旋风除尘器

旋风除尘器
旋风除尘器

引言

引言

旋风除尘器设计是我通过学习全部基础课、专业课和以往的课程设计的基础上进行的一次综合性的设计。这次毕业设计更充分的体现了理论联系实际的宗旨,通过这次毕业设计,我不仅加深了对专业基础知识的理解,而且认识到作为一名工作人员我们应该具有良好的技术水平、严谨务实的工作态度,这次设计锻炼了我查阅资料自我设计的能力。我希望通过本次毕业设计对我三年来所学课程有更深入的理解,熟练掌握AutoCAD制图,运用所学的知识设计出符合要求的除尘器。

随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。

除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。

工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。

本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。

本次设计参考和引用了一些关于除尘器设计的论著、教材、手册等,由于学识、经验、和水平有限,设计中缺点乃至不当之处在所难免,殷切希望各位老师批评指正,提出宝贵意见。

1

大气课程设计2

旋风除尘器的除尘机理及性能

第一章旋风除尘器的除尘机理及性能

1.1 旋风除尘器的基本工作原理

1.1.1 旋风除尘器的结构

旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。

1—排气管2—顶盖3—排灰管

4—圆锥体5—圆筒体6—进气管

图1—1 旋风除尘器

1.1.2用途及压力分布

用途:

旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

3

大气课程设计

中央集尘净化和原材料回收设备。

旋风除尘器内的压力分布

一般旋风除尘器内的压力分布如图2—2所示。依据对旋风除尘器的工作原理、结构形式、尺寸以及气体的温度、湿度和压力等分析和试验测试,其压力损失的主要影响因素可归纳如下:

(1)结构形式的影响

旋风除尘器的构造形式相同或几何图形相似,则旋风除尘器的阻力系数ζ相同。若进口的流速相同,压力损失基本不变。

(2)进口风量的影响

压力损失与进口速度的平方成正比,因而进口风量较大时,压力损失随之增大。

(3)除尘器尺寸的影响

除尘器的尺寸对压力损失影响较大,表现为进口面积增大,排气管直径减小,而压力损失随之增大,随圆筒与椎体部分长度的增加而减小。

(4)气体密度变化的影响

压力损失随气体密度增大而增大。由于气体密度变化与T、P有关,换句话说,压力损失随气体温度或压力的增大而增大。

(5)含尘气体浓度的大小的影响

试验表明,含尘气体浓度增高时,压力损失随之下降,这是由于旋转气流与尘粒之间的摩擦作用使旋转速度降低所致。

(6)除尘器内部障碍物的影响

旋风除尘器内部的叶片、突起、和支撑物等障碍物能使气流旋转速度降低。但是,除尘器内部粗糙却使压力损失很大。

1.2 旋风除尘器的性能及其影响因素

1.2.1旋风除尘器的技术性能

(1)处理气体流量Q

处理气体流量Q是通过除尘设备的含尘气体流量,除尘器流量为给定值,一般以体积流量表示。高温气体和不是一个大气压情况时必须把流量换算到标准状态,其体积m3/h或m3/min表示。

(2)压力损失

旋风除尘器的压力损失△p是指含尘气体通过除尘器的阻力,是进出口静压4

旋风除尘器的除尘机理及性能 5

之差,是除尘器的重要性能之一。其值当然越小越好,因风机的功率几乎与它成正比。除尘器的压力损失和管道、风罩等压力损失以及除尘器的气体流量为选择风机的依据。

压力损失包含以下几个方面:

①进气管内摩擦损失;

②气体进入旋风除尘器内,因膨胀或压缩而造成的能量损失;

③与容器壁摩擦所造成能量损失;

④气体因旋转而产生的能量消耗;

⑤排气管内摩擦损失,以及由旋转气体转为直线气体造成的能量损失;

⑥排气管内气体旋转时的动能转换为静压能所造成的损失等。

(3)除尘效率

一般指额定负压的总效率和分级效率,但由于工业设备常常是在负荷下运行,有些场合把70%负荷下的除尘总效率和分级效率作为判别除尘性能的一项指标。从额定负荷下的总效率与70%负荷下总效率对比中,可以看出除尘器负荷适应性。

分级效率是说明除尘器分离能力的一个比较确切的指标。对同一灰尘粒径的分级效率越高,除尘效果越好。在工业测试中,一般把3μm 、5μm 和10μm 灰尘的分级效率作为衡量旋风除尘器分离能力的一个依据。

旋风除尘器的分割粒径50c d 和100c d 在某程度上也说明除尘器除尘效率高低。

(4)耗钢量

旋风除尘器的耗钢量是每小时处理1000m 3气体除尘器本身所需要的钢材数量。在除尘效率接近或相等时,耗钢量越小越好。处理气量为3000~12000m 3/h 的旋风除尘器耗钢量一般为35~50kg/(1000m 3);小于3000m 3/h 气体流量的阻力除尘器的耗钢量,一般都在100kg/(1000m 3/h)以上;处理气体流量大于等于20000m 3/h 时,所配旋风除尘器分两种情况,,一是多筒式旋风结构,包括进出口组合接管、灰斗和支架的耗钢量都很高为90~160kg/(1000m 3/h)。而双极旋风除尘器,由于没有灰斗和支架,耗钢量一般都很低,约40~60kg/(1000m 3/h)。

(5)使用寿命

使用寿命与旋风除尘器本身结构特点、耐磨损措施以及操作条件有关。延长使用寿命的积极措施是:合理组织除尘器内部气流并在内部设抗磨内衬。

1.2.2 影响旋风除尘器性能的主要因素

(1)旋风除尘器几何尺寸的影响

在旋风除尘器的几何尺寸中,以旋风除尘器的直径、气体进口以及排气管形状与大小为最主要的影响因素。

大气课程设计

6 ①一般,旋风除尘器的直径越小,粉尘所受的离心力越大,旋风除尘器的除尘效率也就越高。但过小的筒体直径会造成较大直径颗粒有可能反弹至中心气流而被带走,使除尘效率降低。另外,筒体太小对于粘性物料。因容易引起堵塞。因此,一般筒体直径不宜小于50~75mm ;大型化以后己出现筒径大于20O0mm 的大型旋风除尘器。

②较高除尘效率的旋风除尘器都有合适的长度比例。它不但使进入筒体的尘粒停留时间增长,有利于分离,且能使尚未到达排气管的颗粒,有更多的机会从旋流核心中分离出来,减少二次夹带,以提高除尘效率。足够长的旋风除尘器,还可避免旋转气流对灰斗顶部的磨损。但是过长的旋风除尘器,会占据较大的空间,即从排气管下端至旋风除尘器自然旋转顶端的距离。可用下式计算:

13

22.3e D l d ab ??= ???

