Detection of canine distemper virus in dogs by real-time RT-PCR

Detection of canine distemper virus in dogs by real-time RT-PCR
Detection of canine distemper virus in dogs by real-time RT-PCR

Journal of Virological Methods136(2006)

171–176

Detection of canine distemper virus in dogs by real-time RT-PCR Gabriella Elia a,?,Nicola Decaro a,Vito Martella a,Francesco Cirone a,Maria Stella Lucente a, Eleonora Lorusso a,Livia Di Trani b,Canio Buonavoglia a

a Department of Animal Health and Well-being,Faculty of Veterinary Medicine of Bari,S.p.per Casamassima km3,70010Valenzano,Bari,Italy

b Istituto Superiore di Sanit`a,viale Regina Elena299,00161Rome,Italy

Received21February2006;received in revised form6April2006;accepted2May2006

Available online5June2006

Abstract

Canine distemper virus is the etiological agent of a severe disease in dogs and many other carnivores.Clinical diagnosis of canine distemper is dif?cult due to the broad spectrum of signs that may be confounded with other respiratory and enteric diseases of dogs.Accordingly,a laboratory con?rmation is required for suspected cases.In this study a real-time RT-PCR assay was developed for detection and quantitation of canine distemper virus.The assay exhibited high speci?city as all the negative controls(no-template-controls and samples from healthy sero-negative dogs)and other canine pathogens were not misdetected.Up to1×102copies of RNA were detected by the TaqMan assay,thus revealing a high sensitivity.Quantitative TaqMan was validated on clinical samples,including various tissues and organs collected from dogs naturally infected by canine distemper virus.Urines,tonsil,conjunctival swabs and whole blood were found to contain high virus loads and therefore proved to be suitable targets for detection of canine distemper virus RNA.

?2006Elsevier B.V.All rights reserved.

Keywords:Dog;Canine distemper virus;Fluorogenic PCR;Viral load

1.Introduction

Canine distemper virus is the etiological agent of a serious, often fatal,disease in dogs and many other carnivores(Appel, 1987).Canine distemper virus belongs to the genus Morbil-livirus,family Paramixoviridae,that includes measles virus, phocine distemper virus and rinderpest virus.Morbilliviruses have enveloped virions and a negative-sense,single stranded RNA genome.The RNA encodes six structural proteins:two membrane glycoproteins,the fusion(F)and the hemagglutinin (H),the envelope-associated matrix(M)protein,the phospho-protein(P),the large polymerase(L)and the nucleocapsid(N) protein.

Although vaccination against canine distemper has been used widely for many decades,this infection still represents an impor-tant disease for dogs.Targets of infection by canine distemper virus are mainly mucous membranes and lymphoid tissues.Fol-lowing aerosol infection,the virus primarily replicates in lym-phatic tissues of the respiratory tract and subsequently reaches ?Corresponding author.Tel.:+390804679833;fax:+390804679843.

E-mail address:g.elia@veterinaria.uniba.it(G.Elia).various organs,including the cells of the lower respiratory and gastrointestinal tracts,the lymphoid organs,the urinary bladder and the central nervous system(Appel,1987).This can result in either subclinical infection or a combination of respiratory,ocu-lar,gastrointestinal,neurologic and cutaneous signs or lesions, that appear simultaneously or sequentially(Greene and Appel, 1998).Nervous signs may be present in the chronic form of dis-temper along with other manifestations,or may occur without any other signs(Appel,1987).The broad spectrum of clinical signs,not dissimilar from the signs observed in other respira-tory and enteric diseases of dogs,hampers clinical diagnosis of canine distemper(Jones et al.,1997)and renders necessary labo-ratory con?rmation.Routine diagnosis of canine distemper virus by immuno?uorescence(IF)is applied to various specimens, including conjunctival,nasal and vaginal smears,using poly-clonal or monoclonal antibodies.This test is not sensitive and can detect canine distemper virus antigens only within3weeks after infection,when the virus is still present in the epithelial cells(Appel,1987).

Serological methods,such as enzyme-linked immunosorbent (ELISA)and seroneutralization(SN)assays,have little diagnos-tic value because high titers of antibodies to canine distemper virus may be the result of previous vaccination or subclini-

0166-0934/$–see front matter?2006Elsevier B.V.All rights reserved. doi:10.1016/j.jviromet.2006.05.004

172G.Elia et al./Journal of Virological Methods136(2006)171–176

cal/clinical infection(Shin et al.,1995;Frisk et al.,1999;Kim et al.,2001).

A de?nitive diagnosis of canine distemper by virus isolation on canine cells is fastidious and time-consuming,taking sev-eral days to weeks,notably when applied to clinical specimens (Shin et al.,1995;Frisk et al.,1999;Kim et al.,2001).Recently, VERO cells expressing the canine signaling lymphocyte activa-tion molecule were engineered that proved to be highly sensitive for virus isolation,showing cytopathic effect as early as24h after sample inoculation(Seki et al.,2003).

The contagious nature and the high mortality rates of canine distemper make it necessary to speed up the diagnostic proce-dure in order to quarantine infected dogs and start appropriate treatments early.Accordingly,a sensitive,speci?c and rapid method is desirable to detect even small amounts of virus early in infection.Reverse-transcriptase-polymerase chain reaction (RT-PCR)has been applied successfully to diagnosis of canine distemper virus(Frisk et al.,1999;von Messling et al.,1999; Rze˙z utka and Mizak,2002;Saito et al.,2006;Shin et al.,2004). The aim of this study was to develop a rapid,sensitive and spe-ci?c real-time RT-PCR method to detect and quantify canine distemper virus in clinical specimens of naturally infected dogs. Real-time RT-PCR assays for canine distemper virus offer sub-stantial improvements in virus detection and thus may render easier the control of canine distemper disease.

2.Materials and methods

2.1.Animals and sample collection

Canine distemper virus-positive samples(blood,conjuncti-val swabs and urines)from eight dogs(nos.1–8)were collected during2005.The dogs showed typical signs of canine distem-per,such as fever,purulent ocular and nasal discharge,tonsillitis, bronchitis,gastroenteritis or neurological disturbance and diag-nosis was con?rmed by RT-PCR(Frisk et al.,1999).Archival tissue samples(brain and/or spleen)from seven additional dogs positive to canine distemper virus(nos.9–15)were included in the study.The whole carcase from a canine distemper virus-positive dog(no.16)was used for detailed investigation of canine distemper virus distribution in the various tissues and organs.

The negative controls used in the study included:(i)blood samples taken from two healthy dogs one day prior to vacci-nation;(ii)no-template-controls;(iii)samples containing other canine pathogens,https://www.360docs.net/doc/2d8086815.html,oV type I and CCoV type II(Decaro et al.,2005a),reoviruses(Decaro et al.,2005b)and rotaviruses (Martella et al.,2001).

2.2.Preparation of RNA samples

Each sample was prepared for RNA extraction using com-mercial kits,depending on the examined probe.QIAamp Blood Mini Kit was used to isolate RNA from1ml of blood samples. QIAamp Viral RNA protocols(QIAamp Viral RNA,Qiagen S.p.A.,Italy)were used to isolate total RNA from swabs(140?l from1ml of transport medium used to resuspend the swabs in by vortexing)and from140?l of urine.RNA was extracted from tissues(25mg)with the RNeasy Total RNA Kit(Qiagen S.p.A.). To rule out carryover contamination,negative controls included the RNA extracted from biological samples of healthy dogs as well as the RNA of other canine pathogens.RNA isolation was performed according to the manufacturer’s instruction.

2.3.Design of primers and probe

Sequenced retrieved from the GenBank database were used to design primers and probe.Canine distemper virus conserved regions were identi?ed by generating multiple sequence alignments using the BioEdit software package (https://www.360docs.net/doc/2d8086815.html,/BioEdit/bioedit.html).The H and F genes of canine distemper virus display a high rate of nucleotide variation that allows distinction of a number of geno-types or genetic clusters,according to a geographic pattern (Martella et al.,in press).Accordingly,selection of primers was restricted to the N protein-encoding gene,that is subjected to a lower degree of variation(Rima et al.,1995).Primers and TaqMan probe were designed using Beacon Design soft-ware version2.0(Premier Biosoft International,Palo Alto, CA,USA)to amplify a conserved83-bp fragment within the N protein region.Primers and probe were synthesized by MWG Biotech AG(Ebersberg,Germany).The TaqMan probe was labeled with6-carboxy?uorescein(FAM)at the 5 end and with6-carboxytetramethylrhodamine(TAMRA)at the3 end.The position and sequence of the primers and probe used for TaqMan RT-PCR ampli?cation are reported in Table1.

2.4.Generation of standard RNA

An880nt-long RT-PCR product encompassing the tar-geted region was prepared using canine distemper virus strain Onderstepoort.The sequence of the primers are the fol-lows:P for5 -ATGAAACGATCCCCAGGG-3 ;P rev5 -ACTGATGTAACACTGGTCT-3 .The resulting RT-PCR prod-uct was cloned into pCR4-TOPO vector(TOPO TA cloning, Invitrogen,Milan,Italy)and in vitro transcribed with Ribo-MAXTM Large Scale RNA Production System-T7(Promega Italia,Milan,Italy)from the T7promoter,according to the man-ufacturer’s guidelines.Residual DNA was eliminated by DNAse treatment and the transcript was puri?ed with Rneasy columns (Qiagen S.p.A.,Italy)and quanti?ed by spectrophotometrical analysis.Ten-fold dilutions of the RNA transcripts were made in TE(Tris–HCl,EDTA,pH8.0)buffer containing30?g carrier RNA(tRNA from Escherichia coli,Sigma–Aldrich Srl,Milan, Italy)per ml.Aliquots of each dilution were frozen at?70?C and used only once.

