(()()()()(1211''a x a n x na x f x g x g x f n n n n ++-+=+--- )(01b b x b x m m +++

))((01111a x a x a b x

mb n n n n m m ++++++--- )()(0110b a b a abx m n ++++= 故有

(ⅱ)[)()()()()]()('''x f x g x g x f x g x f +=

现在证明)()

(])(['1'x f x tf x f t t -=

用数学归纳法证

2=t 时,利用(ⅱ)使 )()(x g x f = 有)()(2])(['2x f x f x f =

假设k t =时)(])([x kf x f t = 看1+=k t 的情形

''1])()([])([k k x f x f x f =+ ''])()[()()(k k x f x f x f x f +

)]()()[()()('1'x f x kf x f x f x f k k -+= =)()()1('x f x f k k +

故有(ⅲ) )()(])(['1'x f x tf x f t t -=

近世代数ch2(1-6节)习题参考答案

第二章前6节习题解答 P35 §1 1.全体整数集合对于普通减法来说是不是一个群? 解 ∵减法不满足结合律,∴全体整数对于减法不构成群。 2.举出一个有两个元的群例子。 解 }11{-,对于普通乘法构成一个群。 ]}1[]0{[,对于运算][][][j i j i +=+构成群。 ]}2[]1{[,对于运算][]][[ij j i =构成群。 它们都是两个元的群。 3. 设G 是一个非空集合,”“ο是一个运算。若①”“ο运算封闭;②结合律成立;③G 中存在 右单位元R e :G a ∈?,有a ae R =;④G a ∈?,G a R ∈?-1,有R R e aa =-1。则G 是一个群。 证(仿照群第二定义的证明) 先证R R R e a a aa ==--1 1。 ∵G a R ∈-1,∴G a ∈?',使R R e a a =-'1, ∴R R R R R R R R R R R e a a a e a a aa a a a a a e a a a a ======--------''')()')(()(11111111,R R e a a =?-1。 ∴R R R e a a aa ==--11。 再证a ae a e R R ==,即R e 是单位元。 G a ∈?,已证R R R e a a aa ==--11,∴a a e a ae a a a a aa a e R R R R R =?====--)()(1 1。 ∴a ae a e R R ==。即R e 就是单位元e 。再由e a a aa R R ==--11得到1 -R a 就是1-a 。 这说明:G 中有单位元, G a ∈?都有逆元1-a 。 ∴G 是一个群。 P38 §2 1. 若群G 的每一个元都适合方程e x =2,那么G 是可交换的。 证∵ 12,-=?=∈?x x e x G x 。 ∴。b b a a G b a 11,,--==?∈? ∴ba ba b a ab ===---111)(。 ∴ba ab =,即G 是可换群。 2.在一个有限群中阶大于2的元的个数一定是偶数。 证 令a 是有限群G 中一个阶2>的元,∵互逆元是同阶的,∴1-a 的阶也大于2,且a a ≠-1 (若矛盾的阶与2,21>=?=-a e a a a )。 设G 中还有阶2>的元b ,且1,-≠≠a b a b ,∴1-b 的阶也大于2,且b b ≠-1。

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

近世代数习题解答(张禾瑞)四章

近世代数习题解答 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是 n m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12=ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε 反之,若1222=+=b a ε,则0,1=±=b a 或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12 2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α 又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-12是α的相伴元 λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52=β的情形 5,222=+=+=b a bi a ββ可能的情形是 ???==21 b a ???-=1b a ???=1b a ???-=-=21b a ???=1b a ???-==12b a ???=-=12b a ???-=1b a 显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 , n a a a ,,21 的两个最大公因子只能查一个单位因子。 用数学归纳法证 当2=n 时,由本节定理3知结论正确。 假定对1-n 个元素来说结论正确。