式中 l —旋风除尘器筒体长度,m;

D —旋风除尘器筒体直径,m;

b —除尘器入口宽度,m;

e d —除尘器出口直径,m 。

一般,常取旋风除尘器的圆筒段高度H=(l.5~2.0)D 。旋风除尘器的圆锥体可以在较短的轴向距离内将外旋流转变为内旋流,因而节约了空间和材料。除尘器圆锥体的作用是将已分离出来的粉尘微粒集中于旋风除尘器中心,以便将其排入灰斗中。当锥体高度一定,而锥体角度较大时,由于气流旋流半径很快变小,很容易造成核心气流与器壁撞击,使沿锥壁旋转而下的尘粒被内旋流所带走,影响除尘效率。所以,半锥角a 不宜过大。设计时常取a 为13°~15°。

③旋风除尘器的进口有两种主要的进口形式:轴向进口和切向进口。切向进口为最普通的一种进口形式,制造简单,用的比较多。这种形式进口的旋风除尘器外形尺寸紧凑。在切向进口中螺旋面进口为气流通过螺旋而进口,这种进口有利于气流向下做倾斜的螺旋运动同时也可以避免相邻两螺旋圈的气流互相干扰。

渐开线(蜗壳形)进口进入筒体的气流宽度逐渐变窄,可以减少气流对筒体内气流的撞击和干扰,是颗粒向壁移动的距离减小,而且加大了进口气体和排气管的距离,减少气流的短路机会,因而提高除尘效率。这种进口处理气量大,压力损失小,是比较理想的一种进口形式。

轴向进口是最理想的一种进口形式,它可以最大限度的避免进口气体与旋转气流之间的干扰,以提高除尘效率。但因气体均匀分布的关键是叶片形状和数量,否则靠近中心处分离效果很差。轴向进口常用于多管式旋风除尘器和平置式旋风

旋风除尘器的除尘机理及性能

除尘器。

进口管可以制成矩形和圆形两种形式。由于圆形进口管与旋风除尘器器壁只有一点相切,而矩形进口管整个高度均与向壁相切,故一般多采用后者。矩形宽度和高度的比例要适当,因为宽度越小,除尘效率越高,但过长而窄的进口也是不利的,一般矩形进口管高与宽之比为2~4。

④排气管常风的排气管有两种形式:一种是下端收缩式;另一种是直筒式。在设计分离较细粉尘的旋风除尘器时,可考虑设计为排气管下端收缩式。排气管直径越小,则旋风除尘器的效率越高,压力损失也越大;反之,除尘器效率越低,压力损失也越小。

在旋风除尘器设计时,需控制排气管与筒径之比在一定范围内。由于气体在排气管内剧烈的旋转,将排气管末端制成蜗壳形式可以减少能量损失,这在设计中已被采用。

⑤灰斗是旋风除尘器设计中不可忽视的部分,因为在除尘器的锥度处气流处于湍流状态,而粉尘也由此排除容易出现二次夹带的机会,如果设计不当,造成灰斗漏气,就会使粉尘的二次夹带飞扬加剧,影响除尘效率。

(2)气体参数对除尘器性能的影响

气体运行参数对性能的影响有以下几个方面:

①气体流量的影响

气体流量或者说除尘器入口气体流速对除尘器性能的压力损失、除尘效率都有很大的影响。从理论上来说,旋风除尘器的压力损失与气体流量的平方成正比,因而也和入口风速的平方成正比(与实际有一定偏差)。

入口流速增加,能增加尘粒在运动中的离心力,尘粒易于分离,除尘效率提高。除尘效率随入口流速平方根而变化,但是当入口速度超过临界值时,紊流的影响就比分离作用增加的更快,以致除尘效率随入口风速增加的指数小于1;若流速进一步增加,除尘效率反而降低。因此,旋风除尘器入口的风速宜选18~23m/s。

②气体含尘浓度的影响

气体的含尘浓度对旋风除尘器的除尘效率和压力损失都有影响。试验结果表明,压力损失随含尘负荷增加而减小,这是因为颈向运动的大量尘粒拖拽了大量空气,粉尘从速度较高的气流智能向外运动到速度较低的气流中时,把能量传递给涡旋气流的外层,较少其需要的压力,从而降低压力降。

由于含尘浓度的提高,粉尘的凝集与团聚性能提高,因而除尘效率有明显提高,但是提高的速度比含尘浓度增加的速度要慢得多,因此,排出气体的含尘浓度总是随着入口处的粉尘浓度增加而增加。

③气体含湿量的影响

7

大气课程设计

8 气体的含湿量对旋风除尘器工况有很大影响。例如,分速度很高而黏着性很小的粉尘(小于10μm 的颗粒含量为30%~40%,含湿量为1%)气体在旋风除尘器中净化不好;若细颗粒量不变,含湿量增至5%~10%时,那么颗粒在旋风除尘器内互相粘结成比较大的颗粒,这些颗粒被猛烈冲击在器壁上,气体净化将大有改善。 ④气体的密度、粘度压力、温度对旋风除尘器性能的影响

气体的密度越大,除尘效率下降,但是,气体的密度和固体的密度相比几乎可以忽略。所以,其对除尘效率的影响较之固体密度来说,也是可以忽略不计。通常温度越高,旋风除尘器压力损失越小;气体粘度的影响在考虑旋风除尘器压力损失时常忽略不计。但从临界粒径的计算公式中知道,临界粒径与粘度的平方根成正比。所以,除尘效率时随着气体粘度的增加而降低。由于温度升高,气体粘度增加,当进气口气速等条件保持不变时,除尘效率略有降低。