2.5.Reverse transcription

Triplicate of the standard dilutions and RNA templates were subjected simultaneously to reverse transcription(RT).One microliter of each triplicate of standard dilutions or template RNA was reverse transcribed in a reaction volume of20?l

G.Elia et al./Journal of Virological Methods136(2006)171–176173 Table1

Oligonucleotides used in?uorogenic and conventional RT-PCR assays for canine distemper virus

Primer/probe Sequences5 –3 Sense Position Amplicon size(bp) p1a ACAGGATTGCTGAGGACCTAT+769–789287

p2a CAAGATAACCATGTACGGTGC?1055–1035

CDV-F b AGCTAGTTTCATCTTAACTATCAAATT+905–93187

CDV-R b TTAACTCTCCAGAAAACTCATGC?966–987

CDV-Pb b FAM-ACCCAAGAGCCGGATACATAGTTTCAATGC-TAMRA?934–963

FAM,6-carboxy?uorescein;TAMRA,6-carboxytetramethylrhodamine.Oligonucleotide positions are referred to the sequence of canine distemper virus strain Ondesterpoort.

a Coventional RT-PCR(Frisk et al.,1999).

b Fluorogeni

c RT-PCR.

containing PCR buffer1×(KCl50mM,Tris–HCl10mM,pH 8.3),MgCl25mM,1mM of each deoxynucleotide(dATP,dCTP, dGTP,dTTP),Rnase Inhibitor1U,MuLV reverse transcriptase 2.5U,random hexamers2.5U.Synthesis of c-DNA was carried out at42?C for30min,followed by a denaturation step at99?C for5min.

2.6.Real-time assay for canine distemper virus

For the real-time assay,20?l of c-DNA was added to30?l of reaction master mix.The master mix consisted of25?l of IQTM Supermix(Bio-Rad Laboratories Srl,Milan,Italy),600nM of each primer(P for and P rev),400nM of probe CDV-Pb.Fluoro-genic PCR was carried out in a LightCycler instrument(i-Cycler iQTM Real-Time Detection,Bio-Rad Laboratories Srl)with the following steps:activation of iTaq DNA polymerase at95?C for10min and45cycles consisting of denaturation at95?C for 15s,primer annealing at48?C for1min and extension at60?C for1min.

Standard RNA(5000copies/ml of faecal suspension)used in a real-time RT-PCR assay for avian in?uenza virus(Di Trani et al.,in press)was employed as an internal control(IC)to con-?rm the successful extraction of RNA,conversion to c-DNA and the TaqMan PCR reaction.The?xed amount of IC added to each sample had been calculated to give a mean threshold cycle (C T)value in the real-time RT-PCR assay of35.33with a S.D. of0.79,as calculated by30separate runs.Real-time PCR for IC detection was carried out in a separate run,using primers M-Flu1(CTTCTAACCGAGGTCGAAACGTA)and M-Flu2 (GGATTGGTCTTGTCTTTAGCCA)and minor groove binder probe M-Fluprob(FAM-CTCGGCTTTGAGGGGGCCTGA-MGB).Samples in which the C T value for the IC was>36.91 (average+2S.D.)were excluded from analysis.

2.7.Gel-based RT-PCR for canine distemper virus

The PCR assay ampli?es a287-bp region from the N gene (Frisk et al.,1999).The position and sequence of the primers are reported in Table1.Samples were extracted as described above. Brie?y,for ampli?cation the GeneAmp RNA PCR kit(Applied Biosystem,Applera,Italy)was used.RT was performed at42?C for30min.After inactivation of MuLV reverse transcriptase, the PCR mix(1?M of each primer)was added,followed by denaturation at94?C for10min and45cycles consisting of denaturation at94?C,annealing at59.5?C for2min,extension at72?C for1min and?nal extension at72?C for10min.The RT-PCR products were analyzed on2%agarose gel after staining with ethidium bromide.

3.Results

3.1.Dynamic range,speci?city and reproducibility of the

real-time RT-PCR assay

Serial10-fold dilutions ranging from1×100to1×108 copies of control RNA were reversed transcribed.cDNAs were then used to determine the detectability and the linearity of the assay(Fig.1).C T values were measured in triplicate and were plot against the known copy number of the standard sam-ples.The generated standard curve covered a linear range of seven orders of magnitude and showed linearity over the entire quantitation range(slope=?3.831),providing an accurate mea-surement over a very large variety of starting target amounts.The coef?cient of linear regression(R2)was equal to0.997and the PCR ef?ciency ranged around82.4%.

Experiments were undertaken to asses diagnostic criteria such as speci?city and reproducibility.Samples known to be positive for other infectious agents were run in this assay

to Fig.1.Standard curve of the real-time RT-PCR assay for canine distemper viirus.Ten-fold dilutions of standard RNA prior to ampli?cation were used,as indicated in the x-axis,whereas the corresponding cycle threshold(C T)values are presented on the y-axis.Each dot represents the result of duplicate ampli?cation of each dilution.The coef?cient of determination(R2)and the slope value(s)of the regression curve were calculated and are indicated.

174G.Elia et al./Journal of Virological Methods136(2006)

171–176

Fig.2.Coef?cient of variation intra-and inter-assay over the dynamic range of the real-time RT-PCR for canine distemper virus.

determine whether there is any cross-reactivity with other tar-gets.These samples were positive controls from other assays currently being run in our lab.No cross-reactivity with CCoV type I,CCoV type II,reoviruses and rotaviruses was observed in this assay.Similarly,no detectable?uorescence signal was obtained in control negative tubes(negative samples and no-template controls),con?rming that the assay was speci?c for the detection of canine distemper virus RNA.

To asses the reproducibility of the?uorogenic assay,the inter-assay and the intra-assay coef?cient of variations(CVs)were calculated by testing in?ve consecutive runs(CV inter-assay) or?ve times in the same run(CV intra-assay)samples contain-ing different amounts of virus RNA(Fig.2).The intra-assay CVs were in the range of6.19%(samples containing4.41×105 RNA copies)to37.52%(samples containing2.18×102RNA copies),whereas the inter-assay CVs were comprised between 9.79%(samples containing6.34×106RNA copies)and46.72% (samples containing4.09×102RNA copies).

3.2.Sensitivity comparison of conventional RT-PCR and

real-time RT-PCR

To assess the sensitivity,the real-time RT-PCR was compared with an RT-PCR assay used in clinical diagnostics(Frisk et al., 1999;Saito et al.,2006).A50%homogenate containing25mg of tonsil sample positive to canine distemper virus(dog no.16) was diluted1:10in eight steps by spiking a canine distemper virus-negative tissue homogenate.Genomic RNA was then ana-lyzed in duplicate by both TaqMan assay and conventional RT-PCR.Real-time analysis predicted that the starting RNA copy number from the sample was3.13×108RNA copies/?l of tem-plate.The detection limit of the TaqMan assay was1×102and 3.13×102copies for standard RNA and genomic RNA,respec-tively.Sensitivity of the conventional RT-PCR assay was as high as3.13×102copies of genomic RNA(Fig.3).In addition,the cryolisate of a cell-culture-adapted strain,Onderstepoort,with a titre of104.00TCID50/50?l,was diluted serially1:10in

seven Fig.3.Sensitivity of the conventional RT-PCR based on gene N of canine dis-temper https://www.360docs.net/doc/2d8086815.html,ne M,molecular size marker GeneRuler100bp DNA Ladder (Fermentas,GmbH,St.Leon-Rot.,Germany);lanes1–9,10-fold dilutions(undi-luted to10?8)of a canine distemper virus-positive sample,containing3.13×108 RNA copies/?l of template.

steps and assayed with both real-time and conventional PCR. Both the assays were able to detect virus RNA up to the dilution of10?2.00TCID50/50?l.Accordingly,the real-time assay and the conventional PCR were equally sensitive in the detection of virus RNA.

3.3.Internal control performance

The IC was detected in all the examined samples,with C T values below the threshold value of36.91.Therefore,signi?cant RNA losses and DNA polymerase inhibition did not occur during nucleic acid extraction and PCR ampli?cation,respectively.

3.4.Analysis of samples from dogs infected with canine distemper virus

To evaluate the suitability of the real-time RT-PCR assay for detection of canine distemper virus in clinical specimens from eight positive dogs,conjunctival swabs,urines,and blood were analyzed.As shown in Table2,high levels of virus RNA were detected in all conjunctival swabs with a range between 5.91×105and4.93×107?l of template.The virus loads in blood samples ranged between6.26×104and7.58×106RNA

copies/?l of template,while in the urines reached2.35×109 RNA copies/?l of template.

Quantitation of virus loads in archival brain and spleen tis-sues was also determined.In all the examined animals,RNA concentration ranged from1.04×104to1.87×109copies/?l of template.

Analysis of canine distemper virus distribution in dog no. 16(Table3)revealed high virus concentrations(3.10×106to 3.13×108RNA copies/?l of template)in the lymphoid tissues (tonsil,spleen,thymus,mesenteric lymph node).Interestingly, the virus was detected at high levels also in other tissues,such as skin,muscular tissues,footpad,oral mucosa,with the virus loads ranging from2.10×106to4.25×108RNA copies/?l of template.

