断路器分闸线圈烧坏原因分析与处理

断路器分闸线圈烧坏原因分析与处理
断路器分闸线圈烧坏原因分析与处理

断路器分闸线圈烧坏原因分析与处理

任中秋

湖南省资兴市过船轮水电站厂用电系统分别由6KV和10KV两段供电,独立运行,在一段失电的情况下,另一段通过备用电源自动投入装置自动投入,两者互为备用。厂用电系统接线如图1。1B,2B厂用变压器高压侧断路器1DL、、3DL还可以分别联跳低压侧2DL、4DL 。

图 1 厂用电系统接线图

在进行1B传动试验时(断开联跳回路连片LP),高压侧、低压侧断路器本体控制动作正常、信号正确。在做模拟传动1B高压侧断路器联跳低压侧断路器试验时(联片LP投入),模拟动作了几次正常,但在投入运行约有20min后,在回路正常带电情况下,没有进行任何操作,开关柜内已有烟雾和焦糊味。发现这一情况立刻把直流电源断开,打开柜门进行检查,发现低压侧0.4KV断路器的跳闸线圈已经被烧坏,随即拆下用摇表和万用表进行检查,其绝缘为零、直流电阻也很小。根据检查的结果和现象初步判定可能是线圈受潮、绝缘不好,经过多次操作后,线圈严重发热后烧坏的,于是更换了一个新线圈。但是,在换上新线圈投入直流源,大约有20多min后,并没有进行任何操作,又发现该跳闸线圈冒烟并被烧坏。这样看来问题似乎并不在跳闸线圈本身,而是二次控制回路有问题。断路器控制原理如图2。设计1B的高压侧断路器联跳控制回路如图3:

图 3 高压侧断路器联跳控制回路图

从原理图分析可以看出,造成跳闸线圈烧坏的原因:只能是在没有进行任何操作的情况下,跳闸线圈上就有一直流电压作用。根据电工基础知识可知:线圈两端如果一直有流电压作用,根据欧姆定律,当电阻一定,电压为额定值时,线圈中就会一直有一个恒定的电流流过,而跳闸线圈又不允许长期带电。当跳闸线圈通过跳闸脉冲跳开断路器后,跳闸线圈应立即断电,否则,时间一长,绕组发热超过其热稳定值时,就会造成绕组绝缘被破坏,发生匝间短路,最终导致线圈被烧坏。

根据上述的分析,对控制回路又进行了一次认真的检查,发现断路器本体控制回路的实际接线和原理图不一致,图2中跳闸线圈TQ前虚线框内2DL辅助常开接点实际上并不存在,而是1DL联跳点133直接接到跳闸线圈正端。这样一来,虽然未进行任何操作,但高压侧的联跳回路+KM(101)经1DL的常闭接点、连片LP至133处引入了正电源,从而使跳闸线圈上长期有DC220V 电压作用,使线圈长期带电,引起发热而烧坏。通过对2DL断路器辅助接点的检查,发现其辅助接点不够用,认真分析原理图后,决定把跳闸线圈的负控端102处拆开,联接到图2的113处(见图4),改完接线后,再次送电且不进行任何操作,对控制回路进行带电考验,没有发生任何异常情况。重新对1B厂变断路器进行联动操作,其动作正确、信号正常。长时间运行考验后,证明改动的回路是正确的。

图 4 改动后的断路器控制原理图

根据1B厂变低压侧断路器控制回路的改动,把2B厂变低压侧断路器的控制回路也进行了检查,发现2B的接线和1B是一样的。于是按改变1B断路器操作回路的方法,对2B断路器操作回路也进行了改动。避免了烧2B跳闸线圈的故障。经过这样的改动接线后,两台变压器低压侧断路器运行至今未出现任何问题,这也就证明了对控制回路存在问题的判断和分析是正确的。通过这次回路的改动,值得引起注意的是:以后在进行电气二次控制回路传动试验工作时,一定要事先认真检查二次回路的接线正确性,然后再通电,以防损坏设备。

自动重合闸漏电保护断路器_图文(精)

FDDZ20LE (DZ 系列带自动重合闸功能漏电保护断路器使用说明书 广东佛电电器有限公司 1. 用途 FDDZ20LE (ZD 系列智能漏电保护断路器(带自动重合闸功能 (以下简称断路器 , 是本公司近年来为适应我国城乡安全用电实际环境而研制开发的科技创新的产品。集剩余电流等保护、回路主开关以及手动、自动分合闸等功能于一体的多功能的远程负荷监控型智能断路器。 FDDZ20LE (ZD 系列断路器适用于三相四线中性点直接接地的低压电网, 除了剩余电流、过载、短路等基本保护外,还可根据需要选配过载、短路、断零、欠压、过压、缺相等进行保护, 并带有远程分合控制、分合状态信号及数字 (485 等多种外控接口。 本产品执行 GB14048.2/IEC60947-2标准。 2. 使用环境和工作条件 a. 周围空气温度 ; 上限不高于 +60℃, 下限不低于 -5℃, 24h 的平均值不超过35℃。 b. 海拔:安装地点的海拔不超过 2000m

c. 大气条件:大气的相对湿度在周围最高温度为 +40℃时不超过 50%:在较低的温度允许有较高的湿度:在最湿月的月平均最低温度为 +25℃时, 该月的月平均最大相对湿度为 90%,并考虑到因温度变化发生在产品表面的凝露,采取特殊的措施。 d. 污染等级:3级。 e. 安装类别:III 类 f. 安装场所的外磁场在任何方向不超过磁场的 5倍。 3. 型号及其含义 1 2 4. 主要技术性能 4.1主要技术参数见(表 2