气体流量为常数时,粘度对除尘效率的影响可按下式进行近似计算。

100100b -=-a ηη

式中 a η、b η—a 、b 条件下的总除尘效率,%;

a μ、

b μ—a 、b 条件下的气体粘度,kg.s/2m 。

(3)粉尘的物理性质对除尘器的影响

①粒径对除尘性能的影响及较大粒径的颗粒在旋风除尘器内会产生较大的离心力,有利于分离。所以大颗粒所占有的百分数越大,总除尘效率越高。

②粉尘密度对除尘器性能的影响及粉尘密度

粉尘密度对除尘效率有着重要的影响。临界粒径50d 和100d 颗粒密度的平方根

成反比,密度越大,50d 和100d 越小,除尘效率也越高。但粉尘密度对压力损失影

响很小,设计计算中可以忽略不计。

影响旋风除尘器性能的主要因素,除上述外,除尘器内部粗糙度也会影响旋风除尘器的性能。浓缩在壁面附近的粉尘微粒,会因粗糙的表面引起旋流,使一些粉尘微粒被抛入上升的气流,进入排气管,降低了除尘效率。所以,在旋风除尘器的设计中应避免有没有打光的焊缝、粗糙的法兰连接点等。旋风除尘器性能与各影响因素的关系表1—1所列

旋风除尘器的除尘机理及性能

9

旋风除尘器的设计

10 第二章 旋风除尘器的设计

2.1旋风除尘器各部分尺寸的确定

2.1.1形式的选择

根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。

2.1.2 确定进口风速(初次设定)

根据推荐取V j =18/s

确定旋风除尘器的尺寸

(1)进气口面积A 的确定

进气口截面一般为长方形,尺寸为a 和b ,根据处理气量Q 和进气速度j v 可

3600j j

Q A ab v == =4000/(3600×18)

=0.0622m

取a=2.5b,则a=0.25m ,b=0.10m

(2)筒体直径的确定

一般旋风除尘器的直径越小,气流的旋转半径越小,粉尘颗粒所受的离心力越大,除尘效率越高。但是过小的筒体直径,和排气管太近,可能造成大直径颗粒反弹至中心被气流带走,使除尘效率降低,另外还可能引起筒体内堵塞。因此,一般筒体直径不宜小于50~75mm 。

因为旋风除尘器以筒体直径D 为其规格的标准,因此,一般取整数。

b=0.2D,则D=500mm,现取D=500mm 。

(3)实际风速Vc

Vc=Q/(3600×ab)=44.44m/s

大气课程设计 11

旋风除尘器强度的校核

已知处理烟气温度T =150℃,查表或用公式可得常压下烟气密度ρg =0.9kg/m3,动力黏度μ=2.4×10-5 Pa ·s。

由筛分理论,其粉尘分割径为

除尘效率的计算

(1)分级除尘效率

由《除尘器》图1—6查得旋风除尘器分级除尘效率公式为

式中dp ——取平均粒径。

所以,各分级粒径的除尘效率为:

=0.312 =0.607

=0.917

=0.996

=0.999

=1

(2)总除尘效率 m

LV Q d c p c μππρμ56.544.445.02500360024000

104.2182/18252≈???????==-]

693.0exp[1c

p d d --=η]

56.53

693.0ex p[11--=η]

56.55

.7693.0exp[12--=η]

56.520

693.0ex p[13--=η]

56.545693.0exp[14--=η]

56.570

693.0ex p[15--=η]

56.590

693.0ex p[16--=η%9.89899.0113.0999.018.0996.029.0917

.022.0607.012.0312.006.01

==?+?+?+?+?+?==∑=i n

i i T g ηη

旋风除尘器的设计

12 ?因ηT<90%,故不满足设计要求。

2.1.3 确定进口风速(验证校核)

根据推荐取Vj=18/s

确定旋风除尘器的尺寸

(1)进气口面积A的确定

进气口截面一般为长方形,尺寸为a和b,根据处理气量Q和进气速度

j

v可

大气课程设计 13

3600j j

Q A ab v == =4000/(3600×18)

=0.0622m

取a=2.5b,则a=0.25m ,b=0.10m

(2)筒体直径的确定

一般旋风除尘器的直径越小,气流的旋转半径越小,粉尘颗粒所受的离心力越大,除尘效率越高。但是过小的筒体直径,和排气管太近,可能造成大直径颗粒反弹至中心被气流带走,使除尘效率降低,另外还可能引起筒体内堵塞。因此,一般筒体直径不宜小于50~75mm 。

因为旋风除尘器以筒体直径D 为其规格的标准,因此,一般取整数。

则D=800mm,现取D=800mm 。

(3)实际风速Vc

Vc=Q/(3600×ab)=44.44m/s

旋风除尘器强度的校核

已知处理烟气温度T =150℃,查表或用公式可得常压下烟气密度ρg =0.9kg/m3,动力黏度μ=2.4×10-5 Pa ·s。

由筛分理论,其粉尘分割径为

除尘效率的计算

(1)分级除尘效率 由《除尘器》图1—6查得旋风除尘器分级除尘效率公式为

式中dp —取平均粒径。

所以,各分级粒径的除尘效率为:

=0.377

=0.693

m LV Q d c p c μππρμ398.444.448.02500360024000104.2182/182

52≈???????=

=-]693.0exp[1c p d d --=η]398.43693

.0ex p[11--=η]398.45.7693.0ex p[12--=η

旋风除尘器的设计

14 =0.957

=0.999

=0.999

=1

(2)总除尘效率

? 因ηT>90%,故满足设计要求。

(3)旋风除尘器筒体长度的确定

L=D=0. 8m

(4)锥体长度的确定

取H =2D

=2×800

=1600mm

(5)排气管直径的确定

d=0.5D=0.4m

(6)排尘口直径的确定

D d =0.25D=0.2m

2.2法兰的画法

]398

.420693.0ex p[13--=η]398.445693.0ex p[14--=η]398

.470693.0ex p[15--=η]398.490693.0ex p[16--=η%

59.919159.0113.0999.018.0999.029.0957.022.0693.012.0377.006.01==?+?+?+?+?+?==∑=i n

i i T g ηη

大气课程设计

1)法兰材料的确定

2)采用角钢,查手册:选不等边角钢40×25×4

3)还可选等边角钢:36×4

4)螺栓孔距确定

5)需满足JB/ZQ4248-86。如螺栓直径为8mm,孔距大于28mm。对于旋风除尘器

法兰,总满足。故可视法兰尺寸而定,见法兰设计图

6)孔径确定

7)采用通孔。10~15mm

8)螺栓直径、长度及螺纹长度的确定(C级全螺纹)

9)考虑时间关系,不作受力分析。螺栓直径视孔径而定,GB5277-85。选粗装配。

如孔径为10mm,螺栓直径8mm,孔径12,螺栓直径10mm。

10)螺栓长度:考虑角钢厚度、密封胶垫、垫片和螺母厚度,取l=40mm

11)选型结果:GB5781-86-M10×40

15

旋风除尘器的安装和使用

第三章旋风除尘器的安装和使用维护

3.1 安装

(1)起重运输时应将绳索系于外圆筒内中部法兰盘上.其它部位不可作受力点.