In order to investigate the distribution of canine distemper virus throughout the brain tissues,a total of17samples were obtained from a positive brain.Six cortex areas and11medullar areas were selected,including the cerebellum.As shown in

G.Elia et al./Journal of Virological Methods136(2006)171–176175

Table2

Analysis of samples from dogs naturally infected with canine distemper virus by real-time RT-PCR

Sample Dog no.Real-time titre a Blood17.58×106 Ocular swab1 1.63×106 Ocular swab2 5.33×106 Ocular swab38.03×105 Ocular swab4 4.93×107 Urine4 1.95×103 Ocular swab5 5.91×105 Blood5 6.26×104 Urine5 2.35×109 Ocular swab6 1.13×107 Blood7 6.08×105 Ocular swab8 6.38×105 Urine8 1.90×105 Spleen9 4.78×106 Brain9 2.80×107 Spleen10 3.80×108 Brain10 1.03×108 Spleen11 2.54×107 Spleen12 1.87×109 Spleen13 1.37×109 Spleen14 1.04×104 Spleen158.77×104

a Real-time titres are expressed as number of virus RNA copies/?l of template. Table3

Analysis of samples collected at necroscopy from a dog positive to canine dis-temper virus(no.16)by real-time RT-PCR

Tissues Real-time titre a Thymus 3.96×107 Tonsil 3.13×108 Mesenteric lymph node 2.64×108 Spleen 3.10×106 Oral swab 2.72×108 Mouth 1.16×108 Rectal swab 1.61×108 Nasal swab 5.71×106 Urines7.03×107 Urinary bladder 4.41×104 Kidney 5.64×106 Heart 2.79×104 Liver 3.23×106 Gall 1.55×107 Testis 1.86×106 Cerebrospinal?uid 3.06×104 Lung

Cranial lobe 1.43×108 Accessory lobe 6.28×107 Caudal lobe 1.41×108 Spinal cord

Thoracic segment 5.19×105 Lumbar segment 1.82×107 Sacral segment 1.35×105 Bone marrow 1.91×106 Footpad9.87×107 Skin 4.25×108 Muscle tissue 2.10×106 Blood 5.27×105

a Real-time titres are expressed as number of virus RNA copies/?l of template.Table4

Virus loads evidenced by real-time RT-PCR in the brain of a dog positive to canine distemper virus

Dog brain no.16Anatomic region Real-time titre a 1Frontal lobe 3.40×107

2Frontal lobe 1.28×107

3Temporal lobe 1.64×107

4Parietal lobe 3.50×106

5Occipital lobe 3.23×106

6Cerebellar hemisphere 1.36×106

7Temporal lobe 2.21×107

8Prorean gyrus 4.23×106

9Prorean gyrus 5.76×107

10Occipital gyrus 6.64×105

11Splenial gyrus 2.96×106

12Hypothalamus 1.44×106

13Corpus callosum:genu7.51×105

14Cingulate gyrus 1.88×105

15Corpus callosum:splenium 2.17×102

16Superior cerebellar vermis7.55×106

17Inferior cerebellar vermis8.66×105

a Real-time titres are expressed as number of virus RNA copies/?l of template. Table4,the highest viral loads(1.64×107to5.76×107RNA copies/?l of template)were detected in the frontal and temporal lobe,as well as in the prorean gyrus,while the lowest viral load was detected in the splenium of corpus callosum(2.17×102 RNA copies/?l of template).In the other brain samples the viral concentrations were homogeneous and ranged between 1.88×105and7.55×106RNA copies/?l of template.

4.Discussion

Canine distemper is a major disease of dog,characterised by high morbidity and mortality rates,notably in dogs between3 and6months of age.In recent years,several attempts have been made to improve diagnosis of canine distemper,and several con-ventional RT-PCR assays were developed that allow ef?cient virus detection in vivo from swabs or biological samples(Frisk et al.,1999;Shin et al.,1995,2004).In addition,Seki et al. (2003)engineered VERO cells expressing the canine signaling lymphocyte activation molecule,that proved to be highly sensi-tive for virus isolation.

The sensitivity,speci?city and rapidity of RT-PCR compared with conventional methods,including electron microscopy, virus isolation,immuno?uorescence and ELISA,render this assay the?rst-choice diagnostic test.However,RT-PCR is tech-nically demanding,and requires4–8h for a complete diagnosis with additional post-PCR analysis for the detection of PCR products.

The double-step real-time RT-PCR assay displays several advantages over conventional RT-PCR assays,increasing the laboratory throughput and enabling simultaneous processing of several samples.The technique gives exhaustive results within 3h and the reaction is performed in a closed-tube system,not requiring additional manipulations.Although a limited carry-over contamination may occur due to separation between RT and?uorogenic PCR,a double-step assay was preferred rather

176G.Elia et al./Journal of Virological Methods136(2006)171–176

than a one-step,since one-tube methods are more expensive and less sensitive than two-step RT-PCR procedures(Nakamura et al.,1993;Decaro et al.,2004).Another major advantage of real-time RT-PCR is the ability to quantitate the viral load in clinical specimens,whereas conventional RT-PCR allows only qualitative analysis.This makes the?uorogenic assay useful for pathogenesis studies.The real-time RT-PCR developed in this study proved to be speci?c and no cross-ampli?cation of non-morbillivirus RNA virus was observed.The real-time RT-PCR assay for canine distemper virus was highly reproducible and linear over a range of eight orders of magnitude,from102to 109copies,allowing a precise calculation of RNA load in sam-ples containing a wide range of viral RNA amounts.In the study, the reproducibility of the assay was high with relatively small intra-and inter-assay variability.We used the TaqMan assay to provide quantitative estimates of the virus genetic loads in a variety of tissue samples.As expected,high viral load was demonstrated in the lymphoid tissues(tonsil,spleen,mesenteric lymph nodes).High viral levels were also demonstrated in sev-eral internal organs,and,even more interestingly,in urines.This ?nding is consistent with what observed previously(Shen et al., 1981;Saito et al.,2006)and addresses urines as a good tar-get for diagnosis of canine distemper virus in vivo in clinically suspected dogs.

Post-mortem diagnosis of canine distemper is usually based on detection of virus antigens by IF on brain smears.The real-time RT-PCR was used to investigate virus distribution and loads throughout the cerebral tissues in order to assess the area that is more appropriate for sampling.The complete brain of a dog was analyzed by dissection in multiple tissue samples.The frontal lobe was found to contain high viral concentrations,thus sug-gesting that this area is more suitable for diagnostic purposes. Additional studies are required to draw more de?nitive conclu-sions on the pattern of viral distribution and to investigate the relationships between virus localization and the occurrence of neurological signs in the different stages of infection.

The assay herewith described proved useful to shorten detec-tion of canine distemper virus infections and allowed quantita-tion of viral RNA in biological samples.This will provide the basis to investigate the pathogenesis of canine distemper,with particular regards to the patterns of virus spreading and shed-ding.In addition,it will be helpful to evaluate the ef?cacy of antiviral drugs in vivo and in vitro.

References

Appel,M.J.G.,1987.Canine distemper virus.In:Appel,M.J.G.(Ed.),Virus Infections of Carnivores.Elsevier Science Publishers,Amsterdam,The Netherlands,pp.133–159.

Decaro,N.,Pratelli,A.,Campolo,M.,Elia,G.,Martella,V.,Tempesta,M., Buonavoglia,C.,2004.Quantitation of canine coronavirus RNA in the faeces of dogs by TaqMan RT-PCR.J.Virol.Methods119,145–150. Decaro,N.,Martella,V.,Ricci,D.,Elia,G.,Desario,C.,Campolo,M.,Cava-liere,N.,Di Trani,L.,Tempesta,M.,Buonavoglia,C.,2005a.Genotyping-speci?c?uorogenic RT-PCR assays for the detection and quantitation of

canine coronavirus type I and II RNA in faecal samples of dogs.J.Virol.

Methods130,72–78.

Decaro,N.,Campolo,M.,Desario, C.,Ricci, D.,Camero,M.,Lorusso,

E.,Elia,G.,Lavazza,A.,Martella,V.,Buonavoglia,C.,2005b.Viro-

logical and molecular characterization of a type3mammalian reovirus strain isolated from a dog with diarrhea in Italy.Vet.Microbiol.109, 19–27.

Di Trani,L.,Bedini,B.,Donatelli,I.,Campitelli,L.,Chiappini,B.,De Marco, M.A.,Delogu,M.,Buonavoglia,C.,Vaccai,G.Avian in?uenza virus detection by one step real-time RT-PCR assay using a3 minor groove binder?uorogenic probe,Biotechniques,in press.

Frisk,A.L.,Konig,M.,Moritz,A.,Baumgartnerm,W.,1999.Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum,whole blood,and cerebrospinal?uid from dogs with dis-temper.J.Clin.Microbiol.37(11),3634–3643.

Greene,C.E.,Appel,M.J.,1998.Canine distemper.In:Greene,C.E.(Ed.), Infectious Diseases of the Dog and Cat,second ed.WB Saunders, Philadelphia,PA,pp.9–22.

Jones,T.C.,Hunt,R.D.,King,N.W.,1997.Canine distemper.In:Jones,T.C., Hunt,R.D.,King,N.W.(Eds.),Veterinary Pathology,sixth ed.Williams &Wilkins,Baltimore,pp.311–315.

Kim,Y.H.,Cho,K.W.,Youn,H.Y.,Yoo,H.S.,Han,H.R.,2001.Detection of canine distemper virus(CDV)through one step RT-PCR combined with nested PCR.J.Vet.Sci.2,59–63.

Martella,V.,Pratelli,A.,Elia,G.,Decaro,N.,Tempesta,M.,Buonavoglia,

C.,2001.Isolation and genetic characterization of two G3P5A[3]canine

rotavirus strains in Italy.J.Virol.Methods96,43–49.

Martella,V.,Cirone,F.,Elia,G.,Lorusso,E.,Decaro,N.,Campolo,M., Desario,C.,Lucente,M.S.,Bellacicco,A.L.,Blixenkrone-M?ller,M., Carmichael,L.E.,Buonavoglia,C.Heterogeneity within the hemagglu-tinin genes of canine distemper virus(CDV)strains detected in Italy.Vet.

Microbiol.,in press.

Nakamura,S.,Katamine,S.,Yamamoto,T.,Foung,S.,Kurata,T., Hirabayashi,Y.,Shimada,K.,Hino,S.,Miyamoto,T.,1993.Ampli?-cation and detection of a single molecule of human immunode?ciency virus RNA.Virus Genes4,325–338.

Rze˙z utka,A.,Mizak,B.,2002.Application of N-PCR for diagnosis of dis-temper in dogs and fur animals.Vet.Microbiol.88,95–103.

Rima,B.K.,Wishaupt,R.G.,Welsh,M.J.,Earle,J.A.,1995.The evolution of morbilliviruses:a comparison of nucleocapsid gene sequences including

a porpoise morbillivirus.Vet.Microbiol.44,127–134.

Saito,T.B.,Al?eri, A.A.,Wosiacki,S.R.,Negr?a o, F.J.,Morais,H.S.A., Al?eri, A.F.,2006.Detection of canine distemper virus by reverse transcriptase-polymerase chain reaction in the urine of dogs with clin-ical signs of distemper encephalitis.Res.Vet.Sci.80,116–119. Seki,F.,Ono,N.,Yamaguchi,R.,Yanagi,Y.,2003.Ef?cient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM(CD150)and their adaptability to marmoset B95a cells.J.Virol.

77,9943–9950.

Shen,D.T.,Gorham,J.R.,Pedersen,V.,1981.Viruria in dogs infected with canine distemper.Vet.Med.Small Anim.Clin.76,1175–1177.

