最短路径万能Dijkstra算法必备代码

最短路径万能Dijkstra算法必备代码
最短路径万能Dijkstra算法必备代码

n=input('Please input the number of the notes: k='); %输入节点数目

p=n*n;

disp('Note: If there is no direct link between notes, use 100 to reprsent infinite');

temp=input('Please input the k*k matrix of the length of path: M='); %输入路径长度矩阵

while(prod(size(temp))~=p) %验证输入矩阵维数是否正确

disp('please input the correct size of the matrix');

temp=input('Please input the k*k matrix of the length of path: M='); end

w=temp; %路径矩阵初始化

i=input('Please identify the initial note: s='); %输入指定节点

[s,d]=Dijkstra_sub(i,n,w)

Dijkstra_sub函数代码如下:

function [S,D]=Dijkstra_sub(i,m,W)

dd=[];

tt=[];

ss=[];

ss(1,1)=i;

V=1:m;

dd=[0;i];% dd的第二行是每次求出的最短路径的终点,第一行是最短路径的值

kk=2;

[mdd,ndd]=size(dd);

while ~isempty(V)

[tmpd,j]=min(W(i,V));tmpj=V(j);

for k=2:ndd

[tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));

tmp2=V(jj);

tt(k-1,:)=[tmp1,tmp2,jj];

end

tmp=[tmpd,tmpj,j;tt];

[tmp3,tmp4]=min(tmp(:,1));

if tmp3==tmpd

ss(1:2,kk)=[i;tmp(tmp4,2)];

else

tmp5=find(ss(:,tmp4)~=0);

tmp6=length(tmp5);

if dd(2,tmp4)==ss(tmp6,tmp4)

ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);

tmp(tmp4,2)];

else

ss(1:3,kk)=[i;dd(2,tmp4);

tmp(tmp4,2)];

end;

end

dd=[dd,[tmp3;tmp(tmp4,2)]];

V(tmp(tmp4,3))=[];

[mdd,ndd]=size(dd);kk=kk+1; end;

S=ss; D=dd(1,:);

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

Dijkstra算法

5.3.4 附录E 最短路径算法——Dijkstra 算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford 算法和Dijkstra 算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra 算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 令v 部分: 不直接相连与结点若结点 1 v ? ?∞在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子, 可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

现在我们对以上的最短路径树的找出过程进行一些解释。 因为选择了结点1为源结点,因此一开始在集合N中只有结点1。结点1只和结点2, 3和4直接相连,因此在初始化时,在D(2),D(3)和D(4)下面就填入结点1到这些结点相应的距离,而在D(5)和D(6)下面填入∞。 下面执行步骤1。在结点1以外的结点中,找出一个距结点1最近的结点w,这应当是w = 4,因为在D(2),D(3)和D(4)中,D(4) = 1,它的之值最小。于是将结点4加入到结点集合N中。这时,我们在步骤1这一行和D(4)这一列下面写入①,数字1表示结点4到结点1的距离,数字1的圆圈表示结点4在这个步骤加入到结点集合N中了。 接着就要对所有不在集合N中的结点(即结点2, 3, 5和6)逐个执行(E-1)式。 对于结点2,原来的D(2) = 2。现在D(w) + l(w, v) = D(4) + l(4, 2) = 1 + 2 = 3 > D(2)。因此结点2到结点1距离不变,仍为2。 对于结点3,原来的D(3) = 5。现在D(w) + l(w, v) = D(4) + l(4, 3) = 1 + 3 = 4 < D(3)。因此结点3到结点1的距离要更新,从5减小到4。 对于结点5,原来的D(5) = ∞。现在D(w) + l(w, v) = D(4) + l(4, 5) = 1 + 1 = 2 < D(5)。因此结点5到结点1的距离要更新,从∞减小到2。 对于结点6,现在到结点1的距离仍为∞。 步骤1的计算到此就结束了。 下面执行步骤2。在结点1和4以外的结点中,找出一个距结点1最近的结点w。现在有两个结点(结点2和5)到结点1的距离一样,都是2。我们选择结点5(当然也可以选择结点2,最后得出的结果还是一样的)。以后的详细步骤这里就省略了,读者可以自行完 1的路由表。此路由表指出对于发往某个目的结点的分组,从结点1发出后的下一跳结点(在算法中常称为“后继结点”)和距离。当然,像这样的路由表,在所有其他各结点中都有一个。但这就需要分别以这些结点为源结点,重新执行算法,然后才能找出以这个结点为根的最短路径树和相应的路由表。