(2)除尘器就根据选用风量及阻力配备相应的通风机.并应将Y型或X型除尘器分别安装在通风机的后面或前面.

(3)除尘器排尘口下方应安装集尘器,其容积根据除尘器及使用情况选择.

(4)排尘口与集尘器间应安装连接管道,管道长度不得短于排尘口内径的5倍.并在管道间安装有排尘阀门(如:插板阀,自动排尘阀或旋转排尘阀等).

(5)除尘器安装在支架上应保证坚固性和稳定性.

(6)安装妥善后应将通风机启动,试验除尘器及其它管道的密封性.如有漏风现象应立即修理.

3.2 使用.

(1)通风系统工作时应保持除尘器进口风速在12-17M/S范围内.

(2)除尘器的开始浓度不应大于 1.7g/m3.当作第一级除尘时,开始浓度不应大于40g/m3.

(3)进入除尘器的灰尘应干燥,含水量不大于4%,不得有尘气的分溜物.

(4)进入除尘器的灰尘应特别注意防止爆炸.若为可爆粉尘为安全计应在通风系统中安装消防管道及安全阀.

(5)使用时应注意除尘器及管道的密封性.微量的渗漏也会显著地降低除尘效率.

(6)排尘口下连接管道内的积尘面离排尘口的距离不小于排尘口直径的5倍.

(7)使用中经常注意除尘器的阻力变化,若阻力过大时应予分解清洗.

3.3 维护

(1)经常操持除尘器表面的清洁,如有油化脱落现象应予补漆.

(2)除尘器应根据使用场所和灰尘性质及浓度确定清洗周期.

(3)清洗时首先应按如下步骤将除尘器进行分解.

a,将除尘器与其相连接的管道拆开.

b,将除尘器从支架上吊装上来.

c,将蜗形室(X型),下部锥筒从除尘器上部卸下.

(4)可以用清水,碱水或压缩空气清洗,也可对不易清洗的污垢用刷擦洗.

(5)清洗干净后用清水洗掉残留的含碱水迹.

(6)装配及安装方法按上述顺序相反进行.

3.4 故障处理

大气课程设计

17

旋风除尘器的设计

18

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

多管除尘器的构造原理和特点

精品文档 多管除尘器的构造原理和特点:多管除尘器是利用离心分离的原理进行工作,当含尘气体经除尘器入口进入按等高排列的旋风子的切口入口,颗粒在旋风子内受离心力的作用被分离出来,经灰斗排出,被净化的气体经芯管排出,达到净化烟气的目的。 多管除尘器的主要特点: 1、适用于各种型号和各种燃烧方式的工业锅炉及热电站锅炉的粉尘治理。 2、对于其它工业粉尘,同样可用本除尘器治理,还可进行水泥及其它有实用价值的粉尘进行回收。 3、处理风量大,负荷适应性强, 占地面积小,置于室内、露天均可。 4、管理方便、维修简单。 5、对老除尘设备改造,原则上不用更换引风机。 陶瓷多管除尘器陶瓷多管式旋风除尘器是由若干个并联的陶瓷旋风除尘器单元(又称陶瓷旋风体)组成的除尘设备。它可以由一般的陶瓷旋风除尘器单元或直流型旋风除尘器单元组成,这些单元被有机的组合在一个壳体内,有总的进气管、排气管和灰斗。灰斗排灰可以有多种自动排灰形式,因为本设备是由陶瓷旋风管组成,它比铸铁管更耐磨,表面更光滑,并耐酸耐碱,因此还可以湿式除尘。适用于捕集各种锅炉的非黏结型的干燥粉尘。该产品不但用于锅炉烟尘和有害气体的治理,而且是冶金、采矿、建材、化工等行业对粉尘治理的理想设备。 一、工作原理 含尘气体由总进气管进入气体分布室,随后进入陶瓷旋风体和导流片之间的环形空隙。导流片使气体由直线运动变为圆周运动,旋转气流的绝大部分沿旋风体自圆筒体呈螺旋形向下,朝锥体流动,含尘气体在旋转过程中产生离心力,将密度大于气体的尘粒甩向筒壁。尘粒在与筒壁接触,便失去惯性力而靠入口速度的动量和向下的重力沿壁面向下落入排灰口进入总灰斗。旋转下降的外旋气流到达锥体下端位时,因圆锥体的收缩即以同样的旋转方向在旋风管轴线方向由下而上继续做螺旋形流动(净气),经过陶瓷旋风体排气管进入排气室,由总排气口排出。 二、主要技术参数 除尘效率:92~95% 阻力:900~1000pa 进口流速:15~20m/s 陶瓷多管除尘器 精品文档

轴流式旋风除尘器危险分析(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 轴流式旋风除尘器危险分析(新 版)

轴流式旋风除尘器危险分析(新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉尘,当作业人员长期进行除尘器操作时,吸入这些粉尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可能对作业人员健康造成危害,甚至可能发生窒息事故。 c.在除尘机风机检查、维修过程中,高浓度粉尘可能对人体造成危害。 (2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b.在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。 (3)触电

a.除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落 除尘机风机检查、维修、卸灰等作业中可能涉及高空作业,如操作工人误正确防护措施情况下可能发生高空坠落事故。 (5)火灾、爆炸 在高浓度粉尘区域,如存在火星、火源,则可能导致爆炸,引起火灾。 (6)噪声 由于风机在运转过程中,产生高强度噪音,如防护措施不当,工人长期在噪声环境下工作,可能导致工人听力受损。 XX设计有限公司 Your Name Design Co., Ltd.