Shin,Y.S.,Mori,T.,Okita,M.,Gemma,T.,Kai,C.,Mikami,T.,1995.

Detection of canine distemper virus nucleocapsid protein gene in canine peripheral blood mononuclear cells by RT-PCR.J.Vet.Med.Sci.57, 439–445.

Shin,Y.J.,Cho,K.O.,Cho,H.S.,Kang,S.K.,Kim,H.J.,Kim,Y.H.,Park,

H.S.,Park,N.Y.,https://www.360docs.net/doc/2d8086815.html,parison of one-step RT-PCR and a nested

PCR for the detection of canine distemper virus in clinical samples.Aust.

Vet.J.82,83–86.

von Messling,V.,Harder,T.C.,Moennig,V.,Rautenberg,P.,Nolte,I.,Haas, L.,1999.Rapid and sensitive detection of immunoglobulin M(IgM)and IgG antibodies against canine distemper virus by a new recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay.J.Clin.

Microbiol.37,1049–1056.

重型肝炎的诊疗及护理

重型肝炎的护理 重型肝炎是以大量肝细胞坏死为主要病理特点为表现的一种严重肝脏疾病,可引起肝衰竭甚至危及生命,是肝病患者病故的主要原因之一。在我国,引起重型肝炎的最常见原因为乙型肝炎病毒感染,约占所有重型肝炎的三分之二,此外,甲型、丙型、丁型重型乙肝及戊型肝炎病毒亦能引起重型肝炎,其它病毒如巨细胞病毒(CMV)、EB病毒、疱疹病毒、腺病毒、登革热病毒、Rift-vnlley病毒也可以引起,药物性肝损害、酒精性肝炎、自身免疫性肝病所引起的重型肝炎在临床中也时有出现,尤其是药物性肝衰竭,在美国重型肝炎中占有较高的比例。随着乙肝抗病毒领域药物的推广,乙型肝炎所致的重型肝炎在我国也在下降,因此使药物性肝炎、酒精性肝炎所致的重型肝炎比例上升,此外,妊娠急性脂肪肝也是一种特殊类型的重型肝炎。重型肝炎疾病的特点:病情重、合并症多、预后差、死亡率高。 发病机制 重型肝炎的发病机制复杂,从细胞损伤、功能障碍,直到细胞凋亡、坏死,其机制至今未完全阐明。对于病毒感染引起的重型肝炎,其发病机制既与病原有关,也与机体的免疫有关。 发病机制与病原关系:病毒可直接引起肝细胞损害,最后形成大块肝细胞坏死,例如甲型与戊型肝炎发病时,肝细胞的严重病变(溶解和坏死)是这些病毒在肝细胞内大量复制的直接后果,也就是说被感染破坏的肝细胞数越多,病情越严重。就乙肝而言,感染的病毒量多是一个因素,但病毒的基因突变也是另一个因素,基因突变后导致病毒数上升,也与乙型重型肝炎的发生相关。 发病机制与免疫关系:乙型肝炎患者发生重型肝炎占重肝的2/3,但并非是这些重型肝炎患者体内乙肝病毒很多,更重要的机制是乙型肝炎病毒所引起的免疫反应异常所致,由乙肝病毒激发机体的过强免疫时,大量抗原-抗体复合物产生并激活被体系统,以及在肿瘤坏死因子(TNF)、白细胞介素-1(IL-1)、白细胞介素-6(IL-6)、内毒素等参与下,导致大片肝细胞坏死,发生重型肝炎。[1] 病因分类 重型肝炎的病因及诱因复杂,最常见的是机体免疫状况改变后免疫激活,乙型肝炎基础上重叠戊型、甲型肝炎感染、乙肝基因突变、妊娠、过度疲劳、精神刺激、饮酒、应用肝损害药物、合并细菌感染、伴有其它疾病如甲亢、糖尿病等。其分类主要按病情发展速度分急性、亚急性和慢性重型肝炎。其中,慢性又分为慢加急肝衰竭和慢性肝衰。 分类:根据病理组织学特征和病情发展速度,重型肝炎可分为四类: (1)急性肝衰竭(acute liver failure,ALF):又称暴发型肝炎(fulminant hepatitis),特征是起病急,发病2周内出现以Ⅱ度以上肝性脑病为特征的肝衰竭症状。发病多有诱因。本型病死率高,病程不超过三周。 (2)亚急性肝衰竭(subacute liver failure,SALF):又称亚急性肝坏死。起病较急,发病15天~26周内出现肝衰竭症状。首先出现Ⅱ度以上肝性脑病者,称为脑病型;首先出现腹水及其相关症候(包括胸水等)者,称为腹水型。晚期可有难治性并发症,如脑水肿,消化道大出血,严重感染,电解质紊乱及酸碱平衡失调。白细胞升高,血红蛋白下降,低血糖,低胆固醇,低胆碱酯酶。一旦出现肝肾综合征,预后极差。本型病程较长,常超过3周至数月。容易转化为慢性肝炎或肝硬化。 (3)慢加急性肝衰竭(acute-on-chronic liver failure,ACLF):是在慢性肝病基础上出现的急性肝功能失代偿。 (4)慢性肝衰竭(chronic liver failure,CLF):是在肝硬化基础上,肝功能进行性减退导致的以腹水或门脉高压、凝血功能障碍和肝性脑病等为主要表现的慢性肝功能失代

恩替卡韦治疗慢性重型乙型肝炎效果观察及护理

恩替卡韦治疗慢性重型乙型肝炎效果观察及护理 目的探讨慢性乙型肝炎采用恩替卡韦治疗的有效性和安全性和加强整体护理干预后的预后效果。方法利用病例回顾性分析方法,将在我院于2011年1月1日~2013年12月31日这段时间诊治的总计98例慢性重型乙型肝炎患者的临床资料进行研究和比较分析。将患者按照随机分配方法分成两个组,其中对照组患者为44例均采用传统治疗方法和常规护理方法进行护理;观察组患者54例在对照组的传统治疗方法和常规护理的基础上再加用恩替卡韦进行治疗,同时采取整体护理的方法对患者进行护理。然后将两组数据结果进行分析,分析探讨两组患者治疗及护理前后临床总有效率和护理满意度。结果观察组临床总有效率与对照组比较,明显有所提高(P<0.05)。施行整体护理后患者心理状况和护理满意度明显改善(P <0.05)。结论慢性重型乙型肝炎采用恩替卡韦治疗,并加强整体护理干预,可有效改善预后,保障患者生存质量。 标签:恩替卡韦;慢性重型乙型肝炎;效果观察;护理 为了进一步探讨慢性乙型肝炎采用恩替卡韦治疗的有效性和安全性和加强整体护理干预后的预后效果。本次研究利用病例回顾性分析方法,将在我院于诊治的总计98例慢性重型乙型肝炎患者的临床资料进行比较分析。 1 资料与方法 1.1一般资料本次研究的对象为将在我院于2011年1月1日~2013年12月31日这段时间诊治的总计98例慢性重型乙型肝炎患者,随机分成两个组,其中对照组患者为44例(男22例,女22例),年龄35~70岁,平均(48.8±3.6)岁;观察组患者54例(男27例,女27例),年龄35~70岁,平均(48.2±3.6)岁在,其中所有患者均经临床诊断为慢性重型乙型肝炎。 1.2方法利用病例回顾性分析方法,将在我院于2011年1月1日~2013年12月31日这段时间诊治的总计98例慢性重型乙型肝炎患者的临床资料进行研究和比较分析。将患者按照随机分配方法分成2个组,其中对照组患者为44例均采用传统治疗方法和常规护理方法进行护理;观察组患者54例在对照组的传统治疗方法和常规护理的基础上再加用恩替卡韦进行治疗,同时采取整体护理的方法对患者进行护理。然后将两组数据结果进行分析,分析探讨两组患者治疗及护理前后临床总有效率和护理满意度。 传统治疗方法[1]:保证慢性重型乙型肝炎患者适当的营养供给,以促进肝细胞生长。降低血清转氨酶,调节免疫。并注意维持水、电解质平衡,防治各种并发症。观察组在上述常规治疗外,给予恩替卡韦的用法用量[2]:相关药物治疗开始后,即同时应用恩替卡韦每次0.5mg,1次/d,对病重症患者每天最多不超过1.0mg。整体护理方法的重点是,在普通的护理方式上加强对患者心理护理,同时也要加强授予家属的慢性重型乙型肝炎的相关知识[3]。