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

计算最短路径的Dijkstra算法的编程实现

计算最短路径的Dijkstra算法的编程实现 实验环境: C++ 为了进行网络最短路径路径分析,需将网络转换成有向图。如果要计算最短路径,则权重设置为两个节点的实际距离,Dijkstra算法可以用于计算从有向图中任意一个节点到其他节点的最短路径。 算法描述: 1)用带权的邻接矩阵来表示带权的n个节点的有向图,road[i][j]表示弧< vertex i, vertex j>的权值,如果从vertex i到vertex j不连通,则road road[i][j]=无穷大=9999。引进一个辅助向量Distance,每个Distance[i]表示从起始点到终点vertex i的最短路径长度。设起始点为first,则Distance[i]= road[first][i]。令S为已经找到的从起点出发的最短路径的终点的集合。 2)选择vertex j使得Distance[j]=Min{ Distance[i]| vertexi∈V-S},vertex j就是当前求得的一条从起始点出的的最短路径的终点的,令S=S∪{ vertex j} 3)修改从起始点到集合V-S中任意一个顶点vertex k的最短路径长度。如果Distance[j]+ road[j][k]< Distance[k],则修改Distance[k]为:Distance[k]= Distance[j]+ road[j][k]。 4)重复2,3步骤操作共n-1次,由此求得从起始点出发到图上各个顶点的最短路径长度递增的序列。 算法复杂度为O(n2)。 程序代码如下: #include #include "Dijkstra.h" int main() { int Graph_list_search[max][max]={{0,3,2,5,9999,9999}, {9999,0,9999,2,9999,9999}, {9999,9999,0,1,9999,9999}, {9999,9999,9999,0,9999,5}, {9999,9999,5,3,0,1}, {9999,9999,9999,9999,9999,0}}; printf_edge(Graph_list_search); Dijkstra(Graph_list_search,0,5); return 0; }

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

数据结构课程设计报告Dijkstra算法求最短路径

中南大学 《数据结构》课程设计 题目第9题 Dijkstra算法求最短路径 学生姓名 XXXX 指导教师 XXXX 学院信息科学与工程学院 专业班级 XXXXXXX 完成时间 XXXXXXX

目录 第一章问题分析与任务定义---------------------------------------------------------------------3 1.1 课程设计题目-----------------------------------------------------------------------------3 1.2 原始数据的输入格式--------------------------------------------------------------------3 1.3 实现功能-----------------------------------------------------------------------------------3 1.4 测试用例-----------------------------------------------------------------------------------3 1.5 问题分析-----------------------------------------------------------------------------------3 第二章数据结构的选择和概要设计------------------------------------------------------------4 2.1 数据结构的选择--------------------------------------------------------------------------4 2.2 概要设计-----------------------------------------------------------------------------------4 第三章详细设计与编码-----------------------------------------------------------------------------6 3.1 框架的建立---------------------------------------------------------------------------------6 3.2 点结构体的定义---------------------------------------------------------------------------7 3.3 创立带权值有向图------------------------------------------------------------------------8 3.4 邻接矩阵的显示---------------------------------------------------------------------------9 3.5 递归函数的应用---------------------------------------------------------------------------10 3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10 第四章上机调试------------------------------------------------------------------------------------11 4.1 记录调试过程中错误和问题的处理---------------------------------------------------11 4.2 算法的时间课空间性能分析------------------------------------------------------------11 4.3 算法的设计、调试经验和体会---------------------------------------------------------11 第五章测试结果-----------------------------------------------------------------------------------12 第六章学习心得体会-----------------------------------------------------------------------------12 第七章参考文献-----------------------------------------------------------------------------------12 附录------------------------------------------------------------------------------------------------------12

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

Dijkstra最短路径算法

5.3.4 附录E 最短路径算法——Dijkstra算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 下面以图E-1的网络为例来讨论这种算法,即寻找从源结点到网络中其他各结点的最短路径。为方便起见,设源结点为结点1。然后一步一步地寻找,每次找一个结点到源结点的最短路径,直到把所有 点1, j)为结点i (1) 初始化 令N表示网络结点的集合。先令N = {1}。对所有不在N中的结点v,写出