旋风式除尘器的正确使用(精)

旋风式除尘器的正确使用 风式除尘器是依靠含尘气体在除尘器内快速旋转、离心力促使颗粒粉尘与气体分离,因此其结构、原理与其他机械式除尘器截然不同,运行操作和维护管理也显得特别重要。旋风式除尘器的操作包括启动、运行、停车,维护工作主要是常见故障的分析、排除和预防。 关键词 颗粒粉尘旋风除尘运行操作维护管理 1 旋风除尘器的正确操作 1.1启动前的准备工作 1)检查各连接部位是否连接牢固。 2)检查除尘器与烟道,除尘器与灰斗,灰斗与排灰装置、输灰装置等结合部的气密性,消除漏灰、漏气现象。 3)关小挡板阀,启动通风机、无异常现象后逐渐开大挡板阀,以便除尘器通过规定数量的含尘气体。 1.2运行时技术要求 1)注意易磨损部位如外筒内壁的变化。 2)含尘气体温度变化或湿度降低时注意粉尘的附着、堵塞和腐蚀现象。 3)注意压差变化和排出烟色状况。因为磨损和腐蚀会使除尘器穿孔和导致粉尘排放,于是除尘效率下降、排气烟色恶化、压差发生变化。 4)注意除尘器各部位的气密性,检查旋风筒气体流量和集尘浓度的变化。 1.3作业后的技术工作 1)为防止粉尘的附着和腐蚀,除尘作业结束后让除尘器继续运行一段时间,直到除尘器内完全被清洁空气置换后方可停止除尘器运行。 2)消除内筒、外筒和叶片上附着的粉尘,清除灰斗内的粉尘。 3)必要时修补磨损和腐蚀引起的穿孔。

4)检查各部位的气密性,必要时更换密封元件。 5)按照使用说明书的规定对风机进行例行保养。 2 旋风式除尘器的维护 旋风式除尘器运行时应稳定运行参数、防止漏风和关键部位磨损、避免粉尘的堵塞,否则将严重影响除尘效果。 2.1稳定运行参数 旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。 1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。 2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口气流速度和较小的截面流速。 3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。 2.2防止漏风 旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下: 1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。 2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。 3)卸风装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。 2.3预防关键部位磨损 影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

旋风除尘器设计资料

中南大学 本科生课程设计(实践)任务书、设计报告 题目除尘器设计计算 学生姓名苏小根 指导教师马爱纯 学院能源科学与工程学院 专业班级热能与动力工程0902 学生学号1003090419 2012年9 月21日

1.除尘器 1.1 除尘器简介 除尘器是把粉尘从烟气中分离出来的设备叫除尘器或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。日常工业上使用的除尘器主要有:重力除尘器、惯性除尘器、电除尘器、湿除尘器、袋式除尘器、旋风除尘器等。 重力除尘器是使含尘气体中的粉尘借助重力作用自然沉降来达到净化气体的装置,它的特点是结构简单,阻力小,但体积大,除尘效率低,设备维修周期长。惯性除尘器是一种利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从气体中分离出来的除尘设备,特点是结构简单,阻力较小,但除尘效率低。电除尘器利用含尘气体在通过高压电场电离时,尘粒荷电并受电场力的作用,沉积于电极上,从而使尘粒和气体分离的一种除尘设备,其特点是效率高、阻力低、适用于高温和除去细微粉尘等优点。湿式除尘器是使含尘气体与水或者其他液体相接触,利用水滴和尘粒的惯性膨胀及其他作用而把尘粒从气流中分离出来,特点是投资低、造作简单,占地面积小,能同时进行有害气体的净化、含尘气体的冷却和加湿等优点。袋式除尘器主要依靠编织的或毡织的滤布作为过滤材料达到分离含尘气体中粉尘的目的,特点是适应性比较强,不受粉尘比电阻的影响,也不存在水的污染问题,同时存在过滤速度低、压

降大、占地面积大、换袋麻烦等缺点。 1.2除尘器的概念和分类 除尘器是把粉尘从烟气中分离出来的设备叫做除尘器或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。同时,除尘器的价格、运行和维护费用、使用寿命长短和操作管理的难易也是考虑其性能的重要因素。除尘器是锅炉及工业生产中常用的设施。在国家采暖通风与空气调节术语标准中,明确了若干除尘器的具体含义,摘抄部分如下: 除尘器:用于捕集、分离悬浮于空气或气体中粉尘例子粒子的设备,也称收尘器。 沉降室:由于含尘气流进入较大空间速度突然降低,使尘粒在自身重力作用下与气体分离的一种重力除尘装置。也称重力除尘器。 旋风除尘器:含尘气流沿切线方向进入筒体做螺旋形旋转运动,在离心作用下将尘粒分离和捕集的除尘器。 袋式除尘器:用纤维性滤袋捕集粉尘的除尘器。 惯性除尘器:借助各种形式的挡板,迫使气流方向改变,利用尘粒的惯性使其和挡板发生碰撞而将尘粒分离和捕集的除尘器。 除尘器有很多种类,除尘器按其作用原理分成以下五类: (1)机械力除尘器包括重力除尘器、惯性除尘器、离心除尘器等。 (2)洗涤式除尘器包括水浴式除尘器、泡沫式除尘器,文丘里管除尘器、水膜式除尘器等。

旋风除尘器(精)

旋风除尘器是利用气流旋转过程中作用在粉尘上的离心力,使粉尘从含尘气流中分离出来的设备。旋风除尘器的结构原理及优缺点 普通旋风除尘器的结构如图1所示,它是由进口、筒体、锥体、排出管(筒)4部分组成的。含尘气流由除尘器进口沿切线方向进入除尘器后,沿外壁由上向下作旋转运动,这股从上向下旋转的气流称为外旋涡。外旋涡到达锥体底部后,转而向上,沿轴心向上旋转,最后从排出管排出。这股从下向上的气流称为旋涡。向下的外旋涡和向上的旋涡旋转方向是相同的。气流作旋转运动时,粉尘在离心力的作用下甩向外壁,到达外壁的粉尘在下旋气流和重力的共同作用下沿壁面落入灰斗。 图1 旋风除尘器 1—进口 2—筒体 3—锥体 4—排出管 旋风除尘器的优缺点 旋风除尘器的优点有:(1)结构简单,造价低;(2)除尘器中没有运动部件,维护保养方便; (3)可耐400℃高温,如采用特殊的耐高温材料,还可以耐受更高的温度;(4)除尘器敷设耐磨衬后,可用以净化含高磨蚀性粉尘的烟气。其缺点是:(1)对捕集微细粉尘(小于5μm)和尘粒密度小的粉尘(如纤维性粉尘)除尘效率不高;(2)由于除尘效率随筒体直径的增加而降低,因而单个除尘器的处理风量受到一定限制。 影响旋风除尘器性能的主要因素 1.进口速度。旋风除尘器气流的旋转速度,是由进口速度造成的。增加进口速度,能