FD 企业代号 DZ20LE (DZ 壳架等级电流(A -□□□ 4.3 产品功能

剩余电流:断路器出现剩余电流并达到设定档位时, 在设定的时间内分闸动作。20~60S 内自动重合闸一次,合闸 5S 内再次剩余电流动作,分闸自锁,待故障排除后需手动或按键合闸。 进线过压:断路器进线任一相电压超过设定档位时, 3S 内分闸保护,电压恢复正常, 自动重合闸。 进线欠压:断路器进线任一相电压低于设定档位时, 6S 内分闸保护,电压恢复正常, 自动重合闸。 进线缺相:断路器进线任一相电压低于 50V 时, 6S 内分闸保护,无自动重合闸。负载过流 :以壳架等级电流执行负载过流分闸保护,无自动重合闸。 负载短路:以壳架等级电流执行负载短路分闸保护,无自动重合闸。 进线断零:进线侧零线断开后,三相电压不平衡达到一定值,断路器分闸动作,恢复后,自动重合闸。 手动分合:带手柄装置,可手动分合闸。检修时,确保断路器明显断开,并不受电动控制。 电动合闸:正常运行时,对可允许自动重合闸的线路故障分闸,能电动自动执行合闸。分合信号:把断路器运行分合状态以无源一组转换触点的形式输出。 外控分合:断路器分合闸控制可由外置按键控制,只能外接无源独立按键(钮。实时数据:显示各种当前分合动作信息、实时三相电压值、三相负载电流值和剩余电流值。 运行参数:各保护动作值可分别多档设置,查询显示各当前执行参数。 历史记录:动作信息记录可追溯查询历史分合闸原因等信息。

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。 1 引言 随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰 ( ElectromagneticInterference , EMI )。 EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容 ( ElectromagneticCompatibility )性。随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。 本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。 2 电磁干扰的产生和传播方式 开关电源中的电磁干扰分为传导干扰和辐射干扰两种。通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。下面将对这两种干扰的机理作一简要的介绍。 2.1传导干扰的产生和传播 传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。 2.1.1 共模( CM )干扰 变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。如图 1 所示,共模干扰电流从具有高 dv/dt 的开关管出发流经接地散热片和地线,再由高频 LISN 网络(由两个 50Ω电阻等效)流回输入线路。

10kV真空断路器常见故障及处理

10kV真空断路器常见故障及处理 随着真空断路器的广泛应用,不少10 kV 少油断路器已更换为真空断路器。由于生产厂家不同,一部分真空断路器性能较好,检修、维护工作量小,供电可靠性高;也有一部分真空断路器性能很差,存在的问题比较多;还有一些真空断路器缺陷极其严重,容易造成事故越级,导致大面积停电。 1 、真空泡真空度降低 1.1 故障现象 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本身没有定性、定量监测真空度特性的装置,所以真空度降低故障为隐性故障,其危险程度远远大于显性故障。 1.2 原因分析:真空度降低的主要原因有以下几点: (1) 真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点; (2) 真空泡内波形管的材质或制作工艺存在问题,多次操作后出现漏点; (3) 分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹跳、超行程等特性,使真空度降低的速度加快。 1.3 故障危害

空度降低将严重影响真空断路器开断过电流的能力,并导致断路器kg。com的使用寿命急剧下降,严重时会引起开关爆炸。 1.4 处理方法 (1) 在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度定性测试,确保真空泡具有一定的真空度; (2) 当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。 1.5 预防措施 (1) 选用真空断路器时,必须选用信誉良好的厂家所生产的成熟产品; (2) 选用本体与操作机构一体的真空断路器; (3) 运行人员巡视时,应注意断路器真空泡外部是否有放电现象,如存在放电现象,则真空泡的真空度测试结果基本上为不合格,应及时停电更换; (4) 检修人员进行停电检修工作时,必须进行同期、弹跳、行程、超行程等特性测试,以确保断路器处于良好的工作状态。 2 、真空断路器分闸失灵 2.1 故障现象