近世代数参考答案

安徽大学2008-2009学年第一学期《近世代数》 考试试卷(B 卷)参考答案 一、名词解释题(本题共5小题,每小题3分,共15分) 1、对,显然模n 的同余关系满足以下条件: 1)对Z 中的任意元素a 都有(mod )a a n ≡;(反身性) 2)如果(mod )a b n ≡,必有(mod )b a n ≡;(对称性) 3)如果(mod )a b n ≡,(mod )b c n ≡,必有(mod )a c n ≡(传递性) 则这个关系是的一个等价关系. 2、错,因为2Z ∈,在Z 中没有逆元. 3、错,因为由于[]Z x x Z <>?,而整数环Z 不是一个域. 4、错,在同态满映下,正规子群的象是正规子群. 5、对,[]F x 是一个有单位元的整环,且 1)存在?:()()f x f x →的次数, 是非零多项式到非负整数集的一个映射; 2)在[]F x 中任取()f x 及()0g x ≠,存在[]F x 上的多项式()q x ,()r x 满足 ()()()(f x g x q x r x =+,其中()0r x =或()r x 的次数<()g x 的次数. 因此[]F x 作成一个欧式环. 二、计算分析题(本题共3小题,每小题5分,共15分) 1、στ=(2453),2τσ=(2346),1τστ-=(256413). 2、12Z 的所有的可逆元为1,5,7,11;n Z 的子环共有()T n 个,故12Z 共有6个子环,它们分别是{}10S =,{}20,6S =,{}30,4,8S =,{}40,3,6,9S =,{} 50,2,4,6,8,10S =和12Z 本身. 3、在8Z 中:32([4][3][2])([5][3])x x x x +--+ 5432 [4][4][3][5][3][6]x x x x x =-+-+-. 三、举例题(本题共3小题,1,2题各3分,第3题4分,共10分) 1、在整数环上的一元多项式[]Z x 中,由于[]Z x x Z <>?,整数环Z 是一个

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数模拟试题1及答案

近世代数模拟试题 单项选择题(每题5分,共25分) 1、在整数加群(Z+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n , n 是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg= g。G对这个乘法来说作成一个群 B . G是全体整数的集合,G对普通加法来说作成一个群 C . G是全体有理数的集合,G对普通加法来说作成一个群 D. G是全体自然数的集合,G对普通加法来说作成一个群 3.如果集合M的一个关系是等价关系,则不一定具备的是(). A . 反身性B. 对称性C. 传递性D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z 没有生成元. B. 1 是其生成元. C. -1 是其生成元. D. Z 是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R 是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律, 并且单位元, 逆元存在. D. 环R 是指一个非空集合和一个代数运算,满足结合律, 并且单位元,

逆元存在. 二. 计算题(每题10 分,共30 分) 1.设G是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 3 的群,试求中G中下列各个元素c ,cd , 1 的阶. 2. 试求出三次对称群 S3 (1),(12),(13),(23),(123),(132) 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗若是, 请给予证明. 证明题(第1小题10分,第2小题15分,第3小题20分,共45 分). 1. 证明: 在群中只有单位元满足方程