提高除尘器气流的旋转速度vt,使尘粒所受到的离心力(尘粒所受离心力,式中:m为尘粒质量,kg;vt为尘粒的旋转速度,可近似认为等于该点气流的旋转速度,m/s;r为旋转半径,m)增大,从而提高除尘效率,同时也增大了除尘器的处理风量。但进口速度不宜过大,过大会导致除尘器阻力急剧增加(除尘器阻力与进口速度的平方成正比),耗电量增大,而且,当进口速度增大到一定限度后,除尘效率的增加就非常缓慢,甚至有所下降。这主要是由于除尘器部涡流加剧,破坏了正常的除尘过程造成的。因此,最适宜的进口速度一般应控制在12~20m/s之间。 2.筒体直径和高度。由离心力公式可知,在同样的旋转速度下,简体直径越小(简体直径减小,旋转半径也减小),尘粒受到的离心力越大,除尘效率越高,但处理风量减小。目前常用的旋风除尘器,直径一般不超过800mm。风量较大时,可用几台除尘器并联运行或采用多管旋风除尘器。 增加简体高度,从直观上看可以增加气流在除尘器的旋转圈数,有利于尘粒的分离,使除尘效率提高。但筒体加高后,外旋下降的含尘气流和旋上升的洁净气流之间的紊流混合也要增加,从而使带人洁净气流的尘粒数量增多。故简体不宜太高,一般取筒体高度为2D(D 为筒体直径)左右。 3.锥体高度。在锥体部分,由于断面不断减小,尘粒到达外壁的距离也逐渐减小,气流的旋转速度不断增加,尘粒受到的离心力不断增大,这对尘粒的分离都是有利的。现代的高效旋风除尘器大都是长锥体就是这个原因。目前国的高效旋风除尘器,如ZT型和XCX型也都是采用长锥体,锥体高度为(2.8~2.85)D。 4.除尘器底部的严密性。旋风除尘器无论是在正压下还是在负压下运行,其底部(即排尘口)总是处于负压状态,如果除尘器底部不严密,从外部渗入的空气就会把正在落人灰斗的一部分粉尘带出除尘器,使除尘效率显著下降。所以如何在不漏风的情况下进行正常排尘,是旋风除尘器运行中必须重视的一个问题。 在收尘量不大时,可在除尘器底部设固定灰斗定期排尘;在收尘量较大,要求连续排尘时,可采用锁气器,常用的锁气器有翻板式、压板式和回转式几种。 5.粉尘的性质。尘粒密度越大,粒径越大,离心力越大,除尘效率也就越高。因而旋风除尘器一般不适用于处理细微的纤维性粉尘。对非纤维性粉尘,粒径太小时,效率也不高。用于处理粒径大、密度大的矿物性粉尘效果好。 几种常用的旋风除尘器 旋风除尘器的发展虽然经历了一百多年的历史,但到目前为止,其结构形式方面的研究工作一直都在继续进行,因而出现了许多结构形式,下面介绍常用的几种。 1.多管旋风除尘器。如前所述,旋风除尘器的效率是随着简体直径的减小而增加的,但直径减小,处理风量也减小。当要求处理风量较大时,如将几台旋风除尘器并联起来使用,占地面积太大,管理也不方便,因此就产生了多管组合的结构形式。多管除尘器是把许多小直径(100~250mm)的旋风子并联组合在一个箱体,合用一个进气口、排气口和灰斗。为使风

轴流式旋风除尘器危险分析

编号:SY-AQ-00081 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 轴流式旋风除尘器危险分析 Risk analysis of axial flow cyclone

轴流式旋风除尘器危险分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉尘,当作业人员长期进行除尘器操作时,吸入这些粉尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可能对作业人员健康造成危害,甚至可能发生窒息事故。 c.在除尘机风机检查、维修过程中,高浓度粉尘可能对人体造成危害。(2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b.在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。(3)触电 a.除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸

露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落 除尘机风机检查、维修、卸灰等作业中可能涉及高空作业,如操作工人误正确防护措施情况下可能发生高空坠落事故。 (5)火灾、爆炸 在高浓度粉尘区域,如存在火星、火源,则可能导致爆炸,引起火灾。 (6)噪声 由于风机在运转过程中,产生高强度噪音,如防护措施不当,工人长期在噪声环境下工作,可能导致工人听力受损。 这里填写您的公司名字 Fill In Your Business Name Here

旋风式除尘器简介

旋风式除尘器简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。 旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。 旋风除尘器结构 普通旋风除尘器是由进气管、排气管、圆筒体、圆锥体和灰斗组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。在机械式除尘器中,旋风式除尘器是效率最高的一种。它适用于非黏性及非纤维性粉尘的去除,大多用来去除5μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和腐蚀的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。因此,它属于中效除尘器,且可用于高温烟气的净化,是应用广泛的一种除尘器,多应用于锅炉烟气除尘、多级除尘及预除尘。它的主要缺点是对细小尘粒(<5μm)的去除效率较低。 优点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

几种新型旋风除尘器的简析

技 术 创 新 文章编号 0952(2000)05 TH12 几 种 新 型 旋 风 除 尘 器 的 简 析 兰州铁道学院 李 炎 兰州市城市建设设计院 周鸣镝 旋风除尘器经历了100多年的发展历史,其被广泛应用于工业除尘 它是利用旋转气流对粉尘产生离心力使其从气流中 分离出来的 阻力损失更小的旋风除尘器 以下就几种新型旋风除尘器作简要介绍 处于同轴心的内外 筒体中间留有一定的环隙内筒低于外 筒一定距离排气管插入外筒内一 定距离 进气管由外筒下端切向进入内筒 其下部为灰斗  内筒 含尘气流中所含较大的固体颗 粒在重力作用下直接沉入锥体 由于离心力作用而被甩向筒壁 一次分离后的大部分纯净气体直接 从顶部排气管排出 被甩向内外筒体间的环隙 在锥体内得到二次分离 亦由排气管排出 速度梯度小不易造成 阻力损失也相对 较小 其特点是在旋风器内部 设置有在电机带动下能够旋转的开孔圆筒6外旋筒6 的直径为0.95D 旋筒表面均 匀地开孔 开孔率为40% 内圆锥体也开有同样的孔其工作原理是含尘气体 由切向入口进入到外旋筒 从入口进入的气流就会在开孔旋筒表面附面 层的摩擦力的作用下 从而增加了旋回流的强度和对粉尘粒子的离心分离作用 含尘气流在粉尘粒子逐渐离心沉降的同时 边旋转 进而通过中心旋筒及出口排出 但阻力损失也相对较大