不直接相连与结点若结点直接相连 与结点若结点 1 1 ),1()(v v v l v D ? ? ?∞= 在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子,可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

迪杰斯特拉算法求解最短路径

#include #define MAX_VERTEX_NUM 50 #define INFINITY 300 typedef char VertexType[3]; typedef struct vertex { int adjvex;//顶¥点?编括?号? VertexType data;//顶¥点?信?息¢ }Vertex_Type;//顶¥点?类え?型í typedef struct graph { int Vertex_Num;//顶¥点?数簓 int Edge_Num;//边?数簓 Vertex_Type vexs[MAX_VERTEX_NUM];//顶¥点?数簓组哩? int edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM];// 边?的?二t维?数簓组哩? }AdjMatix;//图?的?邻ⅷ?接?矩?阵?类え?型í int Create_Adjmatix(AdjMatix &g) { int i,j,k,b,t,w; printf("请?输?入?图?的?顶¥点?数簓和í边?数簓:阰\n"); scanf("%4d%4d",&g.Vertex_Num,&g.Edge_Num); for (i=0;i0) g.edges[b][t]=w; else {printf("输?入?错洙?误?!?");return 0;} } return 1;

最短路径算法及其在路径规划中的应用

最短路径算法及其路径规划中的应用 摘要: 这篇文章把徒步运动的路径规划问题转化为求解图中任意两点间的最短路径问题,进而针对此问题介绍了Floyd算法,对该算法的时间花费进行分析,并介绍了在实际问题中如何灵活运用该算法解决路径决策中遇到的问题。 关键词:路径规划、最短路径、决策、Floyd算法 将实际地图的转化为有向图 在策划一次徒步旅行时,设计正确的旅行的线路特别重要,首先我们必须先要得到那个地区的地图,以便进行后续的线路规划。当我们拿到某一地区的地图时,我们可以把地图上的每一条线路用线段表示,用顶点表示地图上的岔路口,即多条线段的交点,这样就形成了一个由点和线段组成的图。我们可以在每条线段上标上数字,表示两点之间的实际距离,或者表示通过这条路径所需的时间。当然,如果两点之间没有线段相连,我们可以认为距离为无穷大,用∞表示。有时候某些线路是单向的,即只能从一个方向到另一个方向,不能逆行。这种情况在具体的路径设计中非常常见,比如,在繁华的都市内会有一些单行道,在山区景点中,常会出现一些上山索道,这些都是单向线路的常见例子。有时候,沿某条线路的两个方向所需的时间不同,这种例子更为常见,比如上山与下山,顺风与逆风等等。对于这两种情况,我们可以在表示路径的线段上加上箭头表示该路径的方向,形成有向图。 到达v2的距离为8,而从v2到v1的距离为3。 从点v1到v0的距离为5,而从v0到v1的距离 为∞。这种带有箭头的有向图,比不带箭头的无 向图能够表示更一般的情形,可以说无向图只是 有向图的一种特殊情况。 如果我们知道任意两点间的最短路径,这对 我们进行路径规划将会有很大的帮助,但当地图 较为复杂时,凭直觉估计最短路径的方法往往不 可靠,这时就必须借助计算机的强大计算能力,寻找最短路径。下面,我们就以 这种有向图为工具,来探究寻找最短路径的方法。

Dijkstra算法求最短路径

Dijkstra算法求最短路径(C#版)行如下图的路径,(V0是中心): 经过该算法后转化为下图 using System; using System.Collections; using System.Text; namespace Greedy {

class Marx { private int[] distance; private int row; private ArrayList ways = new ArrayList(); public Marx(int n,params int[] d) { this.row = n; distance = new int[row * row]; for (int i = 0; i < row * row; i++) { this.distance[i] = d[i]; } for (int i = 0; i < this.row; i++) //有row个点,则从中心到各点的路有row-1条 { ArrayList w = new ArrayList(); int j = 0; w.Add(j); ways.Add(w); } } //------------------------------ public void Find_way() { ArrayList S = new ArrayList(1); ArrayList Sr = new ArrayList(1); int []Indexof_distance=new int[this.row]; for(int i=0; i < row; i++) { Indexof_distance[i]=i; } S.Add( Indexof_distance[0] ); for (int i = 0; i < this.row; i++) { Sr.Add( Indexof_distance[i] ); } Sr.RemoveAt(0); int[] D = new int[this.row]; //存放中心点到每个点的距离 //---------------以上已经初始化了,S和Sr(里边放的都是点的编