《近世代数》作业参考答案

《近世代数》作业参考答案 一.概念解释 1.代数运算:一个集合B A ?到集合D 的映射叫做一个B A ?到D 的代数运算。 2.群的第一定义:一个非空集合G 对乘法运算作成一个群,只要满足: 1)G 对乘法运算封闭; 2)结合律成立: )()(bc a bc a =对G 中任意三个元c b a ,,都成立。 3)对于G 的任意两个元b a ,来说,方程b ax =和b ya =都在G 中有解。 3.域的定义:一个交换除环叫做一个子域。 4.满射:若在集合A 到集合A 的映射Φ下,A 的每一个元至少是A 中的某一个元的象,则称Φ为A 到A 的满射。 5.群的第二定义:设G 为非空集合,G 有代数运算叫乘法,若:(1)G 对乘法封闭; (2)结合律成立; (3)单位元存在; (4)G 中任一元在G 中都有逆元,则称G 对乘法作成群。 6.理想:环R 的一个非空子集N 叫做一个理想子环,简称理想,假若: (1)N b a N b a ∈-?∈, (2)N ar N ra N r N a ∈∈?∈∈,, 7.单射:一个集合A 到A 的映射,a a →Φ: ,A a A a ∈∈,,叫做一个A 到A 的单射。 若:b a b a ≠?≠。 8. 换:一个有限集合的一个一一变换叫做一个置换。 9. 环:一个环R 若满足:(1)R 至少包含一个不等于零的元。 (2)R 有单位元。 (3)R 的每一个非零元有一个逆元,则称R 为除环。 10.一一映射:既是满射又是单射的映射,叫做一一映射。 11.群的指数:一个群G 的一个子群H 的右陪集(或左陪集)的个数,叫做群H 在G 里的指数。 12.环的单位元:设R 是一个环,R e ∈,若对任意的R a ∈,都有a ae ea ==,则称e 是R 的单位元。 二.判断题 1.×; 2.×;3. √;4.×;5.√;6.√ ;7.√; 8,√;9.√;10.√;11.×;12.√ 三.证明题 1. 证:G 显然非空,又任取A ,B G ∈,则1,1±=±=B A ,于是AB 是整数方阵,且1±=?=B A AB , 故G AB ∈,即G 对乘法封闭。结合律显然成立,且E 是G 单位元。 又设G A ∈,由于A 是整数方阵,故A 的伴随矩阵* A 也是整数方阵; 又,1±=A 故**-±== A A A A 11 ,即1 -A 也是整数方阵,即G 中每一个元在G 中都有逆元,从而证得G 作 成一个群。 2.证:设∞=a ,则当n m ≠时,n m a a ≠,于是映射Φ:m a m →就是G=(a )到整数加群Z 的一个一一 映射。又n m a a a n m n m +→=?+,故Φ是G 到Z 的同构映射。即G=(a )与整数加群Z 同构。

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出 的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{}3 ,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加 法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为 乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24) (14), 3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格 中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得 010=+++n n a a a αα 。 8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。 9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。 10、一个环R 对于加法来作成一个循环群,则P 是----------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设集合A={1,2,3}G 是A 上的置换群,H 是G 的子群,H={I,(1 2)},写出H 的所有陪集。 2、设E 是所有偶数做成的集合,“?”是数的乘法,则“?”是E 中的运算,(E ,?)是一个代数系统,问(E ,?)是不是群,为什么? 3、a=493, b=391, 求(a,b), [a,b] 和p, q 。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、若是群,则对于任意的a 、b ∈G ,必有惟一的x ∈G 使得a*x =b 。 2、设m 是一个正整数,利用m 定义整数集Z 上的二元关系:a ?b 当且仅当m ︱a –b 。

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章 群论 1 群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义: '4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立 '5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得 e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---= 即 e a a =-1 (2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea = 这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-= 这就得到群的第一定义. 反过来有群的定义得到''5,4是不困难的. 2 单位元,逆元,消去律 1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有 ba a b ab ab ===---111)(. 2. 在一个有限群里阶大于2的元的个数是偶数. 证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===?=---111)()( 若有n m ? 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =?=-21 这与a 的阶大

韩士安 近世代数 课后习题解答1

习题1-1(参考解答) 1. (1)姊妹关系 (2)()(),P S ? (3) (),{1},1a b Z a b ∈?≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=. 2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,. 3. (1)自反性:,(),,n A M E GL R A EAE ?∈?∈=~A A ∴ 对称性: 1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A ?????∈?∈==∈∴ 传递性: 12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ?∈?∈===1212,(),~.n PP Q Q GL R A C ∈∴ (2) 自反性:1,(),,~.n A M E GL R A E AE A A ??∈?∈=∴ 对称性: ()11,,~,(),,,(),~.T T n n A B M ifA B T GL R A T BT B T BT T GL R B A ???∈?∈=∴=∈∴ 传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ?∈?∈== ()12211221,T T T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A ??∈?∈=∴ 对称性: 1,(),~,(),,n n A B GL R ifA B T GL R A T BT ??∈?∈= () 1 1 111,(),~n B TAT T AT T GL R B A ?????∴==∈∴. 传递性: 11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT ???∈?∈== ()()1 1112212121,A T T CT T T T C T T ???∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ?∈=∴Q (2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==