技 术 创 新 续螺旋式旋风除尘器采用了阿基米得连续螺旋线型结构 其工作原理是含尘气体由切向入口进入 与其入口宽度相同的内部螺旋通道 粉尘被抛向螺旋通道的内外壁上干净气体最后由顶部排气管排出 具有体积小 除尘效率 高 也许在不久的将来 4 切流直流式旋风除尘器 这种类型的旋风除尘器取消了上排气芯管 其筒体结构也较为独特 下部 筒体直径大 如图4所示在稳流体与筒壁 之间的环形区域做旋转运动 向下旋转 在气流推动和重力作用下 直接进入排气芯管排出再折转向上最后经排气芯管 排出 它消除了内旋涡旋 使除尘器 在保持高除尘效率的基础上 图4 切流直流式旋风除尘器结构简图 1-上筒体 2-过渡段 3-下筒体 4-锥体 5-排尘口 6-排气管 7-稳流体 8-进气管 5 总结 根据以上的介绍 这四种型式的旋风 除尘器的共同特点是低阻高效 因此 有重点地发展某种型式的除尘器 地下水的开采超过天然补给量水位 下降 6 水资源开采方式要得当 如方法 也会 带来环境问题在某些干旱 由于水文地质和气候方面的原因还要进行排 水 要采用不同的灌溉组合方式 使良田变为荒碱滩 7 严格控制废水排放标准 严格控制废水排放标准是保护水资源最有效的措施 污水一旦进入自然 水体BOD 必然造成对水资源的破坏 变成毫无用处的废水 使缺水问题 进一步尖锐化 社会问题和经问题 而且能持水 不仅水质好 但是 就会造成土的流失和水流 含沙量增加 给水资源的开发 利用带来很大的困难 还能改变地区 气候 所以 9 聚雨蓄水 聚雨蓄水关键是发动群众和依靠群众 村干部 带领 本村的地形优势兴修塘 池 下雨时 堰 窖储存起 来 还可用于农田灌溉和其他方面使用 还可补充地下水 预防河床升高减少水患 水的需求量将不断 增加 节约用水是我 们的长期国策 减少浪费 推行 循环用水和一水多用的措施 工业产业结构如缺水区绝来能新 建玉米淀粉厂要根据作物生 长要求配水 城市生活用水可用经济杠杆 作用 水是生命之源保护水资源就 是保护人类本身

旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 编辑本段行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器 JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器

旋风除尘器除尘效率的分析及改进

旋风除尘器 旋风式除尘器的组成及内部气流 简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从业体重分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105P a的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器

JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器 特点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。 短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。 影响旋风除尘器除尘效率的因素分析 分析了旋风除尘器中流体流动状态及除尘效果影响因素,包括除尘器的结构、进气口、圆筒体直径和高度、排气管、排灰口及操作工艺参数。此外流速粉尘状况、气流运行也对除尘效果有影响,并提出了提高旋风除尘器除尘效率的改进措施。 旋风除尘器是利用含尘气流作旋转运动产生的离心力将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比,具有结构简单、没有运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点,对于收集5~10 μm 以上的尘粒,其除尘效率可达90%左右。广泛用于工业炉窑烟气除尘和工厂通风除尘,工业气力输送系统气固两相离与物料气力烘干回收等。此外,旋风器亦可以作为高浓度除尘系统的预除尘器,能与其他类型高效除尘器串联使用。旋风除尘器在粮食行业也得到了广泛的应用,如原料输送、加工、包装等生产环节的除尘。然而,许多粮食企业的旋风除尘器运行效率并不高,排放指标未到达设计要求,研究和探讨旋风除尘器除尘效率影响因素,对提高其除尘效率具有重要的现实意义。

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

旋风除尘器(内部机密)

旋风除尘器 (河南宏科重工)提供 旋风除尘器的特点 实践证明:利用机械力(包括重力、惯性力、离心力等)的除尘过程中,依靠离心力要比单纯利用惯性力对尘粒具有更大的捕集分离能力。旋风分离器就是利用离心力使固体微粒从气相的载流介质中分离出来的一种气固分离设备。这种设备用于化工及粉状物料生产过程称之为气固分离器;用于一般工业除尘及锅炉烟气净化过程,通常称为旋风除尘器。 旋风除尘器具有以下特点: 1)结构简单、加工制作容易、造价低; 2)除尘器本身没有运动部件,运行管理及维护检修方便; 3)对粉尘的物理性能无特殊要求,对粉尘负荷的适应性比较强; 4)可耐较高的温度,适应高温烟气处理; 5)属于干式收尘,便于粉状物料的回收处理; 6)设备阻力适中,除尘效率较高。 旋风除尘器一般只能捕集分离10微米以上的尘粒,而且处理风量受到一定的限制,一般多用于中小型锅炉烟气除尘以及粉状物料的回收。 除尘器内气流流型及除尘过程 旋风除尘器是目前工业除尘及锅炉烟气净化中应用较为广泛的除尘设备之一。尽管除尘器的种类繁多,形状各异,但其除尘原理基本上是相同的。下图是普通旋风除尘器内气流流动概况示意图。

进入旋风除尘器的含气气流,沿着圆筒体的内壁一边旋转一边下降,通常称这部分气流为外旋气流。当外旋气流到达锥体下部时,由于受到器壁的限制,气流改变方向,折转向上,形成在中心区域旋转上升的气流,通常称这部分气流为内旋气流。内旋气流升至顶部经排气芯管排出。实际上旋风除尘器内的气流及尘粒的运动状况是相当复杂的,上述图示是简化后的气流流型。 研究表明:气流在旋风除尘器内作旋转运动时,任何一点的速度都可以分解成三个分速度,即切向速度、径向速度和轴向速度。许多研究者的测试结果都大致相同。 可以看出,器壁附近的切向速度随气流不断向下旋转而逐渐增加,而在同一水平断面上的切向速度随与轴心距离逐渐减小而增大;径向速度比切向速度要小的多,而且在同一水平断面上几乎不变,接近中心区域的径向速度方向指向器壁;轴向速度表示器壁区域轴向速度向下,中心区域气流向上。研究结果表明,旋风除尘器内的切向速度是决定气流质点离心力大小的主要因素,其最大值约在排气管直径的1/2-1/3的圆环处。 在旋风除尘器内含尘气体中的尘粒随气流一起作旋转运动,尘粒的密度要比载流气体的密度大得多。因此在同一点处尘粒获得的切向分离速度也比气体大得多。 旋风除尘器的构造及分类 旋风除尘器通常按气流进入方式不同,可分为切向进入式和轴向进入式两类。 一、切向进入式旋风除尘器 切向进入式旋风除尘器是指进入除尘器的含尘气流方向与除尘器的圆筒壁相切。这是应用最广泛的一种旋风除尘器。这种除尘器的基本构造由一个外圆筒体和一个圆锥体焊接在一起构成除尘器外壳。圆形排气芯管设在圆筒体内,两者具有同一轴心。圆锥体下部与集尘箱或