多种方法求多段图的最短路径问题 算法设计与分析课程设计

学号: 《算法设计与分析B》 大作业 题目多种方法解决多段图的最短 路径问题 学院计算机科学与技术学院专业软件工程 班级 姓名 指导教师 2014 年12 月26 日

多种方法解决多段图的最短路径问题 摘要 多段图的最短路径问题是求从源点到终点的最小代价路径。本文主要描述的是分别用动态规划法、贪心法和分支限界法来解决多段图最短路径问题时的情况。文章首先阐述了各个方法的原理,主要的思路是通过输入一组数据,比较三者的输出结果的准确性以及运行时间,以之为基础来分析、讨论三者的性能区别。文章最后讲述了若这几种方法运行到有向图中的情况,几种方法的对比和它们比较适应的使用情况的讨论,并给出了自己的建议。 关键字:多段图最短路径问题;动态规划法;分支限界法;贪心法

目录 摘要................................................................. II 1 引言 (1) 2 问题描述 (1) 3 贪心法求解 (2) 3.1 贪心法介绍 (2) 3.2 问题分析 (3) 4 动态规划法求解 (3) 4.1 动态规划法介绍 (3) 4.2 问题分析 (4) 5 分支限界法求解 (5) 5.1 分支限界法介绍 (5) 5.2 问题分析 (5) 6 程序清单 (6) 6.1 源代码 (6) 6.2 结果截图 (9) 7 结果分析 (9) 8 课程体会 (10) 9 参考文献 (10)

1引言 当前社会,关于最短路径的问题屡屡出现。例如在开车自驾游的一个过程中,排除其它影响因素,从一个地点到另一点,这个时候必然是希望有一条距离最短的路程来尽量减少消耗的时间以及花费的(它们在模型中被称为代价),市场上对该问题的解决有很大的需求,因此,这里我将讨论多段图的最短路径的问题。 大二开设的《数据结构》课程中就包括最短路径这方面问题的讨论。当时老师介绍了分别面向单源(Dijkstra算法)与非单源(Floyd算法)两种问题的算法——这是我们最早的对最短路径方面的理解,也是我们接触的比较早的关于图的问题。 在这学期的《算法设计与分析》课程中,我们学习了很多基本的算法设计技术,蛮力法、分治法、减治法、动态规划法、贪心法、回溯法、分支限界法等,它们把以前学习的诸多方法都命名并归纳分类起来,其中有多种算法都可以用来解决最短路径问题,并且该问题作为一个图的问题,对该问题的继续探讨优化的需求很大、本文将就不同算法在解决该最短路径问题时的不同方法进行对比并给出该问题在不同基础上不同的最终解决方案。由于时间的限制,本文将重点分析动态规划法下的情况,并会对图的情况加以简化、限制,最后会对其它的图做一些拓展。 2问题描述 设图G=(V, E)是一个带权有向连通图,如果把顶点集合V划分成k个互不相交的子集Vi(2≤k≤n, 1≤i≤k),使得E中的任何一条边(u, v),必有u∈Vi,v∈Vi+m(1≤i<k, 1<i+m≤k),则称图G为多段图,称s∈V1为源点,t∈Vk为终点。多段图的最短路径问题是求从源点到终点的最小代价路径。多段图的最短路径问题是求从源点到终点的最小代价路径。 由于多段图将顶点划分为k个互不相交的子集,所以,可以将多段图划分为k段,每一段包含顶点的一个子集。不失一般性,将多段图的顶点按照段的顺序进行编号,同一段内顶点的相互顺序无关紧要。假设图中的顶点个数为n,则源点s的编号为0,终点t的编号为n-1,并且,对图中的任何一条边(u, v),顶点u的编号小于顶点v的编号。 这里我们讨论的多段图是可以分段的,各段之间的关系最好是单向的,即对该有向图来说,图中是没有环的存在的。