禽白血病对我国养禽业的影响及防控措施

禽白血病对我国养禽业的影响及防控措施 摘要:禽白血病是由病毒引起的禽类各种可传播的肿瘤性疾病。近年来,由禽白血病造成死亡及淘汰的直接经济损失逐年增加,而由禽白血病感染后造成的免疫抑制、对疫苗应答能力下降、继发感染等的间接经济损失更是无法估量。本文从禽白血病病毒的病原学特征、流行病学、引起疾病的症状与病理变化等方面来说明禽白血病对我国养禽业带来的严重危害,此外本文还分析了禽白血病的防控措施。正确认识禽白血病对养禽业的危害,采取有效的防控措施,是目前摆在我们面前亟待解决的问题。 关键词:禽白血病;禽白血病病毒;危害;防控措施 禽白血病(Avian Leukosis)是由禽白血病病毒(Avian Leukosis Virus, ALV)引起的禽类多种肿瘤性疾病的统称,该病能引起多种具有传染性的良性和恶性肿瘤[1]。目前,国内养禽业的白血病病情有加重的趋势。由于禽白血病毒(ALV)感染导致的鸡群生产性能下降,尤其是产蛋率和蛋品质下降,以及血管瘤的高比例发生,使广大养殖户以及专业研究人员对禽白血病越来越重视。本文对禽白血病的病原特征、我国禽白血病的流行现状、造成的危害及有效防控措施做一综述。 1 ALV 病原学特征 禽白血病病毒(Avian Leukosis Virus, ALV)属于反转录病毒科,禽α反转录病毒属[2],类似于人的艾滋病毒,但不感染人。不同的鸟类可能感染不同的ALV,根据病毒与宿主细胞特异性相关的囊膜蛋白的抗原性,ALV可分为A、B、C、D、E、F、G、H、I和J十个亚群。但自然感染鸡群的还只有A、B、C、D、E和J 六个亚群。其中的J亚群致病性和传染性最强,而E亚群是非致病性的或者致病性很弱。ALV 的基因组为单股正链RNA,基因组全长约为7200 个核苷酸,可直接作为mRNA。病毒粒子形态不规则,总体直径是80~120nm,平均90nm,病毒粒子呈球形,在干燥条件易扭曲成精子状、弦月状或其他形状。病毒对热不稳定,高温条件下很快失活,只有在-60℃以下时,病毒才能存活数年并保持感染力。在pH5~9 稳定,而在此范围外则迅速失活。病毒有脂质囊膜,对脂溶性试剂敏感[3]。 1.1外源性病毒和外源性病毒 ALV与其它病毒不同的一个最大特点是,ALV(特别是鸡的ALV)还可分为外源性ALV 和内源性ALV二大类,详见表一[1,4]。致病性强的鸡ALV都属于外源性病毒。它们既可以像其它病毒一样在细胞与细胞间以完整的病毒粒子形式或在个体鸡与鸡群间通过直接接触或污染物发生横向传染,也能以完整的病毒粒子形式通过鸡胚从种鸡垂直传染给后代。那些前病毒cDNA可整合进宿主细胞染色体基因组、因而可通过染色体垂直传播的ALV,我们称之为内源性ALV。内源性ALV可能只是基因组的不完全片断,不会产生传染性病毒,也可能是全基因组因而能产生传染性病毒,这类病毒通常致病性很弱或没有致病性。 表1 禽白血病病毒分型及特征

重型肝炎的治疗研究进展

重型肝炎的治疗研究进展 重型肝炎病情进展迅速、并发症多、病死率很高,对人类身体健康及生命构成极大威胁,由于重型肝炎的确切发病机制仍未完全阐明,因此治疗难度较大,本文主要介绍近年来有关重型肝炎患者治疗方面的研究进展。 标签:重型肝炎;治疗;研究进展 重型肝炎是在各种诱因作用下短期内大片肝细胞坏死或严重变性致肝功能衰竭的一类危重综合征,其特点是进展迅速、病情凶险、并发症多,常可导致多脏器功能衰竭而死亡,有研究报道其病死率可达50%~80%以上[1]。目前国内重型肝炎主要由病毒感染所引起,重型病毒性占相当高的比例,其他病因还有药物性肝炎、自身免疫性肝炎、酒精性肝炎等,由于对重型肝炎具体发病机制尚未完全阐明,而且发病后除了肝功能严重受损外,常伴随其他严重并发症,因此给临床治疗造成较大难度。本文就近年来重型肝炎的临床治疗研究进展综述如下。 1 基础对症支持治疗 患者入院后需绝对卧床休息,并给予严密监护、观察患者病情变化,同时给予对症治疗,包括预防感染、加强营养支持、补充新鲜血浆或白蛋白、补充足量维生素、维持血容量和胶体渗透压及纠正水电解质酸碱平衡等,防止上消化道出血、肝性脑病、肝肾综合征等并发症的发生。 使用促进肝细胞生长药物有助于促进坏死肝细胞再生及组止血氧自由基的损害。促肝细胞生长素(PHGF)是一种特异性肝细胞生长刺激因子,具有稳定肝细胞膜、促进肝细胞再生、改善肝微循环及调节机体免疫功能等作用,谢林红[2]将84例重型肝炎患者随机分组后分别给予常规综合治疗及加用促进肝细胞生长药物(PHGF和还原型谷胱甘肽),结果治疗组总有效率(76.2%)明显高于对照组(45.2%)。观察指标如丙氨酸氨基转移酶(ALT)、血清总胆红素(TBIL)、凝血酶原时间(PT)改善更优,且安全性好。国外的前瞻性研究显示使用重组人肝细胞生长因子的重型肝炎患者在试验结束时仍然存活,而未使用者在29~66 d内死亡,且反复使用中未发现任何明显的不良反应[3]。其他促进肝细胞生长的药物有阿思欣泰、思美泰、多烯磷脂酰胆碱等。 前列腺素E1(PGE1)具有改善肝脏微循环、促进受损肝细胞修复与再生、增强肝脏对黄疸代谢等作用。秦桂来[4]使用PGE1治疗亚急性乙型重型肝炎33例,结果与常规治疗相比,有效率从70.0%提高到了81.8%,血清TBIL改善更明显,提示在常规治疗基础上加用PGE1能明显改善亚急性乙型重型肝炎的疗效。 2 抗病毒治疗 国内大部分重型肝炎患者由乙型肝炎病毒(HBV)引起,在重型肝炎发病

恩替卡韦治疗慢性重型乙型肝炎临床观察

恩替卡韦治疗慢性重型乙型肝炎临床观 察 (作者:_________ 单位:___________ 邮编:___________ ) 【摘要】为观察恩替卡韦治疗慢性重型乙型肝炎的疗效,选择30例慢性重型乙型肝炎患者随机分为两组,分别给予综合治疗 (对照组)及综合治疗联合恩替卡韦治疗(治疗组);观察患者治疗前后血清丙氨酸转氨酶(ALT)、血清总胆红素(TBIL)、凝血酶原活动度、HBV-DN/阴转率、生存率及恩替卡韦的不良反应。结果,治疗组与对照组治疗后相比ALT TBIL明显降低(P V 0.05),治疗后凝血酶原活动度较同期对照组明显升高(P V 0.05 );治疗组HBV-DNA阴转率为43.75%,生存率为75.00%,并且未发现严重毒副反应病例;对照组HBV-DNA阴转为0例,生存率42.86%;治疗组与对照组相比较生存率及HBV-DNA阴转率差异有统计学意义。认为恩替卡韦治疗慢性重型乙型肝炎有效并且较为安全,可以提高慢性重型乙型肝炎的生存率。 【关键词】慢性重型乙型肝炎;恩替卡韦 慢性重型乙型肝炎病死率较高,目前尚无特效治疗手段。2006年12 月一2008年12月我科共收治了30例慢性重型乙型肝炎患者,经过恩替卡韦治疗后取得了良好的效果,现报告如下。

1资料与方法 1.1 一般资料 30例临床诊断均符合2006年《肝衰竭疹疗指南》慢性重型肝炎标准]1],并且在治疗前查HBV-DNA匀阳性。将30例病人分为治疗组和对照组。治疗组16例,男11例,女5例,年龄18?63岁,平均43岁;本组发病前诊断为代偿性肝硬化5例,失代偿性肝硬化3 例。对照组14例,男12例,女2例,年龄21?62岁,平均42岁,本组发病前诊断代偿性肝硬化4例、失代偿性肝硬化2例,两组病人在年龄、性别、基础病因及肝功能等生化指标之间的差异无统计学意义。所有患者在此之前均未接受过抗病毒治疗。并且经血清学检查均 不伴有甲型、丙型、丁型、戍型、庚型等其他病毒性肝炎的重叠感染。 1.2治疗方法 对照组给予保肝(肝水解肽100mg/d,门冬氨酸鸟氨酸7.5g/d 静滴,支持治疗,人血白蛋白10g或新鲜血浆200mL根据病情每日或隔日静滴1次);对症治疗,纠正电介质紊乱,腹水病人给予适当的利尿,出现感染者给予抗感染治疗,出现肝性脑病者给予吸氧、脱脑水肿、醒脑等治疗。治疗组除采取以上综合治疗外加用由中美上海施贵宝制药有限公司生产的恩替卡韦(博路定)0.5mg,每日口服1 次。 1.3观察指标

五种公认乙肝抗病毒药物对比及选用

五种公认乙肝抗病毒药物对比及选用 全网发布:2011-06-23 19:55 发表者:黄星244075人已访问 目前,乙肝基本上是不能彻底治愈的,治疗的目标有两个,即(1)保证肝功能正常运转;(2)延缓或阻止肝脏病理性恶化(即肝硬化、肝癌等病变)。要达到上述两个目标,就需要阻断肝细胞炎症而发生坏死,而乙肝病毒是导致肝细胞炎症而发生坏死的根本原因,由此可见,抗病毒是最重要、最根本的手段。目前被专家公认的乙肝抗病毒药物一共两大类,共五种,分别是干扰素类(普通干扰素、长效干扰素)和核苷类(拉米夫定、阿德福韦、恩替卡韦)。这里我们就来对比一下这五种乙肝抗病毒药物的优缺点及如何正确选用抗病毒药物。 1:干扰素(普通干扰素、长效干扰素):疗效与麻烦同在的“富人药” 有人将干扰素的出现誉为乙肝抗病毒药物的第一个里程碑,从上个世纪八十年代末九十年代初起,干扰素广泛应用于乙肝治疗,也标志着历史推进到“干扰素时代”。刚刚出道的干扰素便带给人们不小的惊喜,显示出前所未有的疗效。经过干扰素正规治疗的慢性乙肝患者,大约有35%以上能达到预定疗效,若在此基础上再联合使用胸腺肽,疗效还可更上一层楼。干扰素是一种注射用2药,药物半衰期短,要维持药效须隔天注射一次,这给病人带来不小的痛苦和不便。2005年,罗氏公司的长效干扰素派罗欣通过美国FDA 批准,被正式用于乙肝治疗,使这个问题得到一定程度的缓解,因为它只需每周注射一次。 医生们发现,治疗前转氨酶高(但低于正常值的10倍)、DNA指标小于2×108者以及女性患者使用干扰素治疗效果相当的好,此外,病程短、非母婴传播、肝纤维化程度轻且无合并其他肝炎病毒感染者使用效果也相当不错。 另外,据高志良教授透露,干扰素还有一项特别的能耐,它居然能使一部分人的乙肝表面抗原转阴,不过这个数量不大,只有3%,而这是拉米夫定等核苷类药物所不能做到的。 “路遥知马力,日久见人心”,随着干扰素剂量的不断加大,以及疗程的不断延长,干扰素的缺点越来越清晰地呈现在人们面前。在使用干扰素的开始几天,医生们发现很多病人都像得了重感冒一般:发热、头痛、乏力、全身肌肉和关节疼痛……不过,这种症状在注射三五次后便可消失。 有些病人用完干扰素后,发现脱发开始增多,有时拿起梳子一梳,头发便一缕缕往下掉。很多使用者的骨髓受到抑制,血小板和白细胞都会降低,病人感觉很难受。有少部分病人可能出现精神方面的损害,如抑郁、妄想症、重度焦虑。不过,这些不良反应只是在部分病人身上出现,而且其损伤是一过性的,停用后几天到几个月,上述不良反应便可烟消云散。所以,在用药过程中,病人需要密切留意这些不良反应的出现,有异常情况马上告诉医生,这样医生便可根据不良反应的程度来调整剂量和给药频率。肝功能失代偿(转氨酶高于正常值的10倍以上)的病人要特别小心,因为他们一旦用了干扰素,肝功能将发生急剧的损害,出现严重黄疸。 高志良教授特别强调,使用干扰素者应密切监测副反应,要每3个月检测1次甲状腺功能、血糖和尿常规等指标。如治疗前就已存在甲亢,最好先用药物控制好,再开始干扰素治疗。另外,应定期评估精神状态,尤其是对出现明显抑郁症和有自杀倾向的患者,应立即停药并密切监护。