低压断路器分合闸线圈

C65------序列代号 N--------分断能力,N为6000A,H为10000A,L为15kA C--------脱扣曲线,B为电子保护,C为配电保护,D为动力保护 20A------额定电流,有1、2、4、6、10、16、20、25、32、40、50、63A 2P-------极数,有1、2、3、4极 VE-------剩余电流附件,有VE、VEG、VM、VEA,VM为电磁式 30mA-----剩余动作电流,有30、100、300mA SD-------选配附件,有MX、OF、MN、MV、SD、Tm、ATm,其中SD为辅助接点。MX表示的是分励线圈 与之区别的是欠压线圈(MN) 都是分励线圈 SHT是施耐德NSE EZD附件中分励的说法 MX是施耐德NS NSX附件中分励线圈的说法 断路器:用来接通、分断电路,有过热、过载、短路等功能; 脱扣器:断路器的辅助部件,有热脱扣、短路脱扣、电磁分励脱扣等, 配合断路器达到上述功能; 分励脱扣器:属于电磁脱扣部件的1种,通过外加电信号完成断路器 受控脱扣的功能。如消防状态需要切断正常供电回路,通过 24VDC信号施加在断路器的分励脱扣器线圈上,使断路器分断。 断路器与分励脱扣器可以是一体的,也可以是组合装配的。 短路脱扣、漏电脱扣、分励脱扣都属于电磁脱扣原理。 断路器=动静触点+灭弧装置+热敏元件+电磁铁+传动机构+调节整定附件+操作手柄+连接端子+外壳。 1.分励脱扣器:是一种用电压源激励的脱扣器,它的电压可与主电路电压无关。分励脱扣器是一种远距离操纵分闸的附件。当电源电压等于额定控制电源电压的70%-110%之间的任一电压时,就能可靠分断断路器。分励脱扣器是短时工作制,线圈通电时间一般不能超过1S,否则线会被烧毁。塑壳断路器为防止线圈烧毁,在分励脱扣线圈串联一个微动开关,当分励脱扣器通过衔铁吸合,微动开关从常闭状态转换成常开,由于分励脱扣器电源的控制线路被切断,即使人为地按住按钮,分励线圈始终不再通电就避免了线圈烧损情况的产生。当断路器再扣合闸后,微动开关重新处于常闭位置。但万能式DW45产品在出厂时要由用户在使用时在分励脱扣器线圈之前串联一组常开触头。 2.热磁脱扣:包含热脱扣、电磁脱扣两个功能。热脱扣是通过双金属片过电流延时发热变形推动脱扣传动机构;磁脱扣是通过电磁线圈的短路电流瞬时推动衔铁带动脱扣。 3.电子脱扣:可以远程控制也可以有以上所有功能,并可以方便地进行整定。电子脱扣器就是用电子元件构成的电路,检测主电路电流,放大、推动脱扣机构。 分励其实是一个线圈,应与电源,开关(处于控制面板上,当然可以放在消防中心)构成一个回路,平时处于开路状态,当开关闭合时,分励得电动作拉脱断路器. 如果是分励24V的话,应注意回路距离不能过大,而且线径也相应大点,否则压降大的话,分励可能不动作,如果无法控制回路距离时,应用选用230/400V分励,再用继电器/接触器进行中继. 分励线圈是用来跳闸的合闸线圈是用来合闸的合闸线圈吸合所有的常开都闭合,所有的常闭都断开分励线圈吸合后(跳闸)所有的常开都断开,所有的常闭都闭合

自动重合闸漏电保护断路器

FDDZ20LE(DZ)系列 带自动重合闸功能漏电保护断路器 使用说明书 广东佛电电器有限公司

1.用途 FDDZ20LE(ZD)系列智能漏电保护断路器(带自动重合闸功能)(以下简称断路器),是本公司近年来为适应我国城乡安全用电实际环境而研制开发的科技创新的产品。集剩余电流等保护、回路主开关以及手动、自动分合闸等功能于一体的多功能的远程负荷监控型智能断路器。 FDDZ20LE(ZD)系列断路器适用于三相四线中性点直接接地的低压电网,除了剩余电流、过载、短路等基本保护外,还可根据需要选配过载、短路、断零、欠压、过压、缺相等进行保护,并带有远程分合控制、分合状态信号及数字(485)等多种外控接口。 本产品执行GB14048.2/IEC60947-2标准。 2. 使用环境和工作条件 a.周围空气温度;上限不高于+60℃,下限不低于-5℃,24h的平均值不超过35℃。 b.海拔:安装地点的海拔不超过2000m c.大气条件:大气的相对湿度在周围最高温度为+40℃时不超过50%:在较低的温度允许有较高的湿度:在最湿月的月平均最低温度为+25℃时,该月的月平均最大相对湿度为90%,并考虑到因温度变化发生在产品表面的凝露,采取特殊的措施。 d.污染等级:3级。 e.安装类别:III类 f.安装场所的外磁场在任何方向不超过磁场的5倍。 3. 型号及其含义

4. 主 要 技 术 性 能 4.1主要技术参数见(表2) FD 企业代号 DZ20LE 智能漏电保护断路器 (DZ ) 壳架等级电流(A ) -□□□

4.3 产品功能 剩余电流:断路器出现剩余电流并达到设定档位时,在设定的时间内分闸动作。20~60S 内自动重合闸一次,合闸5S内再次剩余电流动作,分闸自锁,待故障排除后需手动或按键合闸。 进线过压:断路器进线任一相电压超过设定档位时,3S内分闸保护,电压恢复正常,自动重合闸。 进线欠压:断路器进线任一相电压低于设定档位时,6S内分闸保护,电压恢复正常,自动重合闸。 进线缺相:断路器进线任一相电压低于50V时,6S内分闸保护,无自动重合闸。 负载过流:以壳架等级电流执行负载过流分闸保护,无自动重合闸。 负载短路:以壳架等级电流执行负载短路分闸保护,无自动重合闸。 进线断零:进线侧零线断开后,三相电压不平衡达到一定值,断路器分闸动作,恢复后,自动重合闸。 手动分合:带手柄装置,可手动分合闸。检修时,确保断路器明显断开,并不受电动控制。 电动合闸:正常运行时,对可允许自动重合闸的线路故障分闸,能电动自动执行合闸。 分合信号:把断路器运行分合状态以无源一组转换触点的形式输出。 外控分合:断路器分合闸控制可由外置按键控制,只能外接无源独立按键(钮)。 实时数据:显示各种当前分合动作信息、实时三相电压值、三相负载电流值和剩余电流值。 运行参数:各保护动作值可分别多档设置,查询显示各当前执行参数。 历史记录:动作信息记录可追溯查询历史分合闸原因等信息。 故障自诊:断路器重点关键器件和机构采取了比较完善的自检功能,出现故障以代码显示警告。 后备保护:当指令分闸没能执行成功时,自动启动后备分闸执行机构,不再执行自动重合闸指令。 过流可调:可设定断路器壳架电流等级以下的过载保护动作电流值,分闸动作后,无自动重合闸。 显示界面:断路器系列有数码管和液晶屏两种显示方式供选择。 参数设定:断路器系列有功能档位拨码开关和菜单按键两种设置方式供选择。