迪杰斯特拉算法计算最短路径

利用Dijkstra算法计算最短路径 摘要 福格环游地球问题是一个十分典型的最短路径求解问题,题设给出了当时世界上主要交通网络图及交通通畅的城市之间来往所需时长,并限定了福格的出行方向(福格选择的是往东走),给出起止地点后要求找出福格环游世界天数最短的最佳路径。 我们认为,这个问题的实质在于最短路径的求解和优化。我们对比图论中的多种最短路径算法,决定利用Dijkstra算法解决这个问题。 由于Dijkstra算法要求输入图G的关联矩阵,且图G为二维赋权图,而题中给出的地图可看成是三维环状地图,因此,我们对题设地图做相关处理,将其从起点处“切断”并展开为二维图,然后根据此图建立关联矩阵。同时,我们考虑到最短路径可能会与切断线有交点,在切断线以西找出若干地点一分为二,修改关联矩阵。 对于题目中缺失的两处数据,本文将以当时的交通数据为基础,经过合理的数据处理,结合Google Earth测距软件与题目数据的合理类比,补充缺失数据,完成关联矩阵。 得到关联矩阵后,我们分别以伦敦、纽约和上海作为起点,调整关联矩阵起点和终点,用matlab编程进行求解得到最短环游时间和最短路径,进而判断出所选择的路径是否能让他赢得赌注。根据我们的求解结果,在这三个城市,福格均能在80天内环游地球,赢得赌注。 本文进一步对此种算法的优缺点、灵敏度与推广性进行了分析,同时初步提出了两种优化方法。 关键词:最短路径算法 dijkstra算法算法优化

一、问题重述 儒勒?凡尔纳的著名小说《环游世界80天》中,英国绅士福格在伦敦与人打赌能够在80天内环游世界,这在当时的1872年是一个了不起的壮举。当时最快的旅行方式是火车和轮船,然而世界上大部分地区还是靠马车、大象、驴子或者步行来旅行。下面是一个从伦敦环游世界不同路线的交通网络图,福格选择的是往东走,每段路线所需要的天数显示在图上(见附录一),旅行的时间基于1872年能采用的旅行方式以及距离。 我们将解决以下问题: 1.我们将设计一个算法为福格选择一条最佳路径,即环游世界天数最短,并判断所选择的路径是否能让他赢得赌注。 2.若他在别的地方与人打赌,如纽约或者上海,我们将分别设计最佳路径并判断所选择的路径是否能让他赢得赌注。 二、问题分析 福格环游地球问题是一个十分典型的最短路径求解问题,题设给出了当时世界上主要交通网络图及交通通畅的城市之间来往所需时长,并限定了福格的出行方向(福格选择的是往东走),给出起止地点后要求找出福格环游世界天数最短的最佳路径。 本题实质在于最短路径的求解和优化,如何求解最短路径呢,我们联系到图论中求解最短路径的Dijkstra算法,然而,要满足Dijkstra算法的条件,首要任务是弄清如何处理题设所给的世界交通网络图。我们可以把题中给出的地图看成是三维环状地图,而Dijkstra算法要求输入图G的关联矩阵,且图G为二维赋权图,因此,我们应该对题设地图做相关处理,将其从起点处“切断”并展开为二维图,然后根据此图建立关联矩阵。但是,考虑到最短路径可能会与切断线有交点,我们必须在切断线以西找出若干地点一分为二,修改关联矩阵。 在创建关联矩阵的时候,必须考虑到如何估计两处缺失的数据,当时的地区交通状况文献已经无法查询,因此,我们只能根据当地周围相似地形地势处的已知交通状况进行估值。如何估值呢,我们用Google Earth对两地距离进行测量,并进行若干假设,与附近相似地形已知数据处进行同比例估值,得到近似结果。对于题目提出的问题,分别以伦敦、纽约和上海作为起点,我们只需调整关联矩阵起点和终点用matlab编程进行求解即可得到最短环游时间和最短路径,从而判断出所选择的路径是否能让他赢得赌注。 三、基本假设 1、题目中给出的数据均准确。 2、题目中给出的数据均采用当时能达到的最高效的交通方式。 3、在环游地球的路程中,福格不会在任何地点因任何原因停留。

相关文档
最新文档