乙肝抗病毒治疗药物

乙肝抗病毒治疗药物 简介 乙肝抗病毒治疗药物是指在治疗乙肝患者疾病的过程中,通过的药物制剂来抑制病毒复制,并最终清除乙肝病毒,能够控制病情进展的一类药物的统称。目前抗病毒治疗是慢性乙肝的根本治疗方法。对于符合抗病毒治疗的乙肝患者只有采用乙肝抗病毒治疗药物进行治疗,才能实现疾病的康复。 指南 抗病毒要讲究时机,并不是所有感染乙肝病毒的人都需要治疗。乙肝病毒携带者即使HBV DNA水平很高,只要肝功能正常,就无需进行抗病毒治疗。但要坚持定期检测,不能掉以轻心。 2010年最新出版的《慢性乙型肝炎抗病毒治疗专家共识》指出,HBV DNA水平超过1×104拷贝/ml和(或)血清ALT水平超过正常值上限,肝活检显示重度至重度活动性炎症、坏死和(或)肝纤维化的乙肝患者都需要进行抗病毒治疗。此外,肝活检显示重度至重度活动性炎症、坏死和(或)肝纤维化的患者,也应该立即开始抗病毒治疗。 后果 近期国内的一项万人调研结果显示:在口服抗病毒中,63%患者自行停药,其中57%的患者病情加重。专家指出,乙肝抗病毒药物治疗,需要长期吃药,通常情况下需要2年左右的时间,如果停药一定要在专科医生指导下,不然病情不稳固的情况下停药,不仅起不到对乙肝病毒的抑制作用,而且还可能加速耐药的发生,甚至使病毒的复制反弹,导致病情加重。 毒药物治疗 治疗的适应症 乙肝带毒者不是抗病毒治疗的适应症,一般都不应当使用抗HBV药物。但是,当本人强烈要求进行治疗时,就一定要做肝穿刺检查,如能证明肝脏确确实实存在炎症改变,又符合慢性乙肝的病理学诊断标准,或通过肝穿刺证明是早期肝硬化,同时血清学检测HBv标志物证明有病毒的复制,这才可以给予抗病毒治疗。

禽白血病病毒AB亚群抗体检测方法

禽白血病病毒(A亚群和B亚群)抗体检测酶联免疫吸附法 1. 目的范围 检测鸡血清中禽白血病病毒(A亚群和B亚群)抗体,为禽白血病综合防控提供依据和参考。适用于鸡血清中禽白血病病毒(A亚群和B亚群)抗体的检测。 2.依据 《禽白血病诊断技术》(GB/T 26436-2010); 禽白血病病毒抗体检测试剂盒说明书(美国IDEXX公司)。 3.检测原理 将病毒抗原包被在96孔酶联免疫反应板上,加入被检样品后,如样品中含禽白血病病毒(A亚群和B亚群)的抗体,就会与病毒抗原结合形成抗原抗体复合物。加入洗板液后,洗掉没有反应结合的物质。在孔中加入可与鸡禽白血病病毒(A亚群和B亚群)的抗体结合的酶标二抗,通过洗板后,将没有结合的酶标二抗洗掉。加入底物后,通过孵育显色,显色强度与被检样品中禽白血病病毒抗体(A亚群和B亚群)含量正相关。 4.仪器设备 4.1 量程为100μL的单道移液器和300μL的八道或十二道移液器; 4.2 酶标仪; 4.3 自动或手动洗板系统; 4.4 稀释用96孔板; 4.5 一次性移液器吸头; 4.6 1000mL量筒; 4.7 吸水纸。 5.试剂和样品 5.1 试剂盒组成 5.1.1 酶标板:ALV抗原包被板5块(96孔/块) 5.1.2 酶标抗体:辣根过氧化物酶标记的(羊抗)鸡抗体1瓶(50mL) 5.1.3 阳性对照:稀释的鸡抗ALV抗体,叠氮钠防腐1瓶(1.9mL) 5.1.4 阴性对照:稀释的鸡血清,不与ALV反应,叠氮钠防腐1瓶(1.9mL) 5.1.5 样品稀释缓冲液,叠氮钠防腐1瓶(235mL) 5.1.6 TMB底物溶液1瓶(60mL) 5.1.7 终止液1瓶(60mL) 5.2 纯水或超纯水 5.3 样品准备:检测前用样品稀释液将被检样品进行500倍稀释(如:1μL的样品用样品稀释液稀释到500μL)。 6.操作步骤 使用前所有试剂应恢复至室温(20~25℃),将其振摇混匀后再进行使用。 6.1 取出酶标板并标记好被检样品的位置。 6.2 加样:加100μL阴性、阳性对照(不需稀释)和稀释的被检样品到板的相应孔中,加盖室温孵育30min。 6.3 洗板:甩去各孔的液体,每孔加入约350μL的纯水或超纯水进行洗板。第一次加入纯水后浸泡2min,甩去各也的液体,再重复洗板4次(无需浸泡)。在吸水纸轻拍使之吸干。注意在加下一种液体前不要让板干燥或放的时间太长。 6.4 加酶标抗体:每孔加入100μL酶标羊抗鸡抗体,室温孵育30min。

恩替卡韦治疗慢性乙型重型肝炎的疗效观察

恩替卡韦治疗慢性乙型重型肝炎的疗效观察 发表时间:2013-04-24T15:38:45.013Z 来源:《医药前沿》2013年第8期供稿作者:范磊 [导读] 应用恩替卡韦治疗慢性乙型重型肝炎在近期临床疗效、肝功能改善和抑制病毒复制方面明显优于拉米夫定。 范磊(景德镇市第一人民医院 333000) 【摘要】目的:评价恩替卡韦治疗慢性乙型重型肝炎的近期临床疗效。方法:研究本院慢性乙型重型肝炎住院患者180例,其中随机对照组(60例)给予常规综合治疗,治疗组分别在综合治疗基础上加用LAM(60例)或ETV(60例)抗病毒治疗,共治疗24周。结果:接受恩替卡韦治疗后6个月时,总胆红素和谷丙转氨酶分别由治疗前的399.03±148.90μmol/L 和682.84±191.09U/L 降至38.82±13.61μmol/L 和68.66± 20.18U/L,均较拉米夫定组改善更明显(P<0.05);恩替卡韦组的HBV DNA 转阴率为87.5%,明显高于拉米夫定组的66.8% (P<0.05)。病死率分别为6.67%和15%,有显著性差异(P<0.05)。结论:应用恩替卡韦治疗慢性乙型重型肝炎在近期临床疗效、肝功能改善和抑制病毒复制方面明显优于拉米夫定。 【关键词】重型肝炎拉米夫定恩替卡韦 【中图分类号】R453 【文献标识码】A 【文章编号】2095-1752(2013)08-0022-07 近年来,经过大量临床研究发现,选择合适的药物对乙型重型肝炎患者进行抗乙型肝炎病毒治疗,对提高其生存率有较明显的作用。现将我科慢性乙型重型肝炎患者在内科综合治疗基础上,分别用拉米夫定或恩替卡韦治疗,观察血清HBV DNA、丙氨酸转氨酶(ALT) 、总胆红素( TBiL)水平、血清白蛋白(ALB)、凝血酶原活动度(PTA)水平评估治疗效果。现将比较研究结果报告如下。 1 资料与方法 1.1 病例选择选择2010年6月至2012年7月在景德镇市第一人民医院肝病科住院治疗的慢性乙型重型肝炎患者180例,其中男性134例,女性46例,均符合以下标准者入选: ①临床诊断为慢性重型肝炎,符合2000年第十次全国病毒型肝炎肝病学术会议修订的肝炎诊断标准[ 1]。②HBV血清学标志阳性,HBeAg阳性或阴性。③近6个月内未使用抗病毒药物及对免疫功能有影响的治疗。④年龄18~65岁。⑤所有研究对象均签署书面知情同意书。 1.2 方法 1.2.1 分组在保证每位患者综合护肝治疗基本类似的情况下,将患者随机分为三组:A、B、C组,三组一般情况、HBV-DNA定量、生化检查等方面具有可比性。 1.2.2 给药方法 A组:恩替卡韦 0.5 mg每天一次口服。B组:拉米夫定100 mg每天一次口服。C组:不予抗病毒治疗 1.2.3 观察方法治疗前、治疗期间及治疗结束时(0、2、4、8、12、24周),分别检测患者血清HBV DNA、丙氨酸转氨酶(ALT)、总胆红素(TBiL)水平、血清白蛋白(ALB)、凝血酶原活动度(PTA),其中采用荧光PCR法检测HBV DNA拷贝水平(HBV DNA >5×102 copies/ml为阳性,HBV DNA<5×102copies/ml为阴性)。HBV DNA 定量采用美国ABI7300荧光定量扩增仪,HBV核酸扩增(PCR)荧光定量检测试剂盒购自广州中山基因股份有限公司。疗效判断参考中华传染病与寄生虫病学会人工肝学组《人工肝支持系统的适应症、禁忌症和疗效判断》标准,具体疗效判断如下:(1)有效:出院患者症状消失或缓解,ALT<5 倍正常值,TB≤5倍正常值,ALB>30g/L,PTA>60%,无并发症。(2)无效:肝功能衰竭,病情进行性加重,出现严重并发症,放弃治疗或死亡。 1.2.4 统计学方法使用SPSS11.5统计软件进行数据处理。组间数值比较用t 检验,有效率比较用χ2检验。 2 结果 2.1 一般资料所有患者依从性良好,3组患者在性别、年龄、肝功能、凝血功能及病毒载量方面差异无统计学意义(P>0.05),见表1。 2.2临床转归在治疗24周时,恩替卡韦组有4例(6.56%)死亡,其中3例死于消化道出血,1例死于肝昏迷;拉米夫定组死亡9例(15%),5例死于消化道出血,4例死于肝昏迷,两组间病死率有明显差异(P<0.05);对照组有11例死亡,6例死于消化道出血,5例死于肝昏迷,与恩替卡韦组比病死率有明显差异(P<0.05),与拉米夫定组病死率无明显差异(P<0.05) 2.3 治疗24周后肝功能比较对3组患者治疗后肝功能进行分析,发现抗病毒治疗组的肝功能改善较对照组明显,差异有统计学意义(P < 0.05),而LAM组和ETV组间比较,恩替卡韦组在总胆红素、谷丙转氨酶与凝血酶原活动度指标的改善方面均较拉米夫定组更明显(P <0.05),但两组间血清白蛋白的上升无显著性差异(P > 0.05 )。见表2。 2.4 三组在治疗过程中血清HBV DNA水平变化在第2、4、8、12、24周末时,观察三组血清HBV DNA的阴转例数分别为拉米夫定组0例(0%)、3例(5.9%)、7例(1 3.7%)、20例(39.2%)、34例(66.8%)和恩替卡韦组3例(5.4%)、11例(19.6%)、28例(50%)、41例(73.2%)、49例(87.5%)以及对照组0例(0%)、0例(0%)、1例(2.0%)、1例(2.0%)、2例( 4.1%)。在治疗第2周末检测时,即发现恩替卡韦组有3例患者血清HBVDNA为阴性,但与拉米夫定组比较差异无统计学意义(x2=2.915,P>0.05)。而在第4、8、12、24周末时检测两组血清HBVDNA的阴转率,恩替卡韦组与拉米夫定组相比已具有统计学意义(x2值 5.312~ 6.527,P<0.05)。同时,在第24周末时,恩替卡韦组的血HBVDNA阴转率为8 7.5%明显高于拉米夫定组的66.8%,差异具有统计学意义(P<0.05)。 慢性乙型重型肝炎是在慢性肝炎或肝硬化基础上肝脏发生弥漫性肝细胞坏死,导致患者肝功能严重损害,最终肝功能衰竭死亡。慢性