万能断路器结构与原理

前排左一:控制器 前排中:储能机构,上部—绿色为欠压脱扣器,蓝色为合闸线圈(合闸电磁铁),赭石色为分励脱扣器 前排右:电动机,上部——绿色部件为与欠压脱扣器联合使用的:欠压延时控制器。 后排断路器本体(导电机构,灭弧室,进出线排),上部浅灰色部分为二次接线端子。 框架断路器分为这样几个大的版块: 1、触头导电部件 由于承载电流多数在630A以上,最高可至6300A,出于支承,绝缘,以及预期短路电流较大,电弧能量强等方面因素的影响,触头导电部分,被密封在一个腔体内。外壳材料由专用的DMC材料压制而成。各相导电触头上,分别装设有专用的速饱和互感器。将该相的电流信号,传递至控制器。 2、储能操作机构 利用一系列复杂的机械机构,拉伸一根大直径弹簧储能,利用脱扣机构,将主弹簧自拉伸位置解锁释放,进而执行合闸或者分闸的操作。 主弹簧,及相连接整合在一起的这些连杆,弹簧,称为储能机构。 主弹簧的拉伸,一方面可以通过一个手柄,可以人力完成。 更多地,通过一个电机和相连的减速齿轮机构,依靠电机为主拉簧储能。

电操,储能电机,MOE,叫法有点混乱。 三(四)极触头,均分别与储能机构相连接。 储能机构 操作机构,是机械产品。基于所学专业原因,觉得这部分比之控制器更重要,所以多看了好多。 【四两拨千斤是什么?看看这些较弱的塑料件就知道了。】 【下面这些红字,是说,红字所代表的附件与储能机构在此连接】 【千斤:主拉簧】 【最后:操作机构正面标准照】 3、关于控制器 (1)取_信号

电流: A相互感器,B相互感器,C相互感器,N相互感器,变压器中心点接地互感器; 返回:电流值集合IA/IB/IC/IN/Ig/IΔn 电压: A相电压,B相电压,C相电压 返回:电压值集合Uab Uac Ubc 频率: 返回:f (2)数据预处理 这部分用来根据电压电流信号,计算出功率,功率因数,有功功率,无功功率 运算出三相电流不平衡度,公式保密。 这部分还用来统计谐波,【该计算统计,为程序员娱乐行为】 计算_参数 P ,Q,SCOSΦ 有功电能,无功电能,视在电能 谐波,频率 三相不平衡度,过压百分比,欠压百分比,过频百分比,欠频百分比

自动重合闸断路器分析

Gewiss自复位断路器与国内的自动重合闸漏电保护器的区别 一、主体结构的差别 GEWISS自复位断路器的主体是机械式断路器+智能驱动模块; 国产自动重合闸漏电保护器的主体是继电器+驱动电子板; 基于结构上的根本区别,导致其在应用上也存在本质的区别,Gewiss自复位断路器作为低压保护器件可用于线路的保护,继电器却只能作为设备通断电的控制器件而不能作为线路的保护器件来应用,也就是说国产的自动重合闸漏电保护器作为线路的保护器件来用根本就是不符合低压配电规范的。 二、功能的差别 GEWISS的自复位断路器具有的功能只是在断路器的基本保护功能上增加了线路的故障检测功能、故障报警功能和自动复位功能。 国产的自动重合闸漏电保护器则看起来像一个万能的断路器,具有过压保护、欠压保护、过载保护、短路保护、漏电保护、故障告警、自动复位、防雷功能等等。但是其核心的问题是继电器根本不具有灭弧能力,怎么可能实现短路保护呢!当其通过大电流的时候触点可能会烧结在一起无法断开,而当漏电电流是一个短路电流时,其连漏电保护的功能都实现不了。 三、安全性的差别 GEWISS的漏电断路器全部采用的是电磁式的,并且对于交流漏电和直流漏电都动作。 国产自动重合闸漏电保护器都是电子式的(在欧洲已经淘汰了电子式的漏电保护器),而且漏电特性都是对于交流漏电动作,现在开关电源到处可见,一旦发生直流漏电就可能导致人员伤亡或者电气火灾。 四、可靠性的差别 Gewiss的自复位断路器完全按照低压电器的标准设计、生产,经过了严酷的电气试验和环境试验,其耐压水平为4kV,达到了IEC60364-4中规定的IV类设备的耐压等级,可以安装于各级配电箱中。 国产自动重合闸漏电保护器则耐过电压能力很低,本身比较容易损坏,因此许多产品中安装了防雷器件,但是这并不能解决根本问题,反而会增加出故障的机率。 五、应用上的差别 GEWISS的自复位断路器可应用于任何配电箱中,能适应各种环境。 国产的自动重合闸漏电保护器由于内部装有防雷元件,在本身装有防雷器的配电箱中需要考虑防雷器之间的配合的问题,发生雷击时,如何才能确保配电箱中的防雷器先动作以免打坏漏电保护器?这时一个高难度的问题。 六、维护上的区别 Gewiss的自复位断路器采用模块化的结构,机械断路器损坏或者智能驱动模块损坏都可以