环流式旋风除尘器

环流式旋风除尘器,达到袋式除尘效果 一、企业简介: 青岛成海工业有限公司本公司追求高新技术,研制适合各行业的主打产品,为此,我们不断的开发新产品,引进德国阿盖尔、欧洲温蒂莱科斯、法国埃森恩等知名大公司的先进技术,先后在国内独家推出具有国际水平的双质体振动流化床、高级曲柄拉杆式振动流化床干燥机械、双质体振动输送机械、箱式激振器、行业专用设备等,并形成了自己的主打产品。 本公司在除尘设备具有的高科技主打产品有循环式旋风除尘器、旋风除雾器及循环除尘系统装置,是我公司引进高校开发的专利技术产品,采用全新革命性的理论、原理结构,解决了气、固、液相分离过程中存在的几十项工程技术难题,除尘颗粒半径最小可达到0. 33μm,拓展了旋风除尘器的应用领域,使旋风除尘器达到了静电除尘器和布袋除尘器的除尘效率,具有压降低、放大效应小、投资少、运行费用低、操作简单、应用范围广等优点;循环式旋风分离系列专利技术已经通过山东省科技厅组织的专家鉴定,该产品在世界范围内旋风除尘设备技术上革命性的突破。 二、CLT、CLK、XZZ型等传统旋风除尘器的缺点和弊端: 常规旋风除尘器有CLT/A型旋风除尘器、CLK扩散式旋风除尘器、XZZ型旋风除尘器器等等,使用时,气体由直筒段上部进入器内,沿边壁螺旋向下流入锥体,由于流体向下流动时,锥体截面不断缩小,大部分气体逐渐趋向中心,并沿轴心自下而上螺旋上升至除尘器顶部,再从中心排气管排出。部分气体夹带着被分离下来的粉尘进入灰仓,在灰仓内与粉尘分离后返回除尘器内。这些除尘器存在的弊端有: 1、分割直径一般为10μm,分离效率低,对10μm以下的粉尘,分离效率很低,而对5μm以下的粉尘,分离效率很低几乎为零; 2、放大效应大,常规的旋风除尘器直径约大,除尘效率急剧下降; 3、流体剪应力大,压降太大; 4、操作稳定性太差,弹性小; 常规除尘器缺点弊端在于:流体的流动路线为沿边壁自上而下再沿轴心自下而上,流体流动路线长,轴向流速快,且存在两个相反流动方向的流体旋涡,导致了流体剪应力大,故压降大;对于大直径的旋风除尘器,由于剪应力大,器内流体易产生剧烈的湍动,且不易形成分离所必须的稳定流型,所以随直径增大,分离效率急剧下降,故放大效应显著;由于大部分气体要在锥体从边壁区域流向中心部位,会导致已达到锥体壁面附近的细粉尘的二次卷扬;大量流体流入灰仓,会造成灰仓内细粉尘的飞扬,并会被返回气体带回器内;由于顶盖附近存在高速旋转的灰环(含尘浓度极高的气流),易产生细粉尘向出气口泄漏;由于出入口距离太近,易产生细粉尘的的短路。故分离效率不高。常规型旋风除尘器的另一个缺点是操作稳定

旋风除尘器的结构与工作原理

一、旋风除尘器的结构与工作原理 浏览字体设置:10pt 放入我的网络收藏夹 一、旋风除尘器的结构与工作原理 1.结构 旋风除尘器的结构由进气口、圆筒体、圆锥体、排气管和排尘装置组成,如图5-4-1所示。 图5-4-1 旋风除尘器组成结构图 2.工作原理 旋风除尘器的工作原理见动画f5-4-1所示。当含尘气流由切线进口进入除尘器后,气流在除尘器内作旋转运动,气流中的尘粒在离心力作用下向外壁移动,到达壁面,并在气流和重力作用下沿壁落入灰斗而达到分离的目的。

动画f5-4-1 3.旋风除尘器内的流场分析 (1)流场组成 外涡旋——沿外壁由上向下旋转运动的气流。 内涡旋——沿轴心向上旋转运动的气流。 涡流——由轴向速度与径向速度相互作用形成的涡流。 包括上涡流——旋风除尘器顶盖,排气管外面与筒体内壁之间形成的局部涡流,它可降低除尘效率; 下涡流——在除尘器纵向,外层及底部形成的局部涡流。 (2)旋风除尘器内气流与尘粒的运动 含尘气流由切线进口进入除尘器,沿外壁由上向下作螺旋形旋转运动,这股向下旋转的气流即为外涡旋。外涡旋到达锥体底部后,转而向上,沿轴心向上旋转,最后经排出管排出。这股向上旋转的气流即为内涡旋。向下的外涡旋和向上的内涡旋,两者的旋转方向是相同的。气流作旋转运动时,尘粒在惯性离心力的推动下,要向外壁移动。到达外壁的尘粒在气流和重力的共同作用下,沿壁面落入灰斗。 气流从除尘器顶部向下高速旋转时,顶部的压力发生下降,一部分气流会带着细小的尘粒沿外壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,从排出管排出。这股旋转气流即为上涡旋。如果除尘器进口和顶盖之间保持一定距离,没有进口气流干扰,上涡旋表现比较明显。 对旋风除尘器内气流运动的测定发现,实际的气流运动是很复杂的。除切向和轴向运动外还有径向运动。特·林顿(T.Linden)在测定中发现,外涡旋的径向速度是向心的,内涡旋的径向速度是向外的,速度分布呈对称型。

轴流式旋风除尘器危险分析正式样本

文件编号:TP-AR-L7697 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 轴流式旋风除尘器危险 分析正式样本

轴流式旋风除尘器危险分析正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉 尘,当作业人员长期进行除尘器操作时,吸入这些粉 尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可 能对作业人员健康造成危害,甚至可能发生窒息事 故。 c.在除尘机风机检查、维修过程中,高浓度粉尘 可能对人体造成危害。

(2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b. 在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。 (3)触电 a. 除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落

相关文档
最新文档