华南某种鸡场禽白血病病毒感染对4种免疫抗体水平的影响

华南某种鸡场禽白血病病毒感染 对4种免疫抗体水平的影响 司兴奎1,尹庆亮2,张济培1,陈建红1 (1.佛山科学技术学院,广东佛山528231; 2.化州市丽岗中学,广东化州525100) 摘要:采用ELISA方法对华南某种鸡场4群种鸡直肠拭子进行禽白血病病毒p27(ALV-p27)抗原检测,同时采集相应种鸡血清样品并对新城疫(ND)、禽流感(AI)H5、H9亚 型、减蛋综合征(EDS-76)、传染性支气管炎(IB)的免疫抗体水平进行检测,并按照相应标准 计算对应免疫抗体合格率。结果表明:A、B、C、D群种鸡直肠拭子中ALV-p27抗原检出率分别 为86%(12/14)、77%(23/30)、37%(11/30)和56%(10/18);与其它3群种鸡相比ALV-p27抗原检 出率最高的A群种鸡其对应的ND、EDS-76、AI H5及H9亚型抗体水平最低,分别为7.26log2、 4.74log2、7.32log2及6.21log2;ALV-p27抗原检出率最低的C群种鸡其AIV H5亚型及IB抗 体水平最高,分别为8.65log2和7012log2,且C群与其它3群相比AI H5亚型、ND及IB抗体合 格率/阳性率最高,分别为90%(18/20)、95%(19/20)和100%(20/20)。结果表明,ALV感染的 严重程度与4种免疫抗体水平呈负相关。 关键词:种鸡;禽白血病病毒感染;免疫抗体水平 Effects of Avian Leukosis Virus Infection on Four Immunized Antibody Levels in One Chicken Breeder Farm in South China SI Xingkui1,YIN Qingliang2,ZHANG Jipei1,CHEN Jianhong1 (1.Foshan Science and Technology University,Foshan,Guangdong528231; 2.Huazhou Ligang Middle School,Huazhou,Guangdong525100) Abstract:ELISA was used to detect the p27antigen of avian leukosis virus(ALV-p27)in fecal swabs of four flocks in one chicken breeder farm in south China,and serum samples of corresponding flock were collected for detection immunized antibody level and satisfied immunization rate of four infectious diseases i.e.newcastle disease(ND),avian influenza(AI)subtype H5or H9,egg dropping syndrome-76(EDS-76),infectious bronchitis(IB).The results showed that the detection rate of ALV-p27antigen of A,B,C,D flock was86%(12/14),77%(23/30),37%(11/30)and56%(10/18),respectively.The immunized antibody level of ND,AI(H5),AI(H9)and EDS-76of A flock which had the highest ALV-p27antigen detection rate in comparison with that of the other three flocks was the lowest,which was7.26log2,4.74 log2,7.32log2and 6.2log2,respectively;C flock which had the lowest ALV-p27antigen detection rate had the highest immunized antibooly level of AI(H5)and IB,which was8.65log2and7012log2,and the satisfied immunization rate 收稿日期:2008-04-01 修回日期:2009-02-24

最新重型肝炎的临床分型和诊段标准

重型肝炎的临床诊治和研究进展 编者按:本专题讲座,由我刊副总编辑聂青和博士组稿并承担多讲的撰稿,共14 讲,约6 万8 千字。 第一讲重型肝炎的临床分型及诊断标准(周永兴) ; 第二讲重型病毒性肝炎的病理学特点及研究现状(郎振为) ; 第三讲内毒素血症在重型肝炎发病中的地位(聂青和) ; 第四讲重型肝炎实验室检测的临床意义(罗新栋,聂青和) ; 第五讲重型肝炎并发肝性脑病的诊治进展(聂青和,毛青) ; 第六讲重型肝炎并发上消化道出血的诊治进展(申德林,王全楚,焦栓林) ; 第七讲重型肝炎并发肝肾综合征的诊治进展 (焦成松,聂青和) ; 第八讲重型肝炎并发自发性细菌性腹膜炎的诊治进展(王全楚,聂青和) ; 第九讲重型肝炎的综合支持治疗(宋喜秀) ; 第十讲重型乙型肝炎的抗病毒治疗新进展(江河清) ; 第十一讲糖皮质激素在治疗重型肝炎中的应用及评价(张绪清,聂青和) ; 第十二讲重型肝炎水、电解质紊乱和酸碱失衡的诊断与治疗(张绪清,聂青和) ; 第十三讲重型肝炎的人工肝支持治疗(王英杰) ; 第十四讲重型肝炎的外科治疗———肝移植(管文贤) 。 重型肝炎的临床分型及诊断标准 周永兴作者单位:710038 西安市第四军医大学唐都医院全军感染病诊疗中心 我国是病毒性肝炎的高发区,甲、乙、丙、丁、戊五型典型病毒性肝炎广泛存在,仅就病毒性乙型肝炎来说,其HBsAg 携带率达10 % ,现症患者约3000 多万,其中60 %以上为慢性乙型肝炎。这些携带者和慢性肝炎患者常有恶化或发展成晚期肝病的可能。据统计由乙型肝炎病毒导致成重型肝炎占重型肝炎的81 % ,甲型肝炎病毒仅占1~6 % ,丙型肝炎病毒致重型肝炎不同地区报道参差不一,约13 %~44 %;戊型肝炎病毒仅在感染妊娠妇女时易发生重型肝炎,可达20 %;而两种或以上肝炎病毒混合感染时也是造成重型肝炎的重要原因,约50 %以上[1~3 ] 。由此看来在我国由肝炎病毒引起重型肝炎不仅发病率高而且病情复杂,这就给临床工作中的诊断和分型造成了很大的困难。 1978 年以前病毒性肝炎的临床分型是两期六型,两期为急性期与慢性期,急性期中分为急性黄疸型、急性无黄疸型和重型,重型显得不突出。而此后随着乙型肝炎的传播及发生发展,其它肝炎病毒或非嗜肝病毒的检出,使临床上重型肝炎发生率升高,临床医生们感到重型肝炎的重要性,要求对其诊断和治疗从学术上制订指导原则。至1983 年即将重型肝炎独立成一个型。又经几次变更终成2000 年西安会议版本。 2000 年全国肝炎专家组在事先广泛征求意见的基础上, 将草案提交西安全国第十届病毒性肝炎会议大会充分讨论,最后修订了我国病毒性肝炎防治方案。该方案将我国病毒性肝炎分为急性肝炎;慢性肝炎;重型肝炎;淤胆型肝炎;肝炎肝硬化等五个临床类型[4 ] 。其中重型肝炎又分为三个临床型,即:急性重型肝炎;亚急性重型肝炎;慢性重型肝炎。 一、重型肝炎的具体诊断标准 (一) 急性重型肝炎以急性黄疸型肝炎起病, ≤2 周出现极度乏力,消化道症状明显,迅速出现Ⅱ度以上(按Ⅳ度划分) 肝性脑病,凝血酶原活动度低于40 % ,并排除其它原因者,肝浊音界进行性缩小,黄疸急剧加深;或黄疸很浅,甚至尚未出现黄疸,但有上述表现者均应考虑本病。