重合闸

SF6弹簧操作机构断路器与重合闸配合问题的浅析 杜书平、吴俊芳、赵敏、徐成勇 (信阳供电公司,河南,信阳,464000) 摘 要:本文针对某500kV 变电站SF6弹簧操作机构断路器与许继WDLK862A 断路器保护重合闸配合时,合闸弹簧未储能闭锁重合闸与断路器SF6压力低闭锁重合闸两种设计方案进行详细分析,指出了断路器在发生某些异常,如合闸弹簧未储能或SF6压力低闭锁时都应能及时闭锁重合闸;根据分析,运用中的两种方案均不完整,故提出了三方面解决方法。 关键词:重合闸;位置继电器;弹簧操作机构 1 引言 某500kV 变电站为分期设计投运,500kV 断路器均为苏州AREVA 高压电气开关有限公司生产的户外LG317X 型、瓷柱式双断口SF6分相断路器, FK3-5型弹簧操作机构。断路器独立设置许继公司的GXF-222型成套断路器保护,包含WDLK-862A 型断路器保护装置及ZFZ-822型操作箱,重合闸按断路器配置。2009年2月二期扩建工程投运,其在设计“压力”低闭锁重合闸回路(即“压力接点”回路)上有所不同,其具体表现在:初期设计断路器SF6压力低闭锁重合闸、合闸弹簧未储能报信号(方案一);二期中设计弹簧未储能闭锁重合闸、断路器SF6压力低闭锁报信号(方案二),就此做分析。 2 两种方案具体形式 压力低闭锁重合闸回路如图一: 正常时,“压力接点”断开,2YJJ 继电器励磁使其常闭接点打开,不闭锁重合闸;当“压力接点”闭合,则2YJJ 继 电器失磁使其常闭接点返回,闭锁重合闸。 图1:压力低闭锁重合闸 方案一,“压力接点”取断路器SF6压力低闭锁继电器常开接点(如图二):三相断路器SF6压力正常时,密度控制器接点均断开, SF6压力低闭锁继电器失磁,使“压力接点”断开,不闭锁重合闸;若断路器(一相或多相)SF6压力降低至闭锁压力,则闭锁重合闸。 方案二,“压力接点”取各相合闸弹簧储能限位开关常开接点(如图三):若合闸弹簧三相储能,三相弹簧储能限位开关断开,“压力接点”断开,不闭锁重合闸;若合闸弹簧(一相或多相)未 储能,则闭锁重合闸。 图2:“压力接点”取SF6闭锁继电器常开接点

形成开关电源电磁干扰的三要素及解决方案

形成开关电源电磁干扰的三要素及解决方案 深圳市森树强电子科技有限公司 形成开关电源电磁干扰的三要素是干扰源、传播途径和受扰设备 首先应该抑制开关电源干扰源,直接消除干扰原因; 其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径; 第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。 目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底 板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之 间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的 分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两 层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网 传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完 全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为 一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的 作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可 以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应, 所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点 与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏 蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导 电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近 接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。

真空断路器的常见故障及处理方法

编号:AQ-JS-06168 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 真空断路器的常见故障及处理 方法 Common faults and treatment methods of vacuum circuit breaker

真空断路器的常见故障及处理方法 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1、真空泡真空度降低 故障现象: 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本 身没有定性、定量监测真空度特性的装置,所以真空度降低故障为 隐性故障,其危险程度远远大于显性故障。 原因分析: 真空度降低的主要原因有以下几点: (1)真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏 点; (2)真空泡内波形管的材质或制作工艺存在问题,多次操作后出 现漏点; (3)分体式真空断路器,如使用电磁式操作机构的真空断路器, 在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹

跳、超行程等特性,使真空度降低的速度加快。 故障危害: 真空度降低将严重影响真空断路器开断过电流的能力,并导致断路器的使用寿命急剧下降,严重时会引起开关爆炸。 处理方法: (1)在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度的定性测试,确保真空泡具有一定的真空度; (2)当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。 预防措施: (1)选用真空断路器时,必须选用信誉良好的厂家所生产的成熟产品; (2)选用本体与操作机构一体的真空断路器; (3)运行人员巡视时,应注意断路器真空泡外部是否有放电现象,如存在放电现象,则真空泡的真空度测试结果基本上为不合格,应及时停电更换;

断路器分合闸的原理如何

断路器分合闸的原理如何 对高低压开关柜中的的控制,就是控制其合闸和分闸。按控制地点分有就地控制和集中控制两种。 在断路器附近用手操作断路器的手动操作机构或采用按钮控制(通过电磁铁或)完成合闸、分闸任务,就是就地操作。 这种方式可以一节省投资、节省电缆和二次设备。 集中控制是在主控制室进行的,如发电机、主变压器、母线分段和母线联络断路器等上要设备,均采用集中控制方式。 这种控制方式中被控制的断路器和主控制室之间一般有几十米至数百米距离,所以也称为“远方控制”。 对断路器的控制是通过辅助电路实现的。 在主控制室的控制屏上应装有能发出合闸、分闸命令的控制开关或按钮,在断路器上应有执行命令的操动机构(即合闸、分闸线圈)。 控制开关和操动机构之间通过控制电缆连接起来。 完成断路器合闸、分闸任务的回路称为控制电路。 控制电路按操作的种类可以分为直流操作和交流操作两类;按采用的接线和设备分,有强电控制和控制两类。 1.基本要求

断路器的型号很多,操动(作)机构也多种多样,所以它的控制电路也有许多类型。 但是,它们的基本要求是相同的。 (1)能手动合闸、分闸,也能由继电保护与自动装置实现自动合闸、分闸。 合闸、分闸操作完成后,应能自动切断合、分闸电路,以免烧坏线圈。 (2)能指示断路器合闸、分闸位置状态。 断路器在合闸位置时,红色信号灯亮;在分闸位置时,绿色信号灯亮。 闪光表示其自动合闸、分闸状态。控制电路应有熔断器保护。 (3)能监视控制电路和电源的完好性。 (4)具有机械或电气的防跳闭锁装置。 (5)接线力求简单、可靠。 2.几种控制电路 (1)手动、自动控制电路。1是手动、自动控制断路器合1101、分闸的电路。 SA为控制开关,它带有自复机构,即断路器操作结束,手柄会自动恢复到原来的中间位置。 QF2和QE,分别表示电磁操动机构的分闸线圈和合闸线圈,KM为合闸; QF1和QF4是断路器QF的辅助触头,IKAU为rl动装置的常开触头,KPo是保护出