近世代数答案(仅供参考)

Chapter 1 1、proof Let A,B,C be sets .Suppose that x ∈B,we get x ∈A ∩B or x A B A ∈- ,and x A C ∈ or x A C A ∈- since A B A C = and A B A C = .so x ∈C and B C ?.Similarly ,we have C B ?and so B=C . 2、proof ① First,consider ()x A B A ∈- .Then x A ∈ or x B ∈,but x A ?.This implies if x is not an element of A ,then x B ∈.Hence x A B ∈ and ()A B A - ?A B . Conversely, if x A B ∈ ,then by definition , x A ∈ or x B ∈. This generates two cases: (a1) If x A ∈,clearly ()x A B A ∈- ; (b2) If x B ∈,then either x A ∈ or not . i.e.,either x B ∈ and x A ∈ or x B ∈ but x A ?, in either case, we have ()x A B A ∈- . Hence A B ?()A B A - . Therefore ()A B A - =A B . ② Suppose that ()x A B C ∈- .Then x A ∈ but x B ? and x C ?. So x A ∈-B and x A C ∈- and ()()x A B A C ∈-- by definition . Hence ()A B C - ?()()A B A C -- . Converssely, Assume that ()()x A B A C ∈-- ,then x A ∈-B and x A C ∈-,and we have ,x A ∈but x B ? and

近世代数(含答案)

近世代数 一、单项选择题 1、6阶有限群的任何一个子群一定不是( C ) 。 A .2阶 B .3阶 C .4阶 D .6阶 2、设G 是群,G 有( C )个元素,则不能肯定G 是交换群。 A .4个 B .5个 C .6个 D .7个 3、下面的代数系统(,*)G 中,( D )不是群。 A .G 为整数集合,*为加法 B .G 为偶数集合,*为加法 C .G 为有理数集合,*为加法 D .G 为有理数集合,*为乘法 4、设G 有6个元素的循环群,a 是生成元,则G 的子集( C )是子群。 A .{}a B .{},a e C .{}3,e a D .{}3,,e a a 5、在自然数集N 上,下列哪种运算是可结合的?( B ) A .*a b a b =? B .{}*max ,a b a b = C .*2a b a b =+ D .a b a b +=? 二、填空题 1、已知群G 中的元素a 的阶等于50,则4a 的阶等于( 25 ) 。 2、一个有单位元的无零因子的( 交换环 )称为整环。 3、群的单位元是( 唯一 )的,每个元素的逆元素是( 唯一 )的。 4、一个子群H 的右、左陪集的个数( 相等 )。 5、无零因子环R 中所有非零元的共同的加法阶数称为R 的( 特征 )。 6、设群G 中元素a 的阶为m ,如果n a e =,那么m 与n 存在整除关系为( |m n ) 。 7、如果f 是A 与A 间的一一映射,a 是A 的一个元,则1[()]f f a ?=( a )。 8、循环群的子群是( 循环群 )。 9、若{}2,5A =, {}1,0,2B =?,则A B ×=( {}(2,1),(2,0),(2,2),(5,1),(5,0),(5,2)?? )。 10、如果G 是一个含有15个元素的群,那么,对于a G ?∈,则元素a 的阶只可能是( 1,3,5,15 ) 。 三、问答题 1、什么是集合A 上的等价关系?举例说明。 【答案】设R 是某个集合上的一个二元关系。若满足以下条件: (1)自反性:x A ?∈,xRx ; (2)对称性:,x y A ?∈,xRy yRx ?; (3)传递性:,,x y z A ?∈,()xRy yRz xRz ∧?。 则称R 是一个定义在某个集合上的等价关系。 举例:“等于”这个关系是一个等价关系。 设{}1,2,,8A = ,定义域上的关系如下:,,(mod 3)xRy x y A x y ??∈≡。 2、什么是正规子群?举例说明。 【答案】设G 是一个群,且有子群H 。若H 的左陪集与右陪集总是相等(对任何的a G ∈,aH Ha =),

相关文档
最新文档