慢性乙型肝炎联合抗病毒治疗专家共识

慢性乙型肝炎联合抗病毒治疗专家共识慢性乙型肝炎联合抗病毒治疗专家委员会 干扰素α(I F N-α)、核苷(酸)类似物(NUC)抗病毒单药治疗是目前慢性乙型肝炎(chronic hepatitis B,CHB)的主要治疗策略,且CHB患者远期预后经抗病毒治疗后获得了显著改善[1-3]。然而单药治疗应答率较低,多数患者需长期用药,停药后维持应答率较低,长期治疗耐药变异率较高,限制了CHB患者单药治疗的临床应用。在抗病毒单药治疗基础上,为进一步优化CHB抗病毒治疗应答,不同作用机制、耐药位点不重叠的NUC药物进行联合抗病毒治疗是一个重要的选择。CHB联合抗病毒治疗研究已取得进展,积累了较为丰富的证据。为了推动和规范CHB的联合抗病毒治疗策略,《中华实验和临床感染病杂志(电子版)》、《中国肝脏病杂志(电子版)》、《Infection International (electronic edition)》编辑部组织国内部分专家对CHB联合抗病毒治疗的相关临床证据进行整理分析,形成了《慢性乙型肝炎联合抗病毒治疗专家共识》。应该看到,CHB联合抗病毒治疗的临床证据目前还不充分,本共识不能回答CHB联合抗病毒治疗中所能遇到的全部问题。随着CHB联合抗病毒治疗临床实践的不断发展和证据的不断累积,专家委员会将对本共识进行适时的修订。 1 慢性乙型肝炎联合抗病毒治疗的策略 1.1 单药治疗的局限性 现有CHB治疗指南主要是IFN-α或NUC单药治疗的策略推荐,虽然取得了显著的疗效,远期临床预后也取得了显著的改善,但单药治疗策略存在较多的局限性。 1.1.1 慢性乙型肝炎患者单药治疗应答率较低在HBeAg(+)CHB患者中,1年的病毒学应答率(H BV DNA低于检测下限)在聚乙二醇化干扰素(PegIFN)、拉米夫定(LAM)、阿德福韦酯(ADV)、恩替卡韦(ETV)、替比夫定(LdT)及替诺福韦酯(T D F)治疗中分别为25%、36%~40%、21%、67%、60%和74%。普通IFN-α和PegIFN治疗者的HBeAg血清转换率约为30%,而NUC药物治疗者大约为20%,HBeAg血清学转换率随NUC药物治疗时间的延长而提高,但会受到耐药发生的影响。治疗1年时HBsAg阴转率在PegIFN、LAM、ADV、ETV、LdT和TDF分别为3%~4%、1%、0、2%、0和3%。 HBeAg(-)的CHB患者中,1年的病毒学应答率(H BV DNA低于检测下限)在PegIFN、LAM、ADV、ETV、LdT和TDF治疗中分别为67%、72%、51%、90%、88%和91%。治疗1年时HBsAg阴转率在PegIFN为3%,而在LAM、ADV、ETV、LdT和TDF治疗均为0。 1.1.2 慢性乙型肝炎患者单药治疗多数情况下需长期用药新近发表的《慢性乙型肝炎防治指南2010年修订版》对CHB患者应用NUC单药治疗的停药标准进行了更新[4]。对于HBeAg(+)CHB患者,在达到HBV DNA低于检测下限、ALT复常、HBeAg血清转换后,再巩固至少1年(经过至少两次复查,每次间隔6个月)仍保持不变、且仍保持不变、且总疗程至少已达2年,可考虑停药,但延长疗程可减少复发。而对于HBeAg(-)CHB患者则规定:在达到HBV DNA低于检测下限、ALT 正常后,至少巩固1年半(经过至少3次复查,每次间隔6个月)仍保持不变、且总疗程至少已达2年半者,可考虑停药。由于停药后复发率较高,

恩替卡韦治疗慢性重型乙型肝炎临床体会

恩替卡韦治疗慢性重型乙型肝炎临床体会 目的研究对慢性重型异型肝炎患者应用恩替卡韦治疗的临床方法及效果。方法搜集2012年9月~2013年9月我院接收的慢性重型乙型肝炎42例患者,随机分为甲组和乙组。对甲组21例进行常规治疗,对乙组21例进行常规治疗的同时应用恩替卡韦。观察甲组和乙组的临床效果,并对比。结果乙组肝功能改善情况优于甲组,PTA改善情况优于甲组,血清HBV DNA水平改善情况优于甲组,差异显著,有统计学意义(P<0.05)。结论恩替卡韦治疗慢性重型乙型肝炎的临床效果较好,值得推广。 标签:慢性重型乙型肝炎;恩替卡韦;治疗;效果慢性重型乙型肝炎是临床上的常见重症内科疾病[1]。该病具有病死率高、病情危重、治疗困难等特点。临床上治疗该病原则是护肝、促进肝细胞再生、预防并发症、改善微循环和支持治疗。恩替卡韦是一种环戊酰鸟苷类似物,具有较强的抗病毒活性[2]。现搜集2012年9月~2013年9月我院接收的慢性重型乙型肝炎42患者,对其恩替卡韦治疗的临床方法和效果进行总结性分析,报告如下。 1资料与方法 1.1一般资料搜集2012年9月~2013年9月我院接收的慢性重型乙型肝炎42例患者,随机分为甲组和乙组。甲组中男患者和女患者分别是11例、10例,共21例,年龄17~61岁,平均年龄是(38.36±10.25)岁,病程1~15年,平均病程是(1 2.3± 3.1)年,其中16例早期,5例中期。乙组中男患者和女患者分别是12例、9例,共21例,年龄18~60岁平均年龄是(38.35±10.21)岁,病程1~15.3年,平均病程是(12.2±3.1)年,其中15例早期,6例中期。甲组和乙组的一般临床资料相比,差异较小,无统计学意义(P>0.05)。 1.2 方法对甲组进行常规治疗,对乙组进行常规治疗的同时应用恩替卡韦。常规治疗包括护肝、促进肝细胞再生、预防并发症、改善微循环和支持治疗。博路定(恩替卡韦片,国药准字H20052237,包装规格0.5mg),1次/d,0.5mg/次,于每晚睡前口服。治疗时间为3个月。 治疗前和治疗后,对两组患者血常规检查、血糖、肝肾功能、血清HBV DNA、凝血酶原时间、血电解质、活动度等进行检测。治疗期间,对患者肝功能、HBV DNA和PT/PTA等进行定期复查,1次/w,观察各项指标变化情况,并对比。 1.3统计学分析对本文所得实验数据均采用SPSS 13.0统计学软件进行检验,所得计量资料采用t检验,所得计数资料采用χ2检验,以P<0.05为有统计学意义。 2结果 2.1肝功能治疗前甲组患者TBil为(391.6±144.8)umol/L,ALB为

2019年整理禽白血病对我国养禽业的影响及防控措施

禽白血病对我国养禽业的影响及防控措施摘要:禽白血病是由病毒引起的禽类各种可传播的肿瘤性疾病。近年来,由禽白血病造成死亡及淘汰的直接经济损失逐年增加,而由禽白血病感染后造成的免疫抑制、对疫苗应答能力下降、继发感染等的间接经济损失更是无法估量。本文从禽白血病病毒的病原学特征、流行病学、引起疾病的症状与病理变化等方面来说明禽白血病对我国养禽业带来的严重危害,此外本文还分析了禽白血病的防控措施。正确认识禽白血病对养禽业的危害,采取有效的防控措施,是目前摆在我们面前亟待解决的问题。 关键词:禽白血病;禽白血病病毒;危害;防控措施 禽白血病(Avian Leukosis)是由禽白血病病毒(Avian Leukosis Virus, ALV)引起的禽[1]。目前,国内养类多种肿瘤性疾病的统称,该病能引起多种具有传染性的良性和恶性肿瘤禽业的白血病病情有加重的趋势。由于禽白血病毒(ALV)感染导致的鸡群生产性能下降,尤其是产蛋率和蛋品质下降,以及血管瘤的高比例发生,使广大养殖户以及专业研究人员对禽白血病越来越重视。本文对禽白血病的病原特征、我国禽白血病的流行现状、造成的危害及有效防控措施做一综述。1 ALV 病原学特征 [2],α反转录病毒属禽白血病病毒(Avian Leukosis Virus, ALV)属于反转录病毒科,禽类似于人的艾滋病毒,但不感染人。不同的鸟类可能感染不同的ALV,根据病毒与宿主细胞特异性相关的囊膜蛋白的抗原性,ALV可分为A、B、C、D、E、F、G、H、I和J十个亚群。但自然感染鸡群的还只有A、B、C、D、E和J 六个亚群。其中的J亚群致病性和传染性最强,而E亚群是非致病性的或者致病性很弱。ALV 的基因组为单股正链RNA,基因组全长约为7200 个核苷酸,可直接作为mRNA。病毒粒子形态不规则,总体直径是80~120nm,平均90nm,病毒粒子呈球形,在干燥条件易扭曲成精子状、弦月状或其他形状。病毒对热不稳定,高温条件下很快失活,只有在-60℃以下时,病毒才能存活数年并保持感[3]。病毒有脂质囊膜,对脂溶性试剂敏 感稳定,染力。在pH5~9 而在此范围外则迅速失活。1.1外源性病毒和外源性病毒 ALV与其它病毒不同的一个最大特点是,ALV(特别是鸡的ALV)还可分为外源性ALV[1,4]。致病性强的鸡ALVALV二大类,详见表一都属于外源性病毒。它们既可以和内源性像其它病毒一样在细胞与细胞间以完整的病毒粒子形式或在个体鸡与鸡群间通过直接接触或污染物发生横向传染,也能以完整的病毒粒子形式通过鸡胚从种鸡垂直传染给后代。那些前病毒cDNA可整合进宿主细胞染色体基因组、因而可通过染色体垂直传播的ALV,我们称之为内源性ALV。内源性ALV可能只是基因组的不完全片断,不会产生传染性病毒,也可能是全基因组因而能产生传染性病毒,这类病毒通常致病性很弱或没有致病性。. 表1 禽白血病病毒分型及特征 宿主内、外源性亚型 A 鸡为主(多发)外源性 B 鸡为主(多发)外源性 C 鸡为主(多发)外源性 D 鸡为主(多发)外源性 J 鸡为主(多发)外源性E 鸡内源性 F 环颈雉、绿雉内源性

相关文档
最新文档