电力系统自动重合闸matlab仿真教学文案

电力系统自动重合闸仿真分析 目前我国的远距离输配电系统(220~1000kv)架空线路上,由于相间距离大,运行经验表明短路故障中大多都是单相接地短路。在这种情况下,如果只把短路的那一相断开,其他两相仍然可以继续运行,就可以大大提高供电的可靠性和系统并列运行的稳定性。这种方式的重合闸就叫做单相重合闸。如果线路发生的事瞬时故障,则单相自动重合闸成功,则三相线路恢复正常运行。如果是永久性故障,单相重合闸后,在继电器和断路器的作用下,故障相又一次被切除。断路器二次跳闸后一般不会再次合闸。220kv以上的断路器都是按相操作的,这样可以保证稳定性。 单相自动重合闸的优缺点 优点: 绝大多数故障情况下保证对用户的连续供电 提高了双侧电源系统并列运行的稳定性 提高供电的可靠性 加强两个系统之间的联系 缺点: 需要按相操作的断路器 需要专门的选相元件与继电器保护相配合 非全相运行会引起其它保护的误动作,需采取措施予以防止 自动重合闸有两种启动方式 自动重合闸有两种启动方式:断路器控制开关位置与断路器位置不对

应启动方式和保护启动方式。 不对应启动方式的优点:简单可靠,还可以弥补和减少断路器误碰或偷跳造成的的影响和损失,可提高供电可靠性和系统运行的稳定性,在各级电网中具有良好运行效果,是所有重合闸的基本启动方式。其缺点是,当断路器辅助触点接触不良时,不对应启动方式将失效。保护启动方式,是不对应启动方式的补充。同时,在单相重合闸过程中需要进行一些保护的闭锁,逻辑回路中需要对故障相实现选相固定等,也需要一个由保护启动的重合闸启动元件。其缺点:不能弥补和减少断路器误动造成的影响和损失。 电力系统单相自动重合闸仿真 电源为12组350MV的同步发电机 断路器1和2模仿的是瞬态故障时自动重合闸继电器工作效果 图中对各个负载采取双电源供电方式 在电路图参数进行设置时,将断路器的故障相选为A相,断路器的

开关柜中断路器保护知识大讲解

开关柜中断路器保护知识大讲解 在开关柜的生产中会经常用到断路器。断路器也是开关柜中不可缺少的主元器件之一。它给开关柜和相关设备起着保护作用。断路器保护主要包括:断路器失灵保护、自动重合闸、充电保护、死区保护、三相不一致保护和瞬时跟跳。下面主要讨论3/2接线方式下的断路器保护。 一、断路器保护装置的配置 一般在双母线、单母线接线方式中,输电线路保护要发跳闸命令时只跳线路本端的一个断路器,重合闸自然也只重合这一个断路器,所以重合闸按保护配置是合理的。 在3/2接线方式中把失灵保护、自动重合闸、三相不一致保护、死区保护和充电保护做在一个装置内,这个装置即称为断路器保护。 二、断路器失灵保护 断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。 一般在220kV及以上断路器上配置断路器失灵保护功能,部分重要的110kV断路器也会配置失灵功能。以下详细分析:3/2接线方式下的断路器失灵保护。 如图1所示,在3/2接线方式下,如果在线路2发生短路,线路保护跳开5021和5022断路器。假如5021断路器失灵,为了短路点的熄弧,5021断路器的失灵保护应将500kVⅠ母上所有的断路器(图中5011、5031断路器)都跳开。

图1 500kV变电站3/2接线方式简图 如果在500kVⅠ母上发生短路,母线保护动作跳母线上所有断路器。假如5021断路器失灵,5021断路器的失灵保护应将5022断路器跳开,并发远方跳闸命令跳线路2对侧的断路器。(如连接元件是变压器,则跳开变压器各侧断路器)所以边断路器的失灵保护动作后应该跳开边断路器所在母线上的所有断路器和中断路器并启动远方跳闸功能跳与边断路器相连的线路对侧断路器(或跳变压器各侧断路器)。 如果在线路2上发生短路,线路保护跳5011和5021两个断路器。假如5022断路器失灵,5022断路器的失灵保护应将5023断路器跳开,并发远方跳闸命令跳2号主变各侧断路器,这样短路点才能熄弧。 所以中断路器的失灵保护动作后应该跳开它两侧的两个边断路器,并启动远方跳闸功能跳与中断路器相连的线路对侧断路器(或跳变压器各侧断路器)。

10kV真空断路器故障处理通用版

操作规程编号:YTO-FS-PD249 10kV真空断路器故障处理通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

10kV真空断路器故障处理通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 随着真空断路器的广泛应用,不少10kV少油断路器已更换为真空断路器。由于生产厂家不同,一部分真空断路器性能较好,检修、维护工作量小,供电可靠性高;也有一部分真空断路器性能很差,特别是断路器的特性方面,存在的问题比较多;还有一些真空断路器缺陷极其严重,容易造成事故越级,导致大面积停电。 由于这几年在真空断路器的检修、维护工作中,使用真空测试仪、特性测试仪等先进的科学仪器进行测试,使藏而不露的问题以科学数据的形式显现出来。在处理这些问题的过程中,也积累了一些经验,做到了综合性检修,防患于未然,保证了真空断路器的安全可靠运行。 1真空泡真空度降低 1.1故障现象 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本身没有定性、定量监测真空度特性的装置,所以真空度降低故障为隐性故障,其危险程度远远大于显性故障。

断路器不能合闸原因分析

断路器不能合闸,造成断路器不能合闸的原因可能是: 1>欠压线圈不工作(电压正常)(解决办法--更换欠压线圈(; 2>按下合闸按钮,合闸线圈得电不工作(解决办法--更换欠压线圈); 3>合闸按钮接触不良(解决办法:更换合闸按钮);4>控制回路熔芯烧坏(解决办法--确认控制回路正常无短路后更换熔芯); 5>断路器未储能(解决办法--检查电动机控制电源电压必须≥ 85%); 6>合闸电磁铁控制电源电电压小于85%(解决办法--合闸电磁铁电源电压必须≥ 85%); 7>合闸电磁铁已损坏(解决办法--更换合闸电磁铁); 8>抽屉式断路器二次回路接触不良(解决办法--把抽屉式断路器重新摇到“接通” 位置。检查二次回路是否连接可靠); 9>万能转换开关在停止位(解决办法--将开关转到左送电或右送电处); 1.“拒合”故障的判断和处理 发生“拒合”情况,基本上是在合闸操作和重合闸过程中。此种故障危害性较大,例如在事故情况下要求紧急投入备用电源时,如果备用电源断路器拒绝合闸,则会扩大事故。判断断路器“拒合”的原因及处理方法一般可以分三步。 ①检查前一次拒绝合闸是否因操作不当引起(如控制开关放手太快等),用控制开关再重新合一次。 ②若合闸仍不成功,检查电气回路各部位情况,以确定电气回路是否有故障。检查项目是:合闸控制电源是否正常;合闸控制回路熔断器和合闸回路熔断器是否良好;合闸接触器的触点是否正常;将控制开关扳至“合闸时”位置,看合闸铁芯动作是否正常。

③如果电气回路正常,断路器仍不能合闸,则说明为机械方面故障,应停用断路器,报告调度安排检修处理。 经过以上初步检查,可判定是电气方面,还是机械方面的故障。常见的电气回路故障和机械方面的故障分别叙述如下。 1.1电气方面常见的故障 若合闸操作前红、绿灯均不亮,说明无控制电源或控制回路有断线现象。可检查控制电源和整个控制回路上的元件是否正常,如:操作电压是否正常,熔断器是否熔断,防跳继电器是否正常,断路器辅助接点接触是否良好等。 当操作合闸后绿灯闪光,而红灯不亮,仪表无指示,喇叭响,断路器机械分、合闸位置指示器仍在分闸位置,则说明操作手柄位置和断路器的位置不对应,断路器未合上。其常见的原因有:合闸回路熔断器熔断或接触不良;合闸接触器未动作;合闸线圈发生故障。 当操作断路器合闸后,绿灯熄灭,红灯瞬时明亮后又熄灭,绿灯又闪光且有喇叭响,说明断路器合上后又自动跳闸。其原因可能是断路器合在故障线路上造成保护动作跳闸或断路器机械故障不能使断路器保持在合闸状态。 若操作合闸后绿灯闪光或熄灭,红灯不亮,但表计有指示,机械分、合闸位置指示器在合闸位置,说明断路器已经合上。可能的原因是断路器辅助接点接触不良,例如常闭接点未断开,常开接点未合上,致使绿灯闪光和红灯不亮;还可能是合闸回路断线或合闸红灯烧坏。 操作手把返回过早。 操作电压过低,电压为额定电压的80%以下。 1.2机械方面常见的故障 ①传动机构连杆松动脱落。

自动重合闸漏电保护断路器

FO.DIAN FDDZ20LE (DZ)系列带自动重合闸功能漏电保护断路器 使用说明书 广东佛电电器有限公司

1. 用途 FDDZ20LE(ZD)系列智能漏电保护断路器(带自动重合闸功能)(以下简称断路器),是本公司近年来为适应我国城乡安全用电实际环境而研制开发的科技创新的产品。集剩余电流等保护、回路主开关以及手动、自动分合闸等功能于一体的多功能的远程负荷监控型智能断路器。 FDDZ20L(ZD)系列断路器适用于三相四线中性点直接接地的低压电网,除 了剩余电流、过载、短路等基本保护外,还可根据需要选配过载、短路、断零、欠压、过压、缺相等进行保护,并带有远程分合控制、分合状态信号及数字(485)等多种外控接口。 本产品执行GB14048.2/IEC60947-2标准。 2?使用环境和工作条件 a. 周围空气温度;上限不高于+60C,下限不低于-5 C, 24h的平均值不超过35C。 b. 海拔:安装地点的海拔不超过2000m c. 大气条件:大气的相对湿度在周围最高温度为+40C时不超过50%在较低的 温度允许有较高的湿度:在最湿月的月平均最低温度为+25C时,该月的月平均最大相对湿度为90%并考虑到因温度变化发生在产品表面的凝露,采取特殊 的措施。 d. 污染等级:3级。 e. 安装类别:山类 f. 安装场所的外磁场在任何方向不超过磁场的5倍。 3.型号及其含义 FD DZ20LE (DZ)- □□口 壳架等级电流(A) 智能漏电保护断路器 企业代号

4?主要技术性能 4.1主要技术参数见(表2) 4.3产品功能 剩余电流:断路器出现剩余电流并达到设定档位时,在设定的时间内分闸动作。20?60S 内自动重合闸一次,合闸5S内再次剩余电流动作,分闸自锁,待故障排除后需手动或按键 合闸。

真空断路器的常见故障及处理方法通用版

安全管理编号:YTO-FS-PD256 真空断路器的常见故障及处理方法通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

真空断路器的常见故障及处理方法 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、真空泡真空度降低 故障现象: 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本身没有定性、定量监测真空度特性的装置,所以真空度降低故障为隐性故障,其危险程度远远大于显性故障。 原因分析: 真空度降低的主要原因有以下几点: (1)真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点; (2)真空泡内波形管的材质或制作工艺存在问题,多次操作后出现漏点; (3)分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹跳、超行程等特性,使真空度降低的速度加快。

开关电源EMC经验谈

隔离式DC/DC 变换器的电磁兼容设计 李建泉 (株洲时代集团公司,株洲, 412007) 摘 要: 文章详细分析了隔离式DC/DC 变换器产生电磁噪声干扰的机理,提出了在DC/DC 变换器主电路及控制电路设计时所采取的电磁兼容措施。 关键词:隔离式DC/DC 变换器、电磁兼容性、电磁干扰、电磁敏感度 随着电力电子技术的发展,开关电源模块因其相对体积小、效率高、工作可靠等优点开始取代传统整流电源而被广泛应用到社会的各个领域。但由于开关电源工作频率高,内部产生很快的电流、电压变化,即dv/dt 和di/dt ,导致开关电源模块将产生较强的谐波干扰和尖峰干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响。这就是所讨论的电磁兼容性问题,也是关于开关电源电磁兼容的电磁骚扰EMD 与电磁敏感度EMS 设计问题。由于国家开始对部分电子产品强制实行3C 认证,因此一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以进行开关电源的电磁兼容性研究显得非常重要。 电磁兼容学是一门综合性学科,它涉及的理论包括数学、电磁场理论、天线与电波传播、电路理论、信号分析、通讯理论、材料科学、生物医学等。 进行开关电源的电磁兼容性设计时,首先进行一个系统设计,明确以下几点: 1. 明确系统要满足的电磁兼容标准; 2. 确定系统内的关键电路部分,包括强干扰源电路、高度敏感电路; 3. 明确电源设备工作环境中的电磁干扰源及敏感设备; 4. 确定对电源设备所要采取的电磁兼容性措施。 一:DC/DC 变换器内部噪声干扰源分析 1.二极管的反向恢复引起噪声干扰 在开关电源中常使用工频整流二极管、高频整流二极管、续流二极管等,由于这些二极管都工作在开关状态,如图所示,在二极管由阻断状态到导通工作过程中,将产生一个很高的电压尖峰V FP ;在二极管由导通状态到阻断工作过程 中,存在一个反向恢复时间t rr ,在反向恢复过程中,由于二极管封装电感及引 线电感的存在,将产生一个反向电压尖峰V RP ,由于少子的存储与复合效应,会 U a) I RP 二极管反向恢复时电流电压波形 二极管正向导通电流电压波形

断路器分、合闸故障判断及处理技术

断路器分、合闸故障判断及处理技术 “拒分”、“拒合”、“误分”、“误合”是断路器运行中的常见故障,故障原因主要有电气和机械两方面(排除人为误操作因素后)。本文拟就操动机构为电磁型(CD型)的断路器分、合闸故障的判断和处理方法做简单论述,供变电运行维护人员参考。 一、“拒合”故障的判断和处理 发生“拒合”情况,基本上是在合闸操作和重合闸过程中。此种故障危害性较大,例如在事故情况下要求紧急投入备用电源时,如果备用电源断路器拒绝合闸,则会扩大事故。判断断路器“拒合”的原因及处理方法一般可以分三步。 ①检查前一次拒绝合闸是否因操作不当引起(如控制开关放手太快等),用控制开关再重新合一次。 ②若合闸仍不成功,检查电气回路各部位情况,以确定电气回路是否有故障。检查项目是:合闸控制电源是否正常;合闸控制回路熔断器和合闸回路熔断器是否良好;合闸接触器的触点是否正常;将控制开关扳至“合闸时”位置,看合闸铁芯动作是否正常。 ③如果电气回路正常,断路器仍不能合闸,则说明为机械方面故障,应停用断路器,报告调度安排检修处理。 经过以上初步检查,可判定是电气方面,还是机械方面的故障。常见的电气回路故障和机械方面的故障分别叙述如下。 1.1电气方面常见的故障 若合闸操作前红、绿灯均不亮,说明无控制电源或控制回路有断线现象。可检查控制电源和整个控制回路上的元件是否正常,如:操作电压是否正常,熔断器是否熔断,防跳继电器是否正常,断路器辅助接点接触是否良好等。 当操作合闸后绿灯闪光,而红灯不亮,仪表无指示,喇叭响,断路器机械分、合闸位置指示器仍在分闸位置,则说明操作手柄位置和断路器的位置不对应,断路器未合上。其常见的原因有:合闸回路熔断器熔断或接触不良;合闸接触器未动作;合闸线圈发生故障。 当操作断路器合闸后,绿灯熄灭,红灯瞬时明亮后又熄灭,绿灯又闪光且有喇叭响,说明断路器合上后又自动跳闸。其原因可能是断路器合在故障线路上造成保护动作跳闸或断路器机械故障不能使断路器保持在合闸状态。 若操作合闸后绿灯闪光或熄灭,红灯不亮,但表计有指示,机械分、合闸位置指示器在合闸位置,说明断路器已经合上。可能的原因是断路器辅助接点接触不良,例如常闭接点未断开,常开接点未合上,致使绿灯闪光和红灯不亮;还可能是合闸回路断线或合闸红灯烧坏。 操作手把返回过早。 操作电压过低,电压为额定电压的80%以下。 1.2机械方面常见的故障 ①传动机构连杆松动脱落。 ②合闸铁芯卡涩。 ③断路器分闸后机构未复归到预合位置。 ④跳闸机构脱扣。 ⑤合闸电磁铁动作电压过高,使挂钩未能挂住。 ⑥分闸连杆未复归。

相关文档
